首页 > 最新文献

Journal of open source software最新文献

英文 中文
aion: An R Package to Represent Archaeological TimeSeries aion:表示考古时间序列的 R 软件包
Pub Date : 2024-04-11 DOI: 10.21105/joss.06210
Nicolas Frerebeau
aion is designed to provide a consistent framework for representing archaeological time series that can extend very far in the past. aion provides a system of classes and methods to represent and work with such time series. This package does not provide tools for temporal analysis or modeling. Instead, it offers a system of classes and methods to represent and work with archaeological time series. This API can be extended and used by other specialized packages (see kairos v2.0 as an example)
aion 的设计目的是为表示考古时间序列提供一个一致的框架,这些时间序列可以延伸到非常久远的过去。该软件包不提供时间分析或建模工具。相反,它提供了一套用于表示和处理考古时间序列的类和方法系统。该应用程序接口可由其他专业软件包扩展和使用(见 kairos v2.0 示例)
{"title":"aion: An R Package to Represent Archaeological Time\u0000Series","authors":"Nicolas Frerebeau","doi":"10.21105/joss.06210","DOIUrl":"https://doi.org/10.21105/joss.06210","url":null,"abstract":"aion is designed to provide a consistent framework for representing archaeological time series that can extend very far in the past. aion provides a system of classes and methods to represent and work with such time series. This package does not provide tools for temporal analysis or modeling. Instead, it offers a system of classes and methods to represent and work with archaeological time series. This API can be extended and used by other specialized packages (see kairos v2.0 as an example)","PeriodicalId":16635,"journal":{"name":"Journal of open source software","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140715016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ABSESpy: An agent-based modeling framework forsocial-ecological systems ABSESpy:基于代理的社会生态系统建模框架
Pub Date : 2024-04-10 DOI: 10.21105/joss.06298
Shuang Song, Shuai Wang, Chentai Jiao, Elías José Mantilla Ibarra
ABSESpy is a novel agent-based modeling (ABM) framework that facilitates socio-ecological systems (SES) research. It serves as an extension package of Mesa , the most popular ABM framework
ABSESpy 是一个新颖的基于代理的建模(ABM)框架,有助于社会生态系统(SES)研究。它是最流行的 ABM 框架 Mesa 的扩展包。
{"title":"ABSESpy: An agent-based modeling framework for\u0000social-ecological systems","authors":"Shuang Song, Shuai Wang, Chentai Jiao, Elías José Mantilla Ibarra","doi":"10.21105/joss.06298","DOIUrl":"https://doi.org/10.21105/joss.06298","url":null,"abstract":"ABSESpy is a novel agent-based modeling (ABM) framework that facilitates socio-ecological systems (SES) research. It serves as an extension package of Mesa , the most popular ABM framework","PeriodicalId":16635,"journal":{"name":"Journal of open source software","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140716988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monte Carlo / Dynamic Code (MC/DC): An acceleratedPython package for fully transient neutron transport and rapid methodsdevelopment 蒙特卡罗/动态代码 (MC/DC):用于完全瞬态中子输运和快速方法开发的加速 Python 软件包
Pub Date : 2024-04-09 DOI: 10.21105/joss.06415
Joanna Piper Morgan, Ilham Variansyah, Sam Pasmann, Kayla B. Clements, Braxton Cuneo, Alexander Mote, Charles Goodman, Caleb Shaw, Jordan Northrop, Rohan Pankaj, Ethan Lame, Benjamin Whewell, Ryan G. McClarren, Todd S. Palmer, Lizhong Chen, Dmitriy Anistratov, C. T. Kelley, Camille J. Palmer, Kyle E. Niemeyer
pseudo-random
伪随机
{"title":"Monte Carlo / Dynamic Code (MC/DC): An accelerated\u0000Python package for fully transient neutron transport and rapid methods\u0000development","authors":"Joanna Piper Morgan, Ilham Variansyah, Sam Pasmann, Kayla B. Clements, Braxton Cuneo, Alexander Mote, Charles Goodman, Caleb Shaw, Jordan Northrop, Rohan Pankaj, Ethan Lame, Benjamin Whewell, Ryan G. McClarren, Todd S. Palmer, Lizhong Chen, Dmitriy Anistratov, C. T. Kelley, Camille J. Palmer, Kyle E. Niemeyer","doi":"10.21105/joss.06415","DOIUrl":"https://doi.org/10.21105/joss.06415","url":null,"abstract":"pseudo-random","PeriodicalId":16635,"journal":{"name":"Journal of open source software","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140722598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
