Pub Date : 2023-11-01Epub Date: 2023-08-11DOI: 10.1007/s13105-023-00975-z
Adriana Cortés, Javier Marqués, Álvaro Pejenaute, Elena Ainzúa, Eduardo Ansorena, Gloria Abizanda, Felipe Prósper, Carlos de Miguel, Guillermo Zalba
Cardiovascular diseases and the ischemic heart disease specifically constitute the main cause of death worldwide. The ischemic heart disease may lead to myocardial infarction, which in turn triggers numerous mechanisms and pathways involved in cardiac repair and remodeling. Our goal in the present study was to characterize the effect of the NADPH oxidase 5 (NOX5) endothelial expression in healthy and infarcted knock-in mice on diverse signaling pathways. The mechanisms studied in the heart of mice were the redox pathway, metalloproteinases and collagen pathway, signaling factors such as NFκB, AKT or Bcl-2, and adhesion molecules among others. Recent studies support that NOX5 expression in animal models can modify the environment and predisposes organ response to harmful stimuli prior to pathological processes. We found many alterations in the mRNA expression of components involved in cardiac fibrosis as collagen type I or TGF-β and in key players of cardiac apoptosis such as AKT, Bcl-2, or p53. In the heart of NOX5-expressing mice after chronic myocardial infarction, gene alterations were predominant in the redox pathway (NOX2, NOX4, p22phox, or SOD1), but we also found alterations in VCAM-1 and β-MHC expression. Our results suggest that NOX5 endothelial expression in mice preconditions the heart, and we propose that NOX5 has a cardioprotective role. The correlation studies performed between echocardiographic parameters and cardiac mRNA expression supported NOX5 protective action.
{"title":"Endothelial NOX5 overexpression induces changes in the cardiac gene profile: potential impact in myocardial infarction?","authors":"Adriana Cortés, Javier Marqués, Álvaro Pejenaute, Elena Ainzúa, Eduardo Ansorena, Gloria Abizanda, Felipe Prósper, Carlos de Miguel, Guillermo Zalba","doi":"10.1007/s13105-023-00975-z","DOIUrl":"10.1007/s13105-023-00975-z","url":null,"abstract":"<p><p>Cardiovascular diseases and the ischemic heart disease specifically constitute the main cause of death worldwide. The ischemic heart disease may lead to myocardial infarction, which in turn triggers numerous mechanisms and pathways involved in cardiac repair and remodeling. Our goal in the present study was to characterize the effect of the NADPH oxidase 5 (NOX5) endothelial expression in healthy and infarcted knock-in mice on diverse signaling pathways. The mechanisms studied in the heart of mice were the redox pathway, metalloproteinases and collagen pathway, signaling factors such as NFκB, AKT or Bcl-2, and adhesion molecules among others. Recent studies support that NOX5 expression in animal models can modify the environment and predisposes organ response to harmful stimuli prior to pathological processes. We found many alterations in the mRNA expression of components involved in cardiac fibrosis as collagen type I or TGF-β and in key players of cardiac apoptosis such as AKT, Bcl-2, or p53. In the heart of NOX5-expressing mice after chronic myocardial infarction, gene alterations were predominant in the redox pathway (NOX2, NOX4, p22phox, or SOD1), but we also found alterations in VCAM-1 and β-MHC expression. Our results suggest that NOX5 endothelial expression in mice preconditions the heart, and we propose that NOX5 has a cardioprotective role. The correlation studies performed between echocardiographic parameters and cardiac mRNA expression supported NOX5 protective action.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"787-797"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9965777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With recent advancements in single-cell sequencing and machine learning methods, new insights into hepatocellular carcinoma (HCC) progression have been provided. Protein kinase-related genes (PKRGs) affect cell growth, differentiation, apoptosis, and signaling during HCC progression, making the predictive relevance of PKRGs in HCC highly necessary for personalized medicine. In this study, we analyzed single-cell data of HCC and used the machine learning method of LASSO regression to construct PKRG prediction models in six major cell types. CDK4 and AURKB were found to be the best PKRG prognostic signature for predicting the overall survival of HCC patients (including TCGA, ICGC, and GEO datasets) in hepatocytes. Independent clinical factors were further screened out using the COX regression method, and a nomogram combining PKRGs and cancer status was created. Treatment with Palbociclib (CDK4 Inhibitor) and Barasertib (AURKB Inhibitor) inhibited HCC cell migration. Patients classified as PKRG high- or low-risk groups showed different tumor mutation burdens, immune infiltrations, and gene enrichment. The PKRG high-risk group showed higher tumor mutation burdens and gene set enrichment analysis indicated that cell cycle, base excision repair, and RNA degradation pathways were more enriched in these patients. Additionally, the PKRG high-risk group demonstrated higher infiltration levels of Naïve CD8+ T cells, Endothelial cells, M2 macrophage, and Tregs than the low-risk group. In summary, this study established the hepatocytes-related PKRG signature for prognostic stratification at the single-cell level by using machine learning algorithms in HCC and identified potential HCC treatment targets based on the PKRG signature.
