首页 > 最新文献

Journal of pharmacological sciences最新文献

英文 中文
Amitriptyline and duloxetine attenuate activities of superficial dorsal horn neurons in a rat reserpine-induced fibromyalgia model 阿米替林和度洛西汀可减轻利血平诱导的大鼠纤维肌痛模型中浅层背角神经元的活动
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-23 DOI: 10.1016/j.jphs.2024.08.006
Daisuke Uta , Katsuyuki Tsuboshima , Kazue Mizumura , Hisao Nishijo , Toru Taguchi

Fibromyalgia (FM) is an intractable disease with a chief complaint of chronic widespread pain. Amitriptyline (AMI) and duloxetine (DLX), which are antidepressant drugs, have been reported to ameliorate pain in patients with FM and pain-related behaviors in several rodent models of FM. However, the mechanisms of action of AMI and DLX are not yet fully understood. Here, we examined the effects of these drugs on the responsiveness of superficial dorsal horn (SDH) neurons in the spinal cord, using a rat FM model developed by injecting a biogenic amine depleter (reserpine). Extracellular recordings of SDH neurons in vivo demonstrated that bath application of AMI and DLX at concentrations of 0.1–1.0 mM on the dorsal surface of the spinal cord markedly suppressed spontaneous discharge and von Frey filament-evoked mechanical firing in SDH neurons. The suppression induced by the drugs was noted in a concentration-dependent manner and the suppressive effects resolved after washing the spinal cord surface. These results show that SDH neurons are the site of action for AMI and DLX in a rat reserpine-induced FM model. Spinal mechanisms may underlie the therapeutic effects of these drugs in patients with FM.

纤维肌痛(FM)是一种以慢性广泛性疼痛为主诉的难治性疾病。据报道,抗抑郁药物阿米替林(AMI)和度洛西汀(DLX)可减轻纤维肌痛患者的疼痛,并可在几种纤维肌痛啮齿动物模型中改善与疼痛相关的行为。然而,AMI 和 DLX 的作用机制尚未完全明了。在此,我们使用一种通过注射生物胺耗竭剂(雷舍平)建立的大鼠 FM 模型,研究了这些药物对脊髓浅背角神经元(SDH)反应性的影响。体内 SDH 神经元的细胞外记录显示,在脊髓背侧表面浸浴浓度为 0.1-1.0 mM 的 AMI 和 DLX 能明显抑制 SDH 神经元的自发放电和 von Frey 栅极诱发的机械放电。药物的抑制作用呈浓度依赖性,清洗脊髓表面后抑制作用消失。这些结果表明,在大鼠利血平诱导的调频模型中,SDH神经元是AMI和DLX的作用部位。脊髓机制可能是这些药物对 FM 患者产生治疗效果的基础。
{"title":"Amitriptyline and duloxetine attenuate activities of superficial dorsal horn neurons in a rat reserpine-induced fibromyalgia model","authors":"Daisuke Uta ,&nbsp;Katsuyuki Tsuboshima ,&nbsp;Kazue Mizumura ,&nbsp;Hisao Nishijo ,&nbsp;Toru Taguchi","doi":"10.1016/j.jphs.2024.08.006","DOIUrl":"10.1016/j.jphs.2024.08.006","url":null,"abstract":"<div><p>Fibromyalgia (FM) is an intractable disease with a chief complaint of chronic widespread pain. Amitriptyline (AMI) and duloxetine (DLX), which are antidepressant drugs, have been reported to ameliorate pain in patients with FM and pain-related behaviors in several rodent models of FM. However, the mechanisms of action of AMI and DLX are not yet fully understood. Here, we examined the effects of these drugs on the responsiveness of superficial dorsal horn (SDH) neurons in the spinal cord, using a rat FM model developed by injecting a biogenic amine depleter (reserpine). Extracellular recordings of SDH neurons <em>in vivo</em> demonstrated that bath application of AMI and DLX at concentrations of 0.1–1.0 mM on the dorsal surface of the spinal cord markedly suppressed spontaneous discharge and von Frey filament-evoked mechanical firing in SDH neurons. The suppression induced by the drugs was noted in a concentration-dependent manner and the suppressive effects resolved after washing the spinal cord surface. These results show that SDH neurons are the site of action for AMI and DLX in a rat reserpine-induced FM model. Spinal mechanisms may underlie the therapeutic effects of these drugs in patients with FM.