首页 > 最新文献

Data-Driven Computational Neuroscience最新文献

英文 中文
Computational Neuroscience 计算神经科学
Pub Date : 2020-11-30 DOI: 10.1017/9781108642989.003
B. Kappen
2 Neural information processing is noisy 6 2.1 Poisson Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Interval distribution . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 Integration reduces CV . . . . . . . . . . . . . . . . . . . 12 2.1.3 Refractoriness . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 ISI distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 First passage times . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 First passage time distribution . . . . . . . . . . . . . . . 17 2.3.3 Laplace transformation . . . . . . . . . . . . . . . . . . . 18 2.3.4 Scale invariance . . . . . . . . . . . . . . . . . . . . . . 20 2.3.5 Approximate scale invariance. . . . . . . . . . . . . . . . 20 2.4 Integrate and Fire Neuron . . . . . . . . . . . . . . . . . . . . . . 23 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
{"title":"Computational Neuroscience","authors":"B. Kappen","doi":"10.1017/9781108642989.003","DOIUrl":"https://doi.org/10.1017/9781108642989.003","url":null,"abstract":"2 Neural information processing is noisy 6 2.1 Poisson Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Interval distribution . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 Integration reduces CV . . . . . . . . . . . . . . . . . . . 12 2.1.3 Refractoriness . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 ISI distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 First passage times . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 First passage time distribution . . . . . . . . . . . . . . . 17 2.3.3 Laplace transformation . . . . . . . . . . . . . . . . . . . 18 2.3.4 Scale invariance . . . . . . . . . . . . . . . . . . . . . . 20 2.3.5 Approximate scale invariance. . . . . . . . . . . . . . . . 20 2.4 Integrate and Fire Neuron . . . . . . . . . . . . . . . . . . . . . . 23 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26","PeriodicalId":166530,"journal":{"name":"Data-Driven Computational Neuroscience","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121431881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multidimensional Classifiers 多维分类器
Pub Date : 2020-11-30 DOI: 10.1017/9781108642989.014
{"title":"Multidimensional Classifiers","authors":"","doi":"10.1017/9781108642989.014","DOIUrl":"https://doi.org/10.1017/9781108642989.014","url":null,"abstract":"","PeriodicalId":166530,"journal":{"name":"Data-Driven Computational Neuroscience","volume":"83 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122997993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metaclassifiers Metaclassifiers
Pub Date : 2020-11-30 DOI: 10.1017/9781108642989.013
{"title":"Metaclassifiers","authors":"","doi":"10.1017/9781108642989.013","DOIUrl":"https://doi.org/10.1017/9781108642989.013","url":null,"abstract":"","PeriodicalId":166530,"journal":{"name":"Data-Driven Computational Neuroscience","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124176595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Statistics 空间统计
Pub Date : 2020-11-30 DOI: 10.4135/9780857024442.d53
M. V. Lieshout
{"title":"Spatial Statistics","authors":"M. V. Lieshout","doi":"10.4135/9780857024442.d53","DOIUrl":"https://doi.org/10.4135/9780857024442.d53","url":null,"abstract":"","PeriodicalId":166530,"journal":{"name":"Data-Driven Computational Neuroscience","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126542476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Probabilistic Clustering 概率聚类
Pub Date : 2020-11-30 DOI: 10.1017/9781108642989.017
{"title":"Probabilistic Clustering","authors":"","doi":"10.1017/9781108642989.017","DOIUrl":"https://doi.org/10.1017/9781108642989.017","url":null,"abstract":"","PeriodicalId":166530,"journal":{"name":"Data-Driven Computational Neuroscience","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130368046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Probabilistic Classifiers 概率分类器
Pub Date : 2020-11-30 DOI: 10.1017/9781108642989.012
I. Rish
{"title":"Probabilistic Classifiers","authors":"I. Rish","doi":"10.1017/9781108642989.012","DOIUrl":"https://doi.org/10.1017/9781108642989.012","url":null,"abstract":"","PeriodicalId":166530,"journal":{"name":"Data-Driven Computational Neuroscience","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115118675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic Inference 概率推理
Pub Date : 2020-11-30 DOI: 10.1017/9781108642989.007
{"title":"Probabilistic Inference","authors":"","doi":"10.1017/9781108642989.007","DOIUrl":"https://doi.org/10.1017/9781108642989.007","url":null,"abstract":"","PeriodicalId":166530,"journal":{"name":"Data-Driven Computational Neuroscience","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114669954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Probability Theory and Random Variables 概率论与随机变量