{"title":"Construction of a hepatocytes-related and protein kinase-related gene signature in HCC based on ScRNA-Seq analysis and machine learning algorithm.","authors":"Zhuoer Zhang, Lisha Mou, Zuhui Pu, Xiaoduan Zhuang","doi":"10.1007/s13105-023-00973-1","DOIUrl":"10.1007/s13105-023-00973-1","url":null,"abstract":"<p><p>With recent advancements in single-cell sequencing and machine learning methods, new insights into hepatocellular carcinoma (HCC) progression have been provided. Protein kinase-related genes (PKRGs) affect cell growth, differentiation, apoptosis, and signaling during HCC progression, making the predictive relevance of PKRGs in HCC highly necessary for personalized medicine. In this study, we analyzed single-cell data of HCC and used the machine learning method of LASSO regression to construct PKRG prediction models in six major cell types. CDK4 and AURKB were found to be the best PKRG prognostic signature for predicting the overall survival of HCC patients (including TCGA, ICGC, and GEO datasets) in hepatocytes. Independent clinical factors were further screened out using the COX regression method, and a nomogram combining PKRGs and cancer status was created. Treatment with Palbociclib (CDK4 Inhibitor) and Barasertib (AURKB Inhibitor) inhibited HCC cell migration. Patients classified as PKRG high- or low-risk groups showed different tumor mutation burdens, immune infiltrations, and gene enrichment. The PKRG high-risk group showed higher tumor mutation burdens and gene set enrichment analysis indicated that cell cycle, base excision repair, and RNA degradation pathways were more enriched in these patients. Additionally, the PKRG high-risk group demonstrated higher infiltration levels of Naïve CD8+ T cells, Endothelial cells, M2 macrophage, and Tregs than the low-risk group. In summary, this study established the hepatocytes-related PKRG signature for prognostic stratification at the single-cell level by using machine learning algorithms in HCC and identified potential HCC treatment targets based on the PKRG signature.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"771-785"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9826675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2022-12-06DOI: 10.1007/s13105-022-00934-0
Francesca Terracciani, Andrea Falcomatà, Paolo Gallo, Antonio Picardi, Umberto Vespasiani-Gentilucci
Non-alcoholic fatty liver disease (NAFLD) is becoming an epidemic in Western countries. Notably, while the majority of NAFLD patients will not evolve until advanced liver disease, a minority of them will progress towards liver-related events. Therefore, risk stratification and prognostication are emerging as fundamental in order to optimize human and economic resources for the care of these patients.Liver fibrosis has been clearly recognized as the main predictor of poor hepatic and extrahepatic outcomes. However, a prediction based only on the stage of fibrosis is near-sighted and static, as it does not capture the propensity of disease to further progress, the speed of progression and their changes over time. These determinants, which result from the interaction between genetic predisposition and acquired risk factors (obesity, diabetes, etc.), express themselves in disease activity, and can be synthesized by biomarkers of hepatic inflammation and fibrogenesis.In this review, we present the currently available clinical tools for risk stratification and prognostication in NAFLD specifically with respect to the risk of progression towards hard hepatic outcomes, i.e., liver-related events and death. We also discuss about the genetic and acquired drivers of disease progression, together with the physiopathological bases of their come into action. Finally, we introduce the most promising biomarkers in the direction of repeatedly assessing disease activity over time, mainly in response to future therapeutic interventions.