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 3","pages":"Pages 180-187"},"PeriodicalIF":3.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000628/pdfft?md5=9e053b739e9dddd2bd8d1a990fd5cd41&pid=1-s2.0-S1347861324000628-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo cardiovascular profile of ryanodine receptor 2 inhibitor M201-A: Utility as an anti-atrial fibrillatory drug for patients suffering from heart failure with preserved ejection fraction 雷诺丁受体 2 抑制剂 M201-A 的体内心血管特征:作为射血分数保留型心力衰竭患者抗心房颤动药物的用途
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-22 DOI: 10.1016/j.jphs.2024.08.004
Ryuichi Kambayashi , Ai Goto , Makoto Shinozaki , Hiroko Izumi-Nakaseko , Yoshinori Takei , Kunio Iwata , Noboru Kaneko , Atsushi Sugiyama

Atrial fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF) often coexist; however, clinically available anti-AF drugs can exacerbate symptoms of HFpEF. M201-A suppressed ryanodine receptor-mediated diastolic Ca2+ leakage, possibly inhibiting common pathological processes toward AF and HFpEF. To bridge the basic information to clinical practice, we assessed its cardiohemodynamic, anti-AF and ventricular proarrhythmic profile using halothane-anesthetized dogs (n = 4). M201-A hydrochloride in doses of 0.03, 0.3 and 3 mg/kg/10 min was intravenously administered, providing peak plasma concentrations of 0.09, 0.81 and 5.70 μg/mL, respectively. The high dose of M201-A showed various cardiovascular actions. Namely, M201-A increased mean blood pressure and tended to enhance isovolumetric ventricular relaxation without suppressing ventricular contraction or decreasing cardiac output. M201-A enhanced atrioventricular conduction, but hardy affected intra-atrial/ventricular conduction. Importantly, M201-A prolonged effective refractory period more potently in the atrium than in the ventricle, indicating that it may become an atrial-selective antiarrhythmic drug. Meanwhile, M201-A prolonged QT interval/QTcV, and showed reverse frequency-dependent delay of ventricular repolarization. M201-A prolonged J-Tpeakc without prolonging Tpeak-Tend or terminal repolarization period, indicating the risk of causing torsade de pointes is negligible. Thus, M201-A is expected to become a hopeful therapeutic strategy for patients having pathology of both AF and HFpEF.

心房颤动(房颤)和射血分数保留型心力衰竭(HFpEF)常常同时存在;然而,临床上可用的抗房颤药物会加重HFpEF的症状。M201-A抑制了雷诺丁受体介导的舒张期Ca2+渗漏,可能抑制了房颤和射血分数保留型心力衰竭的共同病理过程。为了将基础信息与临床实践相结合,我们使用氟烷麻醉狗(n = 4)评估了 M201-A 的心血流动力学、抗房颤和室性心律失常特性。静脉注射盐酸 M201-A 的剂量分别为 0.03、0.3 和 3 毫克/千克/10 分钟,血浆峰浓度分别为 0.09、0.81 和 5.70 微克/毫升。高剂量的 M201-A 显示出多种心血管作用。也就是说,M201-A 能升高平均血压,并有增强等容心室松弛的趋势,而不会抑制心室收缩或降低心输出量。M201-A 可增强房室传导,但对心房内/心室传导有一定影响。重要的是,M201-A 延长心房有效折返期的作用强于心室,这表明它可能是一种心房选择性抗心律失常药物。同时,M201-A 可延长 QT 间期/QTcV,并表现出心室复极化的反向频率依赖性延迟。M201-A 可延长 J-Tpeakc 而不延长 Tpeak-Tend 或终末复极期,这表明其引起心动过速的风险可以忽略不计。因此,M201-A有望成为同时具有房颤和高频心衰病理特征的患者的一种治疗策略。