ClassiPyGRB: Machine Learning-Based Classification andVisualization of Gamma Ray Bursts using t-SNE ClassiPyGRB:使用 t-SNE 对伽马射线暴进行基于机器学习的分类和可视化
Pub Date : 2024-04-08 DOI: 10.21105/joss.05923
K. Garcia-Cifuentes, R. L. Becerra, F. Colle
Gamma-ray burst (GRBs) are the brightest events in the universe. For decades, astrophysicists have known about their cosmological nature. Every year, space missions such as Fermi and SWIFT detect hundreds of them. In spite of this large sample, GRBs show a complex taxonomy in the first seconds after their appearance, which makes it very difficult to find similarities between them using conventional techniques. It is known that GRBs originate from the death of a massive star or from the merger of two compact objects. GRB classification is typically based on the duration of the burst (Kouveliotou et al., 1993). Nevertheless, events such as GRB 211211A (Yang et al., 2022), whose duration of about 50 seconds lies in the group of long GRBs, has challenged this categorization by the evidence of features related with the short GRB population (the kilonova emission and the properties of its host galaxy). Therefore, a classification based only on their gamma-ray duration does not provide a completely reliable determination of the progenitor. Motivated by this problem, Jespersen et al. (2020) and Steinhardt et al. (2023) carried out analysis of GRB light curves by using the t-SNE algorithm, showing that Swift/BAT GRBs database, consisting of light curves in four energy bands (15-25 keV, 25-50 keV, 50-100 keV, 100-350 keV), clusters into two groups corresponding with the typical long/short classification. However, in this case, this classification is based on the information provided by their gamma-ray emission light curves. ClassiPyGRB is a Python 3 package to download, process, visualize and classify GRBs database from the Swift/BAT Instrument (up to July 2022). It is distributed over the GNU General Public License Version 2 (1991). We also included a noise-reduction and an interpolation tools for achieving a deeper analysis of the data.
伽马射线暴(GRB)是宇宙中最亮的事件。几十年来,天体物理学家已经知道它们的宇宙学性质。每年,费米和 SWIFT 等太空任务都会探测到数百个伽马射线暴。尽管样本如此之多,但在出现后的最初几秒钟内,GRB 呈现出复杂的分类,这使得使用传统技术找到它们之间的相似性变得非常困难。众所周知,GRB 起源于一颗大质量恒星的死亡或两个紧凑天体的合并。对 GRB 的分类通常是基于爆发的持续时间(Kouveliotou 等人,1993 年)。然而,GRB 211211A(Yang 等人,2022 年)等事件(其持续时间约为 50 秒,属于长 GRB)通过证明与短 GRB 群体有关的特征(千新星发射及其宿主星系的特性),对这种分类方法提出了挑战。因此,仅仅根据伽马射线的持续时间进行分类并不能完全可靠地确定原生体。受这一问题的启发,Jespersen 等人(2020 年)和 Steinhardt 等人(2023 年)利用 t-SNE 算法对 GRB 光变曲线进行了分析,结果表明 Swift/BAT GRB 数据库由四个能段(15-25 千伏、25-50 千伏、50-100 千伏、100-350 千伏)的光变曲线组成,按照典型的长/短分类法可将其分为两组。不过,在这种情况下,这种分类是基于它们的伽马射线发射光曲线所提供的信息。ClassiPyGRB是一个Python 3软件包,用于下载、处理、可视化和分类来自Swift/BAT仪器(截至2022年7月)的伽马射线暴数据库。它采用 GNU 通用公共许可证第 2 版(1991 年)发布。我们还加入了降噪和插值工具,以便对数据进行更深入的分析。
{"title":"ClassiPyGRB: Machine Learning-Based Classification and\u0000Visualization of Gamma Ray Bursts using t-SNE","authors":"K. Garcia-Cifuentes, R. L. Becerra, F. Colle","doi":"10.21105/joss.05923","DOIUrl":"https://doi.org/10.21105/joss.05923","url":null,"abstract":"Gamma-ray burst (GRBs) are the brightest events in the universe. For decades, astrophysicists have known about their cosmological nature. Every year, space missions such as Fermi and SWIFT detect hundreds of them. In spite of this large sample, GRBs show a complex taxonomy in the first seconds after their appearance, which makes it very difficult to find similarities between them using conventional techniques. It is known that GRBs originate from the death of a massive star or from the merger of two compact objects. GRB classification is typically based on the duration of the burst (Kouveliotou et al., 1993). Nevertheless, events such as GRB 211211A (Yang et al., 2022), whose duration of about 50 seconds lies in the group of long GRBs, has challenged this categorization by the evidence of features related with the short GRB population (the kilonova