{"title":"Prognostication in NAFLD: physiological bases, clinical indicators, and newer biomarkers.","authors":"Francesca Terracciani, Andrea Falcomatà, Paolo Gallo, Antonio Picardi, Umberto Vespasiani-Gentilucci","doi":"10.1007/s13105-022-00934-0","DOIUrl":"10.1007/s13105-022-00934-0","url":null,"abstract":"<p><p>Non-alcoholic fatty liver disease (NAFLD) is becoming an epidemic in Western countries. Notably, while the majority of NAFLD patients will not evolve until advanced liver disease, a minority of them will progress towards liver-related events. Therefore, risk stratification and prognostication are emerging as fundamental in order to optimize human and economic resources for the care of these patients.Liver fibrosis has been clearly recognized as the main predictor of poor hepatic and extrahepatic outcomes. However, a prediction based only on the stage of fibrosis is near-sighted and static, as it does not capture the propensity of disease to further progress, the speed of progression and their changes over time. These determinants, which result from the interaction between genetic predisposition and acquired risk factors (obesity, diabetes, etc.), express themselves in disease activity, and can be synthesized by biomarkers of hepatic inflammation and fibrogenesis.In this review, we present the currently available clinical tools for risk stratification and prognostication in NAFLD specifically with respect to the risk of progression towards hard hepatic outcomes, i.e., liver-related events and death. We also discuss about the genetic and acquired drivers of disease progression, together with the physiopathological bases of their come into action. Finally, we introduce the most promising biomarkers in the direction of repeatedly assessing disease activity over time, mainly in response to future therapeutic interventions.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"851-868"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35211238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Continuously prolonged cardiac hypertrophy results in maladaptive myocardial remodeling, which affects cardiac function and can eventually lead to heart failure. Short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, have been reported to be associated with cardiovascular diseases (CVD). Gut microbiota may mediate between dietary fiber and SCFA effects on cardiac hypertrophy. The mice model of isoproterenol (ISO)-induced cardiac hypertrophy was constructed and verified for physiological, functional, and fibrotic alterations in this study. Both high-fiber and acetate diet improved physiological indexes, ameliorated cardiac functions, and relieved fibrotic alterations in model mice hearts; collectively, cardiac hypertrophy in mice receiving both high-fiber and acetate diet improved. Following 16s rDNA sequencing and integrative bioinformatics, analyses indicated that both high-fiber and acetate diet caused alterations in mice gut microbiota compared with the ISO group, including OTU composition and abundance. In conclusion, high-fiber and acetate diet improve the physiological status, cardiac functions, and fibrotic alterations in ISO-induced hypertrophic mice. Besides, considering the alterations in mice gut microbiota in response to single ISO, both high-fiber and acetate diet treatment, gut microbiota might mediate the favorable benefits of both high-fiber and acetate diet on cardiac hypertrophy.