{"title":"In vivo cardiovascular profile of ryanodine receptor 2 inhibitor M201-A: Utility as an anti-atrial fibrillatory drug for patients suffering from heart failure with preserved ejection fraction","authors":"Ryuichi Kambayashi ,&nbsp;Ai Goto ,&nbsp;Makoto Shinozaki ,&nbsp;Hiroko Izumi-Nakaseko ,&nbsp;Yoshinori Takei ,&nbsp;Kunio Iwata ,&nbsp;Noboru Kaneko ,&nbsp;Atsushi Sugiyama","doi":"10.1016/j.jphs.2024.08.004","DOIUrl":"10.1016/j.jphs.2024.08.004","url":null,"abstract":"<div><p>Atrial fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF) often coexist; however, clinically available anti-AF drugs can exacerbate symptoms of HFpEF. M201-A suppressed ryanodine receptor-mediated diastolic Ca<sup>2+</sup> leakage, possibly inhibiting common pathological processes toward AF and HFpEF. To bridge the basic information to clinical practice, we assessed its cardiohemodynamic, anti-AF and ventricular proarrhythmic profile using halothane-anesthetized dogs (n = 4). M201-A hydrochloride in doses of 0.03, 0.3 and 3 mg/kg/10 min was intravenously administered, providing peak plasma concentrations of 0.09, 0.81 and 5.70 μg/mL, respectively. The high dose of M201-A showed various cardiovascular actions. Namely, M201-A increased mean blood pressure and tended to enhance isovolumetric ventricular relaxation without suppressing ventricular contraction or decreasing cardiac output. M201-A enhanced atrioventricular conduction, but hardy affected intra-atrial/ventricular conduction. Importantly, M201-A prolonged effective refractory period more potently in the atrium than in the ventricle, indicating that it may become an atrial-selective antiarrhythmic drug. Meanwhile, M201-A prolonged QT interval/QTcV, and showed reverse frequency-dependent delay of ventricular repolarization. M201-A prolonged J-T<sub>peak</sub>c without prolonging T<sub>peak</sub>-T<sub>end</sub> or terminal repolarization period, indicating the risk of causing torsade de pointes is negligible. Thus, M201-A is expected to become a hopeful therapeutic strategy for patients having pathology of both AF and HFpEF.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 3","pages":"Pages 171-179"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000604/pdfft?md5=3db6b114f7405a63b252c17bce83b376&pid=1-s2.0-S1347861324000604-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxymatrine alleviates NSAID-associated small bowel mucosal injury by regulating MIP-1/CCR1 signalling and gut microbiota 氧化苦参碱通过调节 MIP-1/CCR1 信号和肠道微生物群减轻非甾体抗炎药相关的小肠粘膜损伤
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-11 DOI: 10.1016/j.jphs.2024.08.003
Ming Chen , Haixia Zhou , Jie Shen , Miaomiao Wei , Zhaoyu Chen , Xiaoyu Chen , Huining Fan , Jing Zhang , Jinshui Zhu

Oxymatrine (OMT) as a quinazine alkaloid extracted from matrine has been shown to exhibit anti-inflammatory and anti-tumour effects. However, the protective mechanism of OMT on NSAID-associated small bowel mucosal injury remains unreported. We found that OMT could improve the clinical symptoms and pathological inflammation scoring, reduce the secretion of proinflammatory cytokines IL-1β, IL-6 and TNF-α and cell apoptosis, promote cell proliferation and protect intestinal mucosal barrier as compared with the Diclofenac Sodium (DS) group. Further RNA-seq and KEGG analysis uncovered that the differentially expressed genes between DS and control groups were mainly enriched in immune regulation, of which MIP-1γ and its receptor CCR1 expression were validated to be repressed by OMTH. MAPK/NF-κB as the MIP-1 upstream signalling was also inactivated by OMT treatment. In this study, OMT regulated gut microbiota. Venn diagrams visualized and identified 1163 shared OTUs between DS group and OMTH group. The results showed that the α diversity index in the DS group was lower than