Pub Date : 2024-09-09DOI: 10.1088/1751-8121/ad74bd
Nicolae Cotfas
There exist many attempts to define a Wigner function for quantum systems with finite-dimensional Hilbert space, each of them coming with its advantages and limitations. The existing finite versions have simple definitions, but they are based only on the existence of a formal analogy with the continuous-variable Wigner function and do not allow an intuitive state analysis. The continuous versions have more complicated definitions, but they are closer to the original Wigner function and allow a visualization of the quantum states. The version based on the concept of tight frame we present is finite, but it has certain properties and applications similar to those of continuous versions. It allows us to present a new graphical representation of qubit states, and to define new parameters concerning them. An important advantage of frame representation follows from the use of redundant information. The values taken by the frame version of Wigner function are not independent. They have to satisfy a large number of mathematical relations, useful in error detection and correction.
{"title":"Frame representation of quantum systems with finite-dimensional Hilbert space","authors":"Nicolae Cotfas","doi":"10.1088/1751-8121/ad74bd","DOIUrl":"https://doi.org/10.1088/1751-8121/ad74bd","url":null,"abstract":"There exist many attempts to define a Wigner function for quantum systems with finite-dimensional Hilbert space, each of them coming with its advantages and limitations. The existing finite versions have simple definitions, but they are based only on the existence of a formal analogy with the continuous-variable Wigner function and do not allow an intuitive state analysis. The continuous versions have more complicated definitions, but they are closer to the original Wigner function and allow a visualization of the quantum states. The version based on the concept of tight frame we present is finite, but it has certain properties and applications similar to those of continuous versions. It allows us to present a new graphical representation of qubit states, and to define new parameters concerning them. An important advantage of frame representation follows from the use of redundant information. The values taken by the frame version of Wigner function are not independent. They have to satisfy a large number of mathematical relations, useful in error detection and correction.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"392 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1088/1751-8121/ad72bc
Alberto Dinelli, Jérémy O’Byrne and Julien Tailleur
In this article we derive and test the fluctuating hydrodynamic description of active particles interacting via taxis and quorum sensing, both for mono-disperse systems and for mixtures of co-existing species of active particles. We compute the average steady-state density profile in the presence of spatial motility regulation, as well as the structure factor and intermediate scattering function for interacting systems. By comparing our predictions to microscopic numerical simulations, we show that our fluctuating hydrodynamics correctly predicts the large-scale static and dynamical properties of the system. We also discuss how the theory breaks down when structures emerge at scales smaller or comparable to the persistence length of the particles. When the density field is the unique hydrodynamic mode of the system, we show that active Brownian particles, run-and-tumble particles and active Ornstein–Uhlenbeck particles, interacting via quorum-sensing or chemotactic interactions, display undistinguishable large-scale properties. This form of universality implies an interesting robustness of the predicted physics but also that large-scale observations of patterns are insufficient to assess their microscopic origins. In particular, our results predict that chemotaxis-induced and motility-induced phase separation should share strong qualitative similarities at the macroscopic scale.
{"title":"Fluctuating hydrodynamics of active particles interacting via taxis and quorum sensing: static and dynamics","authors":"Alberto Dinelli, Jérémy O’Byrne and Julien Tailleur","doi":"10.1088/1751-8121/ad72bc","DOIUrl":"https://doi.org/10.1088/1751-8121/ad72bc","url":null,"abstract":"In this article we derive and test the fluctuating hydrodynamic description of active particles interacting via taxis and quorum sensing, both for mono-disperse systems and for mixtures of co-existing species of active particles. We compute the average steady-state density profile in the presence of spatial motility regulation, as well as the structure factor and intermediate scattering function for interacting systems. By comparing our predictions to microscopic numerical simulations, we show that our fluctuating hydrodynamics correctly predicts the large-scale static and dynamical properties of the system. We also discuss how the theory breaks down when structures emerge at scales smaller or comparable to the persistence length of the particles. When the density field is the unique hydrodynamic mode of the system, we show that active Brownian particles, run-and-tumble particles and active Ornstein–Uhlenbeck particles, interacting via quorum-sensing or chemotactic interactions, display undistinguishable large-scale properties. This form of universality implies an interesting robustness of the predicted physics but also that large-scale observations of patterns are insufficient to assess their microscopic origins. In particular, our results predict that chemotaxis-induced and motility-induced phase separation should share strong qualitative similarities at the macroscopic scale.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"64 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1088/1751-8121/ad74be
L M Farrell, D Eaton, P Chitnelawong, K Bencheikh, B P van Zyl
The one-body density matrix (ODM) for a zero temperature non-interacting Fermi gas can be approximately obtained in the semiclassical regime through different