{"title":"Gut microbiota might mediate the benefits of high-fiber/acetate diet to cardiac hypertrophy mice.","authors":"Meifang Chen, Liming Peng, Chenglong Zhang, Qiong Liu, Tianyi Long, Qiying Xie","doi":"10.1007/s13105-023-00971-3","DOIUrl":"10.1007/s13105-023-00971-3","url":null,"abstract":"<p><p>Continuously prolonged cardiac hypertrophy results in maladaptive myocardial remodeling, which affects cardiac function and can eventually lead to heart failure. Short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, have been reported to be associated with cardiovascular diseases (CVD). Gut microbiota may mediate between dietary fiber and SCFA effects on cardiac hypertrophy. The mice model of isoproterenol (ISO)-induced cardiac hypertrophy was constructed and verified for physiological, functional, and fibrotic alterations in this study. Both high-fiber and acetate diet improved physiological indexes, ameliorated cardiac functions, and relieved fibrotic alterations in model mice hearts; collectively, cardiac hypertrophy in mice receiving both high-fiber and acetate diet improved. Following 16s rDNA sequencing and integrative bioinformatics, analyses indicated that both high-fiber and acetate diet caused alterations in mice gut microbiota compared with the ISO group, including OTU composition and abundance. In conclusion, high-fiber and acetate diet improve the physiological status, cardiac functions, and fibrotic alterations in ISO-induced hypertrophic mice. Besides, considering the alterations in mice gut microbiota in response to single ISO, both high-fiber and acetate diet treatment, gut microbiota might mediate the favorable benefits of both high-fiber and acetate diet on cardiac hypertrophy.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"745-756"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9936983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2022-05-12DOI: 10.1007/s13105-022-00893-6
Silvia Sookoian, Carlos J Pirola
Serum uric acid-to-creatinine ratio (sUA/CrR) may be associated with metabolic syndrome components, but limited evidence exists on a relationship between sUA/Cr and NAFLD. Here, we investigated the association between sUA/CrR and NAFLD.We performed a cross-sectional analysis in 3359 subjects who participated in the NHANES 2017-2018 survey and consumed less than 30 and 20 g alcohol (men and women, respectively), with no positive tests of viral hepatitis. Liver steatosis was defined by controlled attenuation parameter and fibrosis by stiffness measurements obtained via transient elastography. We modeled the relationship between NAFLD and relevant demographic, anthropometric, and biochemical variables.sUA/CrR was significantly higher in participants with NAFLD than those without NAFLD. LASSO logit regression showed that only logarithmized age (p = 1.2e-3), waist circumference (WC) (p = 1.8e-5), triglycerides (p = 5e-6), and sUA/CrR (p = 3e-5) were retained in the model. Multivariate logistic analysis demonstrated a significant association between sUA/CrR and NAFLD; the OR for NAFLD of one log(sUA/CrR) increase was 2.61 (95% CI: 1.86-3.68, p < 3e-8) after adjusting for relevant covariables, including aminotransaminase levels and the effect of sUA/CrR remained significant for highest WC quintiles. The model's predictive power with vs. without sUA/CrR was slightly but significantly better (Auroc: 0.859 ± 0.006 vs. 0.855 ± 0.007, p < 1.1e-2). Mediation analysis showed that SUA/CrR modestly mediates the effect of WC and insulin resistance but not glycohemoglobin on NAFLD.In conclusion, elevated sUA/CrR was significantly associated with NAFLD in the general population. Therefore, kidney function should be closely monitored in NAFLD patients.