that in the OMTH group, indicating that the complexity of the flora was reduced in the intestinal inflammatory state. β diversity mainly includes Principal Component Analysis (PCA) and Principal Co-ordinates Analysis (PCoA). The differences between groups can be observed through PCA. The more similar the composition of the flora, the closer the samples are. We found that the difference was smaller in the DS group than in the OMTH group. The results of PcoA showed that the sample similarity between OMTH groups was the highest. Moreover, gut microbiota analysis unveiled that the abundances of Ruminococcus 1, Oscillibacter and Prevotellaceae at the genus level as well as Lactobacillus SP-L-Yj at the species level were increased in OMTH group as compared with the DS group but the abundance of Allobaculum, Ruminococceos-UCG-005, Ruminococceos-NK4A214 and Clostridium associated with DS-induced small bowel mucosal injury could be decreased by OMTH. MIP-1α and CCR1 were upregulated in human small bowel injury samples as compared with the normal ileal mucosa tissues. In conclusion, our findings demonstrated that OMT could alleviate NSAID-associated small bowel mucosal injury by inhibiting MIP-1γ/CCR1 signalling and regulating gut microbiota.

氧化苦参碱(OMT)是从苦参碱中提取的一种喹嗪生物碱,已被证明具有抗炎和抗肿瘤作用。然而,OMT 对非甾体抗炎药相关小肠粘膜损伤的保护机制仍未见报道。我们发现,与双氯芬酸钠(DS)组相比,OMT能改善临床症状和病理炎症评分,减少促炎细胞因子IL-1β、IL-6和TNF-α的分泌及细胞凋亡,促进细胞增殖,保护肠粘膜屏障。进一步的RNA-seq和KEGG分析发现,DS组与对照组之间的差异表达基因主要集中在免疫调节方面,其中MIP-1γ及其受体CCR1的表达被证实受到OMTH的抑制。MAPK/NF-κB作为MIP-1的上游信号也在OMT治疗后失活。在这项研究中,OMT 调节了肠道微生物群。维恩图显示并确定了 DS 组和 OMTH 组之间的 1163 个共享 OTU。结果显示,DS组的α多样性指数低于OMTH组,表明肠道炎症状态下菌群复杂性降低。β多样性主要包括主成分分析(PCA)和主坐标分析(PCoA)。通过 PCA 可以观察到组间差异。菌群组成越相似,样本之间的关系就越接近。我们发现,DS 组的差异小于 OMTH 组。PcoA的结果显示,OMTH组之间的样本相似度最高。此外,肠道微生物群分析表明,与 DS 组相比,OMTH 组的反刍球菌 1、弧菌、普雷沃特菌属以及乳酸杆菌 SP-L-Yj 的种含量均有所增加,但 Allobaculum、但 OMTH 组与 DS 引起的小肠粘膜损伤相关的 Allobaculum、Ruminococceos-UCG-005、Ruminococceos-NK4A214 和 Clostridium 的数量可能会减少。与正常回肠粘膜组织相比,人小肠损伤样本中的 MIP-1α 和 CCR1 上调。总之,我们的研究结果表明,OMT 可以通过抑制 MIP-1γ/CCR1 信号和调节肠道微生物群来减轻非甾体抗炎药相关的小肠粘膜损伤。
{"title":"Oxymatrine alleviates NSAID-associated small bowel mucosal injury by regulating MIP-1/CCR1 signalling and gut microbiota","authors":"Ming Chen ,&nbsp;Haixia Zhou ,&nbsp;Jie Shen ,&nbsp;Miaomiao Wei ,&nbsp;Zhaoyu Chen ,&nbsp;Xiaoyu Chen ,&nbsp;Huining Fan ,&nbsp;Jing Zhang ,&nbsp;Jinshui Zhu","doi":"10.1016/j.jphs.2024.08.003","DOIUrl":"10.1016/j.jphs.2024.08.003","url":null,"abstract":"<div><p>Oxymatrine (OMT) as a quinazine alkaloid extracted from matrine has been shown to exhibit anti-inflammatory and anti-tumour effects. However, the protective mechanism of OMT on NSAID-associated small bowel mucosal injury remains unreported. We found that OMT could improve the clinical symptoms and pathological inflammation scoring, reduce the secretion of proinflammatory cytokines IL-1β, IL-6 and TNF-α and cell apoptosis, promote cell proliferation and protect intestinal mucosal barrier as compared with the Diclofenac Sodium (DS) group. Further RNA-seq and KEGG analysis uncovered that the differentially expressed genes between DS and control groups were mainly enriched in immune regulation, of which MIP-1γ and its receptor CCR1 expression were validated to be repressed by OMTH. MAPK/NF-κB as the MIP-1 upstream signalling was also inactivated by OMT treatment. In this study, OMT regulated gut microbiota. Venn diagrams visualized and identified 1163 shared OTUs between DS