Pub Date : 2017-01-01Epub Date: 2017-01-23DOI: 10.1155/2017/7513687
Regina Au
Immunooncology (IO) is the buzz word today and it has everyone doing IO research. If we look back at the history of cancer treatment, the survival rate was measured in months which, according to oncologists, was a lot back then because the mortality rate in most cancers was 100%. However, most traditional chemotherapies were not well tolerated because they would kill both cancerous and healthy cells, which lead to major side effects such as loss of hair, nausea and vomiting, and risk of infection. Survival was better but not much better depending on the type of cancer and the patient's own genetic and physiological make-up. IO therapies target specific receptors on the cancer cells. However, with more advance technologies, the cost to develop these types of therapies increases significantly because the biology is more complex and it is more difficult to produce. Find out why these therapies are more complex and therefore more expensive. But the enhanced efficacy of these therapies does justify the cost.
{"title":"Immunooncology: Can the Right Chimeric Antigen Receptors T-Cell Design Be Made to Cure All Types of Cancers and Will It Be Covered?","authors":"Regina Au","doi":"10.1155/2017/7513687","DOIUrl":"https://doi.org/10.1155/2017/7513687","url":null,"abstract":"<p><p>Immunooncology (IO) is the buzz word today and it has everyone doing IO research. If we look back at the history of cancer treatment, the survival rate was measured in months which, according to oncologists, was a lot back then because the mortality rate in most cancers was 100%. However, most traditional chemotherapies were not well tolerated because they would kill both cancerous and healthy cells, which lead to major side effects such as loss of hair, nausea and vomiting, and risk of infection. Survival was better but not much better depending on the type of cancer and the patient's own genetic and physiological make-up. IO therapies target specific receptors on the cancer cells. However, with more advance technologies, the cost to develop these types of therapies increases significantly because the biology is more complex and it is more difficult to produce. Find out why these therapies are more complex and therefore more expensive. But the enhanced efficacy of these therapies does justify the cost.</p>","PeriodicalId":16744,"journal":{"name":"Journal of Pharmaceutics","volume":"2017 ","pages":"7513687"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/7513687","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34766381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-06-04DOI: 10.1155/2017/7457865
Baran Komur, Yener Akyuva, Numan Karaslan, Mehmet Isyar, Seyit Ali Gumustas, Ibrahim Yilmaz, Semih Akkaya, Duygu Yasar Sirin, Cagri Ata Mutlu, Ahmet Guray Batmaz, Olcay Guler, Mahir Mahirogullari
Background: Use of biodegradable and biocompatible materials in the orthopedic surgery is gaining popularity. In this research, the rate of controlled release of a bilayered prototype biomaterial designed to promote osteoblastic and tenoblastic activity was calculated using pharmacochemical methods.
Methods: The first part of the design, composed of a sodium tetraborate, polyvinyl alcohol, and starch based hydrogel, was loaded with bone morphogenic protein-2. The second part which was composed of a sodium tetraborate, polyvinyl alcohol, and chitosan based hydrogel was loaded with bone morphogenic protein-12. Osteochondral and tendon tissue specimens were obtained from patients with a diagnosis of gonarthrosis and primary bone cells and tendon cells cultures were prepared following treatment with collagenase enzyme. Cell samples were collected from the groups by means of an invert light microscope and environmental scanning electron microscope underwent at the 1st and 21st days. The level of osteogenic differentiation was measured by the activity of alkaline phosphatase. For the statistical evaluation of the obtained data, groups were compared with post hoc Tukey test following analysis of variance. Level of significance was accepted to be <0,01.
Results: Both osteogenic and tenogenic stimulation were observed in the cultured specimens. In comparison to the control groups, the rate of proliferation of healthy cells was found to be higher in the groups to which the design was added (p < 0.01).
Conclusions: Our research is a preliminary report that describes a study conducted in an in vitro experimental setting. We believe that such prototype systems may be pioneers in targeted drug therapies after reconstructional surgeries.