{"title":"The serum uric acid/creatinine ratio is associated with nonalcoholic fatty liver disease in the general population.","authors":"Silvia Sookoian, Carlos J Pirola","doi":"10.1007/s13105-022-00893-6","DOIUrl":"10.1007/s13105-022-00893-6","url":null,"abstract":"<p><p>Serum uric acid-to-creatinine ratio (sUA/CrR) may be associated with metabolic syndrome components, but limited evidence exists on a relationship between sUA/Cr and NAFLD. Here, we investigated the association between sUA/CrR and NAFLD.We performed a cross-sectional analysis in 3359 subjects who participated in the NHANES 2017-2018 survey and consumed less than 30 and 20 g alcohol (men and women, respectively), with no positive tests of viral hepatitis. Liver steatosis was defined by controlled attenuation parameter and fibrosis by stiffness measurements obtained via transient elastography. We modeled the relationship between NAFLD and relevant demographic, anthropometric, and biochemical variables.sUA/CrR was significantly higher in participants with NAFLD than those without NAFLD. LASSO logit regression showed that only logarithmized age (p = 1.2e-3), waist circumference (WC) (p = 1.8e-5), triglycerides (p = 5e-6), and sUA/CrR (p = 3e-5) were retained in the model. Multivariate logistic analysis demonstrated a significant association between sUA/CrR and NAFLD; the OR for NAFLD of one log(sUA/CrR) increase was 2.61 (95% CI: 1.86-3.68, p < 3e-8) after adjusting for relevant covariables, including aminotransaminase levels and the effect of sUA/CrR remained significant for highest WC quintiles. The model's predictive power with vs. without sUA/CrR was slightly but significantly better (Auroc: 0.859 ± 0.006 vs. 0.855 ± 0.007, p < 1.1e-2). Mediation analysis showed that SUA/CrR modestly mediates the effect of WC and insulin resistance but not glycohemoglobin on NAFLD.In conclusion, elevated sUA/CrR was significantly associated with NAFLD in the general population. Therefore, kidney function should be closely monitored in NAFLD patients.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":"1 1","pages":"891-899"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52637847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-10-21DOI: 10.1007/s13105-023-00992-y
Maite G Fernández-Barrena, Matías A Avila
{"title":"Frontiers in fatty liver: recent advances in pathogenic mechanisms, assessment of patients' prognosis and pharmacotherapy : MASLD: new pathogenic mechanisms, risk assessment tools and drug therapies.","authors":"Maite G Fernández-Barrena, Matías A Avila","doi":"10.1007/s13105-023-00992-y","DOIUrl":"10.1007/s13105-023-00992-y","url":null,"abstract":"","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"811-813"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49678733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2022-08-26DOI: 10.1007/s13105-022-00913-5
Catalina Atorrasagasti, Agostina M Onorato, Guillermo Mazzolini
Secreted protein acidic and rich in cysteine (SPARC) is an extracellular matrix glycoprotein with pleiotropic functions, which is expressed in adipose, hepatic, muscular, and pancreatic tissue. Particularly, several studies demonstrated that SPARC is an important player in the context of obesity, diabetes, and fatty liver disease including advanced hepatic fibrosis and hepatocellular carcinoma. Evidence in murine and human samples indicates that SPARC is involved in adipogenesis, cellular metabolism, extracellular matrix modulation, glucose and lipid metabolism, among others. Furthermore, studies in SPARC knockout mouse model showed that SPARC contributes to adipose tissue formation, non-alcoholic fatty liver disease (NAFLD), and diabetes. Hence, SPARC may represent a novel and interesting target protein for future therapeutic interventions or a biomarker of disease progression. This review summarizes the role of SPARC in the pathophysiology of obesity, and extensively revised SPARC functions in physiological and pathological adipose tissue deposition, muscle metabolism, liver, and diabetes-related pathways.