group and OMTH group. The results showed that the α diversity index in the DS group was lower than that in the OMTH group, indicating that the complexity of the flora was reduced in the intestinal inflammatory state. β diversity mainly includes Principal Component Analysis (PCA) and Principal Co-ordinates Analysis (PCoA). The differences between groups can be observed through PCA. The more similar the composition of the flora, the closer the samples are. We found that the difference was smaller in the DS group than in the OMTH group. The results of PcoA showed that the sample similarity between OMTH groups was the highest. Moreover, gut microbiota analysis unveiled that the abundances of <em>Ruminococcus 1</em>, <em>Oscillibacter</em> and <em>Prevotellaceae</em> at the genus level as well as <em>Lactobacillus</em> SP-L-Yj at the species level were increased in OMTH group as compared with the DS group but the abundance of <em>Allobaculum</em>, <em>Ruminococceos-UCG-005</em>, <em>Ruminococceos-NK4A214</em> and <em>Clostridium</em> associated with DS-induced small bowel mucosal injury could be decreased by OMTH. MIP-1α and CCR1 were upregulated in human small bowel injury samples as compared with the normal ileal mucosa tissues. In conclusion, our findings demonstrated that OMT could alleviate NSAID-associated small bowel mucosal injury by inhibiting MIP-1γ/CCR1 signalling and regulating gut microbiota.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 3","pages":"Pages 149-160"},"PeriodicalIF":3.0,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000598/pdfft?md5=22d206d463d278866864a0310e23b1a7&pid=1-s2.0-S1347861324000598-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of D-Allose on experimental cardiac hypertrophy D-阿洛糖对实验性心肌肥厚的影响
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-08 DOI: 10.1016/j.jphs.2024.08.002
Steeve Akumwami , Asadur Rahman , Masafumi Funamoto , Akram Hossain , Asahiro Morishita , Yasumasa Ikeda , Hiroaki Kitamura , Kento Kitada , Takahisa Noma , Yuichi Ogino , Akira Nishiyama

The hallmark of pathological cardiac hypertrophy is the decline in myocardial contractility caused by an energy deficit resulting from metabolic abnormalities, particularly those related to glucose metabolism. Here, we aim to explore whether D-Allose, a rare sugar that utilizes the same transporters as glucose, may restore metabolic equilibrium and reverse cardiac hypertrophy. Isolated neonatal rat cardiomyocytes were stimulated with phenylephrine and treated with D-Allose simultaneously for 48 h. D-Allose treatment resulted in a pronounced reduction in cardiomyocyte size and cardiac remodelling markers accompanied with a dramatic reduction in the level of intracellular glucose in phenylephrine-stimulated cells. The metabolic flux analysis provided further insights revealing that D-Allose exerted a remarkable inhibition of glycolysis as well as glycolytic capacity. Furthermore, in mice subjected to a 14-day continuous infusion of isoproterenol (ISO) to induce cardiac hypertrophy, D-Allose treatment via drinking water notably reduced ISO-induced cardiac hypertrophy and remodelling markers, with minimal effects on ventricular wall thickness observed in echocardiographic analyses. These findings indicate that D-Allose has the ability to attenuate the progression of cardiomyocyte hypertrophy by decreasing intracellular glucose flux and inhibiting glycolysis.