{"title":"Can a Biodegradable Implanted Bilayered Drug Delivery System Loaded with BMP-2/BMP-12 Take an Effective Role in the Biological Repair Process of Bone-Tendon Injuries? A Preliminary Report.","authors":"Baran Komur, Yener Akyuva, Numan Karaslan, Mehmet Isyar, Seyit Ali Gumustas, Ibrahim Yilmaz, Semih Akkaya, Duygu Yasar Sirin, Cagri Ata Mutlu, Ahmet Guray Batmaz, Olcay Guler, Mahir Mahirogullari","doi":"10.1155/2017/7457865","DOIUrl":"https://doi.org/10.1155/2017/7457865","url":null,"abstract":"<p><strong>Background: </strong>Use of biodegradable and biocompatible materials in the orthopedic surgery is gaining popularity. In this research, the rate of controlled release of a bilayered prototype biomaterial designed to promote osteoblastic and tenoblastic activity was calculated using pharmacochemical methods.</p><p><strong>Methods: </strong>The first part of the design, composed of a sodium tetraborate, polyvinyl alcohol, and starch based hydrogel, was loaded with bone morphogenic protein-2. The second part which was composed of a sodium tetraborate, polyvinyl alcohol, and chitosan based hydrogel was loaded with bone morphogenic protein-12. Osteochondral and tendon tissue specimens were obtained from patients with a diagnosis of gonarthrosis and primary bone cells and tendon cells cultures were prepared following treatment with collagenase enzyme. Cell samples were collected from the groups by means of an invert light microscope and environmental scanning electron microscope underwent at the 1st and 21st days. The level of osteogenic differentiation was measured by the activity of alkaline phosphatase. For the statistical evaluation of the obtained data, groups were compared with post hoc Tukey test following analysis of variance. Level of significance was accepted to be <0,01.</p><p><strong>Results: </strong>Both osteogenic and tenogenic stimulation were observed in the cultured specimens. In comparison to the control groups, the rate of proliferation of healthy cells was found to be higher in the groups to which the design was added (<i>p</i> < 0.01).</p><p><strong>Conclusions: </strong>Our research is a preliminary report that describes a study conducted in an in vitro experimental setting. We believe that such prototype systems may be pioneers in targeted drug therapies after reconstructional surgeries.</p>","PeriodicalId":16744,"journal":{"name":"Journal of Pharmaceutics","volume":"2017 ","pages":"7457865"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/7457865","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35129074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01Epub Date: 2016-04-12DOI: 10.1155/2016/6585430
Archana Vyas, Heera Ram, Ashok Purohit, Rameshwar Jatwa
Aspirin (acetylsalicylic acid) is widely used for cardiovascular prophylaxis and as anti-inflammatory pharmaceutical. An investigation was carried out to evaluate the influence of subchronic dose of aspirin on reproductive profile of male rats, if any. Experimental animals were divided into three groups: control and aspirin subchronic dose of 12.5 mg/kg for 30 days and 60 days, respectively, while alterations in sperm dynamics, testicular histopathological and planimetric investigations, body and organs weights, lipid profiles, and hematology were performed as per aimed objectives. Subchronic dose of aspirin reduced sperm density, count, and mobility in cauda epididymis and testis; histopathology and developing primary spermatogonial cells (primary spermatogonia, secondary spermatogonia, and mature spermatocyte) count were also significantly decreased in rats. Hematological investigations revealed hemopoietic abnormalities in 60-day-treated animals along with dysfunctions in hepatic and renal functions. The findings of the present study revealed that administration with subchronic dose of aspirin to male rats resulted in altered reproductive profiles and serum biochemistry.
{"title":"Adverse Effects of Subchronic Dose of Aspirin on Reproductive Profile of Male Rats.","authors":"Archana Vyas, Heera Ram, Ashok Purohit, Rameshwar Jatwa","doi":"10.1155/2016/6585430","DOIUrl":"10.1155/2016/6585430","url":null,"abstract":"<p><p>Aspirin (acetylsalicylic acid) is widely used for cardiovascular prophylaxis and as anti-inflammatory pharmaceutical. An investigation was carried out to evaluate the influence of subchronic dose of aspirin on reproductive profile of male rats, if any. Experimental animals were divided into three groups: control and aspirin subchronic dose of 12.5 mg/kg for 30 days and 60 days, respectively, while alterations in sperm dynamics, testicular histopathological and planimetric investigations, body and organs weights, lipid profiles, and hematology were performed as per aimed objectives. Subchronic dose of aspirin reduced sperm density, count, and mobility in cauda epididymis and testis; histopathology and developing primary spermatogonial cells (primary spermatogonia, secondary spermatogonia, and mature spermatocyte) count were also significantly decreased in rats. Hematological investigations revealed hemopoietic abnormalities in 60-day-treated animals along with dysfunctions in hepatic and renal functions. The findings of the present study revealed that administration with subchronic dose of aspirin to male rats resulted in altered reproductive profiles and serum biochemistry. </p>","PeriodicalId":16744,"journal":{"name":"Journal of Pharmaceutics","volume":"2016 ","pages":"6585430"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34492517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01Epub Date: 2016-03-14DOI: 10.1155/2016/7608693