emission and the properties of its host galaxy). Therefore, a classification based only on their gamma-ray duration does not provide a completely reliable determination of the progenitor. Motivated by this problem, Jespersen et al. (2020) and Steinhardt et al. (2023) carried out analysis of GRB light curves by using the t-SNE algorithm, showing that Swift/BAT GRBs database, consisting of light curves in four energy bands (15-25 keV, 25-50 keV, 50-100 keV, 100-350 keV), clusters into two groups corresponding with the typical long/short classification. However, in this case, this classification is based on the information provided by their gamma-ray emission light curves. ClassiPyGRB is a Python 3 package to download, process, visualize and classify GRBs database from the Swift/BAT Instrument (up to July 2022). It is distributed over the GNU General Public License Version 2 (1991). We also included a noise-reduction and an interpolation tools for achieving a deeper analysis of the data.","PeriodicalId":16635,"journal":{"name":"Journal of open source software","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140729499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
seesus: a social, environmental, and economicsustainability classifier for Python seesus:Python 的社会、环境和经济可持续性分类器
Pub Date : 2024-04-08 DOI: 10.21105/joss.06244
Meng Cai, Yingjie Li, Dirk Colbry, Veronica F. Frans, Yuqian Zhang
{"title":"seesus: a social, environmental, and economic\u0000sustainability classifier for Python","authors":"Meng Cai, Yingjie Li, Dirk Colbry, Veronica F. Frans, Yuqian Zhang","doi":"10.21105/joss.06244","DOIUrl":"https://doi.org/10.21105/joss.06244","url":null,"abstract":"","PeriodicalId":16635,"journal":{"name":"Journal of open source software","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140729613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HiddenMarkovModels.jl: generic, fast and reliable statespace modeling HiddenMarkovModels.jl:通用、快速、可靠的状态空间建模
Pub Date : 2024-04-05 DOI: 10.21105/joss.06436
Guillaume Dalle
{"title":"HiddenMarkovModels.jl: generic, fast and reliable state\u0000space modeling","authors":"Guillaume Dalle","doi":"10.21105/joss.06436","DOIUrl":"https://doi.org/10.21105/joss.06436","url":null,"abstract":"","PeriodicalId":16635,"journal":{"name":"Journal of open source software","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140740462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
lbh15: a Python package for standard use andimplementation of physical data of heavy liquid metals used in nuclearreactors lbh15:用于核反应堆所用重金属液态物理数据的标准使用和实现的 Python 软件包
Pub Date : 2024-04-05 DOI: 10.21105/joss.06383
Gabriele Ottino, Daniele Panico, D. Tomatis, Pierre-Alexandre Pantel
{"title":"lbh15: a Python package for standard use and\u0000implementation of physical data of heavy liquid metals used in nuclear\u0000reactors","authors":"Gabriele Ottino, Daniele Panico, D. Tomatis, Pierre-Alexandre Pantel","doi":"10.21105/joss.06383","DOIUrl":"https://doi.org/10.21105/joss.06383","url":null,"abstract":"","PeriodicalId":16635,"journal":{"name":"Journal of open source software","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140738458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GCIdentifier.jl: A Julia package for identifyingmolecular fragments from SMILES GCIdentifier.jl:从 SMILES 识别分子片段的 Julia 软件包
Pub Date : 2024-04-05 DOI: 10.21105/joss.06453
Pierre J. Walker, Andrés Riedemann, Zhen-Gang Wang
{"title":"GCIdentifier.jl: A Julia package for identifying\u0000molecular fragments from SMILES","authors":"Pierre J. Walker, Andrés Riedemann, Zhen-Gang Wang","doi":"10.21105/joss.06453","DOIUrl":"https://doi.org/10.21105/joss.06453","url":null,"abstract":"","PeriodicalId":16635,"journal":{"name":"Journal of open source software","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140740712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
goFlux: A user-friendly way to calculate GHG fluxesyourself, regardless of user experience goFlux:一种用户友好型方法,无论用户经验如何,都能自行计算温室气体流量