Pub Date : 2020-11-01 DOI: 10.1017/9781108642989.006
C. Bielza, P. Larrañaga
{"title":"Probability Theory and Random Variables","authors":"C. Bielza, P. Larrañaga","doi":"10.1017/9781108642989.006","DOIUrl":"https://doi.org/10.1017/9781108642989.006","url":null,"abstract":"","PeriodicalId":166530,"journal":{"name":"Data-Driven Computational Neuroscience","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127243159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unsupervised Classification 非监督分类
Pub Date : 2018-10-03 DOI: 10.1201/b21969-9
S. A. Nelson, S. Khorram
{"title":"Unsupervised Classification","authors":"S. A. Nelson, S. Khorram","doi":"10.1201/b21969-9","DOIUrl":"https://doi.org/10.1201/b21969-9","url":null,"abstract":"","PeriodicalId":166530,"journal":{"name":"Data-Driven Computational Neuroscience","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121283748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic Graphical Models 概率图形模型
Pub Date : 2009-07-31 DOI: 10.1017/9781108642989.018
D. Koller, N. Friedman
Probabilistic graphical models provide a flexible framework for modeling large, complex, heterogeneous collections of random variables. Graphs are used to decompose multivariate, joint distributions into a set of local interactions among small subsets of variables. These local relationships produce conditional independencies which lead to efficient learning and inference algorithms. Moreover, their modular structure provides an intuitive language for expressing domain-specific knowledge, and facilitates the transfer of modeling advances to new applications. After a brief introduction to their representational power, this course will provide a comprehensive survey of state-of-the-art methods for statistical learning and inference in graphical models. Our primary focus will be variational methods, which adapt tools from optimization theory to develop efficient, possibly approximate, inference algorithms. We will also discuss a complementary family of Monte Carlo methods, based on stochastic simulation. Many course readings will be drawn from the draft textbook An Introduction to Probabilistic Graphical Models, in preparation by Michael Jordan. Advanced topics will be supported by tutorial and survey articles, and illustrated with state-of-the-art research results and applications. Overall grades will be assigned based on homework assignments combining statistical analysis and implementation of learning algorithms, as well as a final research project involving probabilistic graphical models. Students who took CSCI 2950-P in the Fall of 2011 may repeat for credit, as the topic has changed.
{"title":"Probabilistic Graphical Models","authors":"D. Koller, N. Friedman","doi":"10.1017/9781108642989.018","DOIUrl":"https://doi.org/10.1017/9781108642989.018","url":null,"abstract":"Probabilistic graphical models provide a flexible framework for modeling large, complex, heterogeneous collections of random variables. Graphs are used to decompose multivariate, joint distributions into a set of local interactions among small subsets of variables. These local relationships produce conditional independencies which lead to efficient learning and inference algorithms. Moreover, their modular structure provides an intuitive language for expressing domain-specific knowledge, and facilitates the transfer of modeling advances to new applications. After a brief introduction to their representational power, this course will provide a comprehensive survey of state-of-the-art methods for statistical learning and inference in graphical models. Our primary focus will be variational methods, which adapt tools from optimization theory to develop efficient, possibly approximate, inference algorithms. We will also discuss a complementary family of Monte Carlo methods, based on stochastic simulation. Many course readings will be drawn from the draft textbook An Introduction to Probabilistic Graphical Models, in preparation by Michael Jordan. Advanced topics will be supported by tutorial and survey articles, and illustrated with state-of-the-art research results and applications. Overall grades will be assigned based on homework assignments combining statistical analysis and implementation of learning algorithms, as well as a final research project involving probabilistic graphical models. Students who took CSCI 2950-P in the Fall of 2011 may repeat for credit, as the topic has changed.","PeriodicalId":166530,"journal":{"name":"Data-Driven Computational Neuroscience","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125723849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 50
期刊
Data-Driven Computational Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1