Ofosua Adi-Dako, Kwabena Ofori-Kwakye, Samuel Frimpong Manso, Mariam El Boakye-Gyasi, Clement Sasu, Mike Pobee
The physicochemical and antimicrobial properties of cocoa pod husk (CPH) pectin intended as a versatile pharmaceutical excipient and nutraceutical were studied. Properties investigated include pH, moisture content, ash values, swelling index, viscosity, degree of esterification (DE), flow properties, SEM, FTIR, NMR, and elemental content. Antimicrobial screening and determination of MICs against test microorganisms were undertaken using agar diffusion and broth dilution methods, respectively. CPH pectin had a DE of 26.8% and exhibited good physicochemical properties. Pectin had good microbiological quality and exhibited pseudoplastic, shear thinning behaviour, and high swelling capacity in aqueous media. The DE, FTIR, and NMR results were similar to those of previous studies and supported highly acetylated low methoxy pectin. CPH pectin was found to be a rich source of minerals and has potential as a nutraceutical. Pectin showed dose-dependent moderate activity against gram positive and gram negative microorganisms but weak activity against Listeria spp. and A. niger. The MICs of pectin ranged from 0.5 to 4.0 mg/mL, with the highest activity against E. coli and S. aureus (MIC: 0.5-1.0 mg/mL) and the lowest activity against A. niger (MIC: 2.0-4.0 mg/mL). The study has demonstrated that CPH pectin possesses the requisite properties for use as a nutraceutical and functional pharmaceutical excipient.
{"title":"Physicochemical and Antimicrobial Properties of Cocoa Pod Husk Pectin Intended as a Versatile Pharmaceutical Excipient and Nutraceutical.","authors":"Ofosua Adi-Dako, Kwabena Ofori-Kwakye, Samuel Frimpong Manso, Mariam El Boakye-Gyasi, Clement Sasu, Mike Pobee","doi":"10.1155/2016/7608693","DOIUrl":"https://doi.org/10.1155/2016/7608693","url":null,"abstract":"<p><p>The physicochemical and antimicrobial properties of cocoa pod husk (CPH) pectin intended as a versatile pharmaceutical excipient and nutraceutical were studied. Properties investigated include pH, moisture content, ash values, swelling index, viscosity, degree of esterification (DE), flow properties, SEM, FTIR, NMR, and elemental content. Antimicrobial screening and determination of MICs against test microorganisms were undertaken using agar diffusion and broth dilution methods, respectively. CPH pectin had a DE of 26.8% and exhibited good physicochemical properties. Pectin had good microbiological quality and exhibited pseudoplastic, shear thinning behaviour, and high swelling capacity in aqueous media. The DE, FTIR, and NMR results were similar to those of previous studies and supported highly acetylated low methoxy pectin. CPH pectin was found to be a rich source of minerals and has potential as a nutraceutical. Pectin showed dose-dependent moderate activity against gram positive and gram negative microorganisms but weak activity against Listeria spp. and A. niger. The MICs of pectin ranged from 0.5 to 4.0 mg/mL, with the highest activity against E. coli and S. aureus (MIC: 0.5-1.0 mg/mL) and the lowest activity against A. niger (MIC: 2.0-4.0 mg/mL). The study has demonstrated that CPH pectin possesses the requisite properties for use as a nutraceutical and functional pharmaceutical excipient. </p>","PeriodicalId":16744,"journal":{"name":"Journal of Pharmaceutics","volume":"2016 ","pages":"7608693"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/7608693","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34390772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nimil Sood, Walter T Jenkins, Xiang-Yang Yang, Nikesh N Shah, Joshua S Katz, Cameron J Koch, Paul R Frail, Michael J Therien, Daniel A Hammer, Sydney M Evans
Traditional anticancer chemotherapy often displays toxic side effects, poor bioavailability, and a low therapeutic index. Targeting and controlled release of a chemotherapeutic agent can increase drug bioavailability, mitigate undesirable side effects, and increase the therapeutic index. Here we report a polymersome-based system to deliver gemcitabine to Panc-1 cells in vitro. The polymersomes were self-assembled from a biocompatible and completely biodegradable polymer, poly(ethylene oxide)-poly(caprolactone), PEO-PCL. We showed that we can encapsulate gemcitabine within stable 200 nm vesicles with a 10% loading efficiency. These vesicles displayed a controlled release of gemcitabine with 60% release after 2 days at physiological pH. Upon treatment of Panc-1 cells in vitro, vesicles were internalized as verified with fluorescently labeled polymersomes. Clonogenic assays to determine cell survival were performed by treating Panc-1 cells with varying concentrations of unencapsulated gemcitabine (FreeGem) and polymersome-encapsulated gemcitabine (PolyGem) for 48 hours. 1 μM PolyGem was equivalent in tumor cell toxicity to 1 μM FreeGem, with a one log cell kill observed. These studies suggest that further investigation on polymersome-based drug formulations is warranted for chemotherapy of pancreatic cancer.