病理性心肌肥大的特征是由于代谢异常,尤其是与葡萄糖代谢相关的代谢异常导致能量不足,从而引起心肌收缩力下降。在此,我们旨在探索 D-阿洛糖(一种与葡萄糖利用相同转运体的稀有糖类)是否能恢复代谢平衡并逆转心肌肥大。用苯肾上腺素刺激分离的新生大鼠心肌细胞,并同时用 D-Allose 处理 48 小时。D-阿洛糖处理导致心肌细胞体积和心脏重塑标志物明显缩小,同时苯肾上腺素刺激的细胞内葡萄糖水平急剧下降。代谢通量分析进一步揭示了 D-阿洛糖对糖酵解和糖酵解能力的显著抑制作用。此外,在连续注射异丙肾上腺素(ISO)14 天以诱导心肌肥厚的小鼠中,通过饮用水进行 D-Allose 处理可显著减少 ISO 诱导的心肌肥厚和重塑标记物,而在超声心动图分析中观察到的对心室壁厚度的影响微乎其微。这些研究结果表明,D-阿洛糖能够通过降低细胞内葡萄糖通量和抑制糖酵解来减轻心肌细胞肥大的进展。
{"title":"Effects of D-Allose on experimental cardiac hypertrophy","authors":"Steeve Akumwami ,&nbsp;Asadur Rahman ,&nbsp;Masafumi Funamoto ,&nbsp;Akram Hossain ,&nbsp;Asahiro Morishita ,&nbsp;Yasumasa Ikeda ,&nbsp;Hiroaki Kitamura ,&nbsp;Kento Kitada ,&nbsp;Takahisa Noma ,&nbsp;Yuichi Ogino ,&nbsp;Akira Nishiyama","doi":"10.1016/j.jphs.2024.08.002","DOIUrl":"10.1016/j.jphs.2024.08.002","url":null,"abstract":"<div><p>The hallmark of pathological cardiac hypertrophy is the decline in myocardial contractility caused by an energy deficit resulting from metabolic abnormalities, particularly those related to glucose metabolism. Here, we aim to explore whether D-Allose, a rare sugar that utilizes the same transporters as glucose, may restore metabolic equilibrium and reverse cardiac hypertrophy. Isolated neonatal rat cardiomyocytes were stimulated with phenylephrine and treated with D-Allose simultaneously for 48 h. D-Allose treatment resulted in a pronounced reduction in cardiomyocyte size and cardiac remodelling markers accompanied with a dramatic reduction in the level of intracellular glucose in phenylephrine-stimulated cells. The metabolic flux analysis provided further insights revealing that D-Allose exerted a remarkable inhibition of glycolysis as well as glycolytic capacity. Furthermore, in mice subjected to a 14-day continuous infusion of isoproterenol (ISO) to induce cardiac hypertrophy, D-Allose treatment via drinking water notably reduced ISO-induced cardiac hypertrophy and remodelling markers, with minimal effects on ventricular wall thickness observed in echocardiographic analyses. These findings indicate that D-Allose has the ability to attenuate the progression of cardiomyocyte hypertrophy by decreasing intracellular glucose flux and inhibiting glycolysis.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 2","pages":"Pages 142-148"},"PeriodicalIF":3.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000586/pdfft?md5=01718de9705446a18a3cda333ebff15e&pid=1-s2.0-S1347861324000586-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benproperine reduces IL-6 levels via Akt signaling in monocyte/macrophage-lineage cells and reduces the mortality of mouse sepsis model induced by lipopolysaccharide 苯丙哌林通过Akt信号转导降低单核细胞/巨噬细胞系细胞中的IL-6水平,并降低脂多糖诱导的小鼠败血症模型的死亡率
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-08-03 DOI: 10.1016/j.jphs.2024.08.001
Ayumi Kawamura, Akane Ito, Ayaka Takahashi, Atsushi Sawamoto, Satoshi Okuyama, Mitsunari Nakajima