{"title":"The role of SPARC (secreted protein acidic and rich in cysteine) in the pathogenesis of obesity, type 2 diabetes, and non-alcoholic fatty liver disease.","authors":"Catalina Atorrasagasti, Agostina M Onorato, Guillermo Mazzolini","doi":"10.1007/s13105-022-00913-5","DOIUrl":"10.1007/s13105-022-00913-5","url":null,"abstract":"<p><p>Secreted protein acidic and rich in cysteine (SPARC) is an extracellular matrix glycoprotein with pleiotropic functions, which is expressed in adipose, hepatic, muscular, and pancreatic tissue. Particularly, several studies demonstrated that SPARC is an important player in the context of obesity, diabetes, and fatty liver disease including advanced hepatic fibrosis and hepatocellular carcinoma. Evidence in murine and human samples indicates that SPARC is involved in adipogenesis, cellular metabolism, extracellular matrix modulation, glucose and lipid metabolism, among others. Furthermore, studies in SPARC knockout mouse model showed that SPARC contributes to adipose tissue formation, non-alcoholic fatty liver disease (NAFLD), and diabetes. Hence, SPARC may represent a novel and interesting target protein for future therapeutic interventions or a biomarker of disease progression. This review summarizes the role of SPARC in the pathophysiology of obesity, and extensively revised SPARC functions in physiological and pathological adipose tissue deposition, muscle metabolism, liver, and diabetes-related pathways.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"815-831"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33439758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-07-05DOI: 10.1007/s13105-023-00970-4
Álbert S Peixoto, Mayara F Moreno, Érique Castro, Luiz A Perandini, Thiago Belchior, Tiago E Oliveira, Thayna S Vieira, Gustavo R Gilio, Caroline A Tomazelli, Bianca F Leonardi, Milene Ortiz-Silva, Luciano P Silva Junior, Eduardo H Moretti, Alexandre A Steiner, William T Festuccia
Hepatocellular carcinoma (HCC) markedly enhances liver secretion of fibroblast growth factor 21 (FGF-21), a hepatokine that increases brown and subcutaneous inguinal white adipose tissues (BAT and iWAT, respectively) uncoupling protein 1 (UCP-1) content, thermogenesis and energy expenditure. Herein, we tested the hypothesis that an enhanced BAT and iWAT UCP-1-mediated thermogenesis induced by high levels of FGF-21 is involved in HCC-associated catabolic state and fat mass reduction. For this, we evaluated body weight and composition, liver mass and morphology, serum and tissue levels of FGF-21, BAT and iWAT UCP-1 content, and thermogenic capacity in mice with Pten deletion in hepatocytes that display a well-defined progression from steatosis to steatohepatitis (NASH) and HCC upon aging. Hepatocyte Pten deficiency promoted a progressive increase in liver lipid deposition, mass, and inflammation, culminating with NASH at 24 weeks and hepatomegaly and HCC at 48 weeks of age. NASH and HCC were associated with elevated liver and serum FGF-21 content and iWAT UCP-1 expression (browning), but reduced serum insulin, leptin, and adiponectin levels and BAT UCP-1 content and expression of sympathetically regulated gene glycerol kinase (GyK), lipoprotein lipase (LPL), and fatty acid transporter protein 1 (FATP-1), which altogether resulted in an impaired whole-body thermogenic capacity in response to CL-316,243. In conclusion, FGF-21 pro-thermogenic actions in BAT are context-dependent, not occurring in NASH and HCC, and UCP-1-mediated thermogenesis is not a major energy-expending process involved in the catabolic state associated with HCC induced by Pten deletion in hepatocytes.
{"title":"Hepatocellular carcinoma induced by hepatocyte Pten deletion reduces BAT UCP-1 and thermogenic capacity in mice, despite increasing serum FGF-21 and iWAT browning.","authors":"Álbert S Peixoto, Mayara F Moreno, Érique Castro, Luiz A Perandini, Thiago Belchior, Tiago E Oliveira, Thayna S Vieira, Gustavo R Gilio, Caroline A Tomazelli, Bianca F Leonardi, Milene Ortiz-Silva, Luciano P Silva Junior, Eduardo H Moretti, Alexandre A Steiner, William T Festuccia","doi":"10.1007/s13105-023-00970-4","DOIUrl":"10.1007/s13105-023-00970-4","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) markedly enhances liver secretion of fibroblast growth factor 21 (FGF-21), a hepatokine that increases brown and subcutaneous inguinal white adipose tissues (BAT and iWAT, respectively) uncoupling protein 1 (UCP-1) content, thermogenesis and energy expenditure. Herein, we tested the hypothesis that an enhanced BAT and