{"title":"Biodegradable Polymersomes for the Delivery of Gemcitabine to Panc-1 Cells.","authors":"Nimil Sood, Walter T Jenkins, Xiang-Yang Yang, Nikesh N Shah, Joshua S Katz, Cameron J Koch, Paul R Frail, Michael J Therien, Daniel A Hammer, Sydney M Evans","doi":"10.1155/2013/932797","DOIUrl":"https://doi.org/10.1155/2013/932797","url":null,"abstract":"<p><p>Traditional anticancer chemotherapy often displays toxic side effects, poor bioavailability, and a low therapeutic index. Targeting and controlled release of a chemotherapeutic agent can increase drug bioavailability, mitigate undesirable side effects, and increase the therapeutic index. Here we report a polymersome-based system to deliver gemcitabine to Panc-1 cells <i>in vitro</i>. The polymersomes were self-assembled from a biocompatible and completely biodegradable polymer, poly(ethylene oxide)-poly(caprolactone), PEO-PCL. We showed that we can encapsulate gemcitabine within stable 200 nm vesicles with a 10% loading efficiency. These vesicles displayed a controlled release of gemcitabine with 60% release after 2 days at physiological pH. Upon treatment of Panc-1 cells <i>in vitro</i>, vesicles were internalized as verified with fluorescently labeled polymersomes. Clonogenic assays to determine cell survival were performed by treating Panc-1 cells with varying concentrations of unencapsulated gemcitabine (FreeGem) and polymersome-encapsulated gemcitabine (PolyGem) for 48 hours. 1 <i>μ</i>M PolyGem was equivalent in tumor cell toxicity to 1 <i>μ</i>M FreeGem, with a one log cell kill observed. These studies suggest that further investigation on polymersome-based drug formulations is warranted for chemotherapy of pancreatic cancer.</p>","PeriodicalId":16744,"journal":{"name":"Journal of Pharmaceutics","volume":"2013 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/932797","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33898689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-01-01Epub Date: 2013-02-28DOI: 10.1155/2013/390425
Delia Danila, Eva Golunski, Ranga Partha, Madonna McManus, Tina Little, Jodie Conyers
Buckysomes, liposome-like vesicles comprised of dendritic C60 subunits that self-assemble into unilamellar vesicles, are unique nanovectors that have utility in drug delivery. We have prepared paclitaxel-embedded buckysomes (PEBs) and examined biodistriubition profiles with commercially available formulations of the drug. As compared to Abraxane, an albumin-bound formulation of paclitaxel, PEBs showed higher tissue accumulation in the liver and the kidney at 45 and 60 minutes and in the lungs at 30 minutes, making them suitable drug-delivery carriers for short-term therapy to the mentioned organs. These buckysomes can be further functionalized to specifically deliver paclitaxel to the tumor site.
{"title":"Buckysomes: New Nanocarriers for Anticancer Drugs.","authors":"Delia Danila, Eva Golunski, Ranga Partha, Madonna McManus, Tina Little, Jodie Conyers","doi":"10.1155/2013/390425","DOIUrl":"https://doi.org/10.1155/2013/390425","url":null,"abstract":"<p><p>Buckysomes, liposome-like vesicles comprised of dendritic C60 subunits that self-assemble into unilamellar vesicles, are unique nanovectors that have utility in drug delivery. We have prepared paclitaxel-embedded buckysomes (PEBs) and examined biodistriubition profiles with commercially available formulations of the drug. As compared to Abraxane, an albumin-bound formulation of paclitaxel, PEBs showed higher tissue accumulation in the liver and the kidney at 45 and 60 minutes and in the lungs at 30 minutes, making them suitable drug-delivery carriers for short-term therapy to the mentioned organs. These buckysomes can be further functionalized to specifically deliver paclitaxel to the tumor site. </p>","PeriodicalId":16744,"journal":{"name":"Journal of Pharmaceutics","volume":"2013 ","pages":"390425"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/390425","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34176483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}