Pub Date : 2024-04-04 DOI: 10.21105/joss.06393
Karelle Rheault, J. Christiansen, K. Larsen
The R package goFlux has been developed for calculating greenhouse gas (GHG) flux estimates from static chamber measurements. Compared to previous software developed for the same purpose, the goFlux package is not limited to the linear regression approach (LM), but also estimates GHG fluxes from a non-linear regression approach, i.e., the Hutchinson and Mosier model (HM). An automatic selection procedure has been implemented in the package to help users select the best flux estimate (LM or HM) based on objective criteria. In addition, this package can be used to import raw data directly downloaded from a broad selection of instruments (LI-COR, LGR, GAIA2TECH, Gasmet, Picarro, Aeris and PP-Systems). The package is divided into five steps: 1. import raw data into R; 2. define the start and end points of each measurement and assign a UniqueID; 3. calculate GHG flux estimates (LM and HM); 4. automatically select the best flux estimate (LM or HM) based on our default choices of objective criteria; 5. visually inspect the results on plots that can be saved as pdf. For a detailed protocol on how to use this package, visit the webpage https://qepanna.quarto.pub/
我们开发了 goFlux R 软件包,用于计算静态室测量得出的温室气体通量估算值。与之前为相同目的开发的软件相比,goFlux 软件包不局限于线性回归方法(LM),还可以通过非线性回归方法(即 Hutchinson 和 Mosier 模型(HM))估算温室气体通量。软件包中包含一个自动选择程序,帮助用户根据客观标准选择最佳通量估算(LM 或 HM)。此外,该软件包还可用于导入从多种仪器(LI-COR、LGR、GAIA2TECH、Gasmet、Picarro、Aeris 和 PP-Systems)直接下载的原始数据。该软件包分为五个步骤1.将原始数据导入 R;2.定义每次测量的起点和终点,并分配一个 UniqueID;3.计算温室气体通量估算值(LM 和 HM);4.根据我们默认选择的客观标准,自动选择最佳通量估算值(LM 或 HM);5.在可保存为 pdf 格式的图上直观检查结果。有关如何使用该软件包的详细说明,请访问网站 https://qepanna.quarto.pub/。
{"title":"goFlux: A user-friendly way to calculate GHG fluxes\u0000yourself, regardless of user experience","authors":"Karelle Rheault, J. Christiansen, K. Larsen","doi":"10.21105/joss.06393","DOIUrl":"https://doi.org/10.21105/joss.06393","url":null,"abstract":"The R package goFlux has been developed for calculating greenhouse gas (GHG) flux estimates from static chamber measurements. Compared to previous software developed for the same purpose, the goFlux package is not limited to the linear regression approach (LM), but also estimates GHG fluxes from a non-linear regression approach, i.e., the Hutchinson and Mosier model (HM). An automatic selection procedure has been implemented in the package to help users select the best flux estimate (LM or HM) based on objective criteria. In addition, this package can be used to import raw data directly downloaded from a broad selection of instruments (LI-COR, LGR, GAIA2TECH, Gasmet, Picarro, Aeris and PP-Systems). The package is divided into five steps: 1. import raw data into R; 2. define the start and end points of each measurement and assign a UniqueID; 3. calculate GHG flux estimates (LM and HM); 4. automatically select the best flux estimate (LM or HM) based on our default choices of objective criteria; 5. visually inspect the results on plots that can be saved as pdf. For a detailed protocol on how to use this package, visit the webpage https://qepanna.quarto.pub/","PeriodicalId":16635,"journal":{"name":"Journal of open source software","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140742401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZOSPy: optical ray tracing in Python throughOpticStudio ZOSPy:通过 OpticStudio 在 Python 中进行光学光线追踪
Pub Date : 2024-04-04 DOI: 10.21105/joss.05756
Luc van Vught, Corné Haasjes, Jan-Willem M. Beenakker
{"title":"ZOSPy: optical ray tracing in Python through\u0000OpticStudio","authors":"Luc van Vught, Corné Haasjes, Jan-Willem M. Beenakker","doi":"10.21105/joss.05756","DOIUrl":"https://doi.org/10.21105/joss.05756","url":null,"abstract":"","PeriodicalId":16635,"journal":{"name":"Journal of open source software","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140743747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of open source software
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1