iWAT UCP-1-mediated thermogenesis induced by high levels of FGF-21 is involved in HCC-associated catabolic state and fat mass reduction. For this, we evaluated body weight and composition, liver mass and morphology, serum and tissue levels of FGF-21, BAT and iWAT UCP-1 content, and thermogenic capacity in mice with Pten deletion in hepatocytes that display a well-defined progression from steatosis to steatohepatitis (NASH) and HCC upon aging. Hepatocyte Pten deficiency promoted a progressive increase in liver lipid deposition, mass, and inflammation, culminating with NASH at 24 weeks and hepatomegaly and HCC at 48 weeks of age. NASH and HCC were associated with elevated liver and serum FGF-21 content and iWAT UCP-1 expression (browning), but reduced serum insulin, leptin, and adiponectin levels and BAT UCP-1 content and expression of sympathetically regulated gene glycerol kinase (GyK), lipoprotein lipase (LPL), and fatty acid transporter protein 1 (FATP-1), which altogether resulted in an impaired whole-body thermogenic capacity in response to CL-316,243. In conclusion, FGF-21 pro-thermogenic actions in BAT are context-dependent, not occurring in NASH and HCC, and UCP-1-mediated thermogenesis is not a major energy-expending process involved in the catabolic state associated with HCC induced by Pten deletion in hepatocytes.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"731-743"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9754300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2022-03-03DOI: 10.1007/s13105-022-00878-5
Marina Ruiz de Galarreta, Elena Arriazu, María P Pérez de Obanos, Eduardo Ansorena, María J Iraburu
Ocoxin is a nutritional supplement that has been shown to exert antioxidant and immunomodulatory responses in patients with chronic hepatitis C. The present work aimed to determine the effects of Ocoxin on activated hepatic stellate cells (HSC), the cell type mainly responsible for collagen deposition in the fibrotic liver. Ocoxin was found to reduce the survival of a cell line of immortalized non-tumoral rat HSC in a dose-response fashion and to diminish collagen type I levels. This latter effect was observed even at doses not affecting cell survival, pointing to an antifibrogenic action for the supplement. The decrease in viability exerted by Ocoxin on HSC correlated with an increase in histone-associated fragments in the cytoplasm and with increased activity of caspase-3, indicating the induction of apoptosis. To determine the molecular mechanisms mediating Ocoxin-induced apoptosis, the activation of members of the MAPK family was analyzed. Incubation of HSC with Ocoxin caused a transient and dramatic enhancement on ERK, JNK, and p38 MAPK phosphorylation levels. Using specific inhibitors for these enzymes, p38 MAPK was identified as a key mediator of the apoptotic effect of Ocoxin on HSC.
{"title":"Antifibrogenic and apoptotic effects of Ocoxin in cultured rat hepatic stellate cells.","authors":"Marina Ruiz de Galarreta, Elena Arriazu, María P Pérez de Obanos, Eduardo Ansorena, María J Iraburu","doi":"10.1007/s13105-022-00878-5","DOIUrl":"10.1007/s13105-022-00878-5","url":null,"abstract":"<p><p>Ocoxin is a nutritional supplement that has been shown to exert antioxidant and immunomodulatory responses in patients with chronic hepatitis C. The present work aimed to determine the effects of Ocoxin on activated hepatic stellate cells (HSC), the cell type mainly responsible for collagen deposition in the fibrotic liver. Ocoxin was found to reduce the survival of a cell line of immortalized non-tumoral rat HSC in a dose-response fashion and to diminish collagen type I levels. This latter effect was observed even at doses not affecting cell survival, pointing to an antifibrogenic action for the supplement. The decrease in viability exerted by Ocoxin on HSC correlated with an increase in histone-associated fragments in the cytoplasm and with increased activity of caspase-3, indicating the induction of apoptosis. To determine the molecular mechanisms mediating Ocoxin-induced apoptosis, the activation of members of the MAPK family was analyzed. Incubation of HSC with Ocoxin caused a transient and dramatic enhancement on ERK, JNK, and p38 MAPK phosphorylation levels. Using specific inhibitors for these enzymes, p38 MAPK was identified as a key mediator of the apoptotic effect of Ocoxin on HSC.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":"1 1","pages":"881-890"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635942/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49321989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-08-25DOI: 10.1007/s13105-023-00976-y