Benproperine (BNP) is a nonnarcotic antitussive drug that is used to treat bronchitis. In the present study, we examined the anti-inflammatory effects of BNP in vitro and in vivo. BNP was found to reduce the secretion of pro-inflammatory cytokines, such as interleukin (IL)-6, in lipopolysaccharide (LPS)-treated RAW264.7 monocyte/macrophage-lineage cells in vitro. As IL-6 is a biomarker for sepsis and has been suggested to exacerbate symptoms, we used an animal model to determine whether BNP reduces IL-6 levels in vivo and improves sepsis symptoms. Notably, BNP reduced IL-6 levels in the lungs of LPS-treated mice and improved LPS-induced hypothermia, one of the symptoms of sepsis. BNP reduced the mortality of septic mice administered a lethal dose of LPS. To reveal the mechanisms underlying the anti-inflammatory function of BNP, we assessed intracellular signaling in LPS-treated RAW264.7 cells. BNP induced the phosphorylation of protein kinase B (Akt) in RAW264.7 cells with/without LPS treatment. Wortmannin, an inhibitor of phosphoinositide 3-kinase reduced the phosphorylation levels of Akt. Wortmannin also obstructed the reduction of IL-6 secretion caused by BNP. Altogether, BNP was found to exhibit an anti-inflammatory function via Akt signaling. Therefore, BNP could be a drug candidate for inflammatory diseases, including sepsis.

苯丙哌林(BNP)是一种非麻醉性止咳药,用于治疗支气管炎。在本研究中,我们考察了 BNP 和.BNP 的抗炎作用。研究发现 BNP 可减少经脂多糖(LPS)处理的 RAW264.7 单核/巨噬细胞系细胞中白细胞介素(IL)-6 等促炎细胞因子的分泌。由于 IL-6 是败血症的生物标志物,并被认为会加重症状,因此我们利用动物模型来确定 BNP 是否能降低 IL-6 水平并改善败血症症状。值得注意的是,BNP 降低了 LPS 处理小鼠肺部的 IL-6 水平,并改善了 LPS 诱导的低体温(败血症症状之一)。BNP 降低了致死剂量 LPS 败血症小鼠的死亡率。为了揭示 BNP 抗炎功能的机制,我们评估了经 LPS 处理的 RAW264.7 细胞的细胞内信号传导。BNP 可诱导 RAW264.7 细胞中蛋白激酶 B(Akt)的磷酸化,无论是否经过 LPS 处理。磷酸肌酸 3- 激酶抑制剂 Wortmannin 降低了 Akt 的磷酸化水平。Wortmannin还阻碍了BNP对IL-6分泌的抑制作用。总之,研究发现 BNP 可通过 Akt 信号转导发挥抗炎功能。因此,BNP 可作为治疗炎症性疾病(包括败血症)的候选药物。
{"title":"Benproperine reduces IL-6 levels via Akt signaling in monocyte/macrophage-lineage cells and reduces the mortality of mouse sepsis model induced by lipopolysaccharide","authors":"Ayumi Kawamura,&nbsp;Akane Ito,&nbsp;Ayaka Takahashi,&nbsp;Atsushi Sawamoto,&nbsp;Satoshi Okuyama,&nbsp;Mitsunari Nakajima","doi":"10.1016/j.jphs.2024.08.001","DOIUrl":"10.1016/j.jphs.2024.08.001","url":null,"abstract":"<div><p>Benproperine (BNP) is a nonnarcotic antitussive drug that is used to treat bronchitis. In the present study, we examined the anti-inflammatory effects of BNP <em>in vitro</em> and <em>in vivo</em>. BNP was found to reduce the secretion of pro-inflammatory cytokines, such as interleukin (IL)-6, in lipopolysaccharide (LPS)-treated RAW264.7 monocyte/macrophage-lineage cells <em>in vitro</em>. As IL-6 is a biomarker for sepsis and has been suggested to exacerbate symptoms, we used an animal model to determine whether BNP reduces IL-6 levels <em>in vivo</em> and improves sepsis symptoms. Notably, BNP reduced IL-6 levels in the lungs of LPS-treated mice and improved LPS-induced hypothermia, one of the symptoms of sepsis. BNP reduced the mortality of septic mice