Jose M Herranz, Amaya López-Pascual, Alex Clavería-Cabello, Iker Uriarte, M Ujúe Latasa, Ainara Irigaray-Miramon, Elena Adán-Villaescusa, Borja Castelló-Uribe, Bruno Sangro, María Arechederra, Carmen Berasain, Matías A Avila, Maite G Fernández-Barrena
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial condition with a complex etiology. Its incidence is increasing globally in parallel with the obesity epidemic, and it is now considered the most common liver disease in Western countries. The precise mechanisms underlying the development and progression of NAFLD are complex and still poorly understood. The dysregulation of epigenetic and epitranscriptomic mechanisms is increasingly recognized to play pathogenic roles in multiple conditions, including chronic liver diseases. Here, we have performed a comprehensive analysis of the expression of epigenetic and epitranscriptomic genes in a total of 903 liver tissue samples corresponding to patients with normal liver, obese patients, and patients with non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH), advancing stages in NAFLD progression. We integrated ten transcriptomic datasets in an unbiased manner, enabling their robust analysis and comparison. We describe the complete landscape of epigenetic and epitranscriptomic genes' expression along the course of the disease. We identify signatures of genes significantly dysregulated in association with disease progression, particularly with liver fibrosis development. Most of these epigenetic and epitranscriptomic effectors have not been previously described in human NAFLD, and their altered expression may have pathogenic implications. We also performed a comprehensive analysis of the expression of enzymes involved in the metabolism of the substrates and cofactors of epigenetic and epitranscriptomic effectors. This study provides novel information on NAFLD pathogenesis and may also guide the identification of drug targets to treat this condition and its progression towards hepatocellular carcinoma.
{"title":"Comprehensive analysis of epigenetic and epitranscriptomic genes' expression in human NAFLD.","authors":"Jose M Herranz, Amaya López-Pascual, Alex Clavería-Cabello, Iker Uriarte, M Ujúe Latasa, Ainara Irigaray-Miramon, Elena Adán-Villaescusa, Borja Castelló-Uribe, Bruno Sangro, María Arechederra, Carmen Berasain, Matías A Avila, Maite G Fernández-Barrena","doi":"10.1007/s13105-023-00976-y","DOIUrl":"10.1007/s13105-023-00976-y","url":null,"abstract":"<p><p>Non-alcoholic fatty liver disease (NAFLD) is a multifactorial condition with a complex etiology. Its incidence is increasing globally in parallel with the obesity epidemic, and it is now considered the most common liver disease in Western countries. The precise mechanisms underlying the development and progression of NAFLD are complex and still poorly understood. The dysregulation of epigenetic and epitranscriptomic mechanisms is increasingly recognized to play pathogenic roles in multiple conditions, including chronic liver diseases. Here, we have performed a comprehensive analysis of the expression of epigenetic and epitranscriptomic genes in a total of 903 liver tissue samples corresponding to patients with normal liver, obese patients, and patients with non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH), advancing stages in NAFLD progression. We integrated ten transcriptomic datasets in an unbiased manner, enabling their robust analysis and comparison. We describe the complete landscape of epigenetic and epitranscriptomic genes' expression along the course of the disease. We identify signatures of genes significantly dysregulated in association with disease progression, particularly with liver fibrosis development. Most of these epigenetic and epitranscriptomic effectors have not been previously described in human NAFLD, and their altered expression may have pathogenic implications. We also performed a comprehensive analysis of the expression of enzymes involved in the metabolism of the substrates and cofactors of epigenetic and epitranscriptomic effectors. This study provides novel information on NAFLD pathogenesis and may also guide the identification of drug targets to treat this condition and its progression towards hepatocellular carcinoma.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"901-924"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10064948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}