administered a lethal dose of LPS. To reveal the mechanisms underlying the anti-inflammatory function of BNP, we assessed intracellular signaling in LPS-treated RAW264.7 cells. BNP induced the phosphorylation of protein kinase B (Akt) in RAW264.7 cells with/without LPS treatment. Wortmannin, an inhibitor of phosphoinositide 3-kinase reduced the phosphorylation levels of Akt. Wortmannin also obstructed the reduction of IL-6 secretion caused by BNP. Altogether, BNP was found to exhibit an anti-inflammatory function via Akt signaling. Therefore, BNP could be a drug candidate for inflammatory diseases, including sepsis.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 2","pages":"Pages 125-133"},"PeriodicalIF":3.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000574/pdfft?md5=3c27f63ec96a7dd694bab1cfe047e3f1&pid=1-s2.0-S1347861324000574-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-Adrenoceptor blockade can augment the torsadogenic action of risperidone β-肾上腺素受体阻断可增强利培酮的致扭力作用
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-31 DOI: 10.1016/j.jphs.2024.07.011
Ai Goto, Ryuichi Kambayashi, Hiroko Izumi-Nakaseko, Yoshinori Takei, Atsushi Sugiyama

Risperidone is a second-generation antipsychotic for treating schizophrenia and bipolar disorder. It can potently inhibit IKr, but is classified into conditional risk for torsade de pointes (TdP) by CredibleMeds®. Our previous studies using chronic atrioventricular block dogs showed that risperidone alone did not induce TdP, and that dl-sotalol (β-adrenoceptor blockade plus IKr inhibition) induced TdP three times more frequently than d-sotalol (IKr inhibition alone). Since risperidone can block α1-adrenoceptor and decrease blood pressure, the resulting reflex-mediated increase of sympathetic tone on β-adrenoceptor might protect the heart from its IKr inhibition-associated TdP. To validate this hypothesis, risperidone was administered to chronic atrioventricular block dogs after β-adrenoceptor blocker atenolol infusion with monitoring J-Tpeak and Tpeak-Tend, which are proarrhythmic surrogate markers of "substrate" and "trigger" toward TdP, respectively. Atenolol alone induced TdP in 1 out of 5 dogs; moreover, an additional infusion of risperidone induced TdP in 3 out of 4 dogs. Risperidone prolonged QT interval, J-Tpeak and Tpeak-Tend in animals that induced TdP. These findings indicate that β-adrenoceptor blockade can diminish repolarization reserve to augment risperidone’s torsadogenic potential, thus advising caution when using β-adrenoceptor blockers in patients with IKr inhibition-linked labile repolarization.

利培酮是治疗精神分裂症和双相情感障碍的第二代抗精神病药物。它可以强效抑制 IKr,但被 CredibleMeds® 归类为有条件性心搏过速(TdP)风险。我们之前使用慢性房室传导阻滞犬进行的研究表明,单独使用利培酮不会诱发 TdP,而 dl-索他洛尔(β 肾上腺素受体阻滞加 IKr 抑制)诱发 TdP 的频率是 d-索他洛尔(单独 IKr 抑制)的三倍。由于利培酮可以阻断α1-肾上腺素受体并降低血压,因此β-肾上腺素受体反射性介导的交感神经张力增加可能会保护心脏免受其IKr抑制相关的TdP。为了验证这一假设,在输注β肾上腺素受体阻滞剂阿替洛尔后,给慢性房室传导阻滞犬注射利培酮,同时监测J-Tpeak和Tpeak-Tend,它们分别是TdP "底物 "和 "触发器 "的促心律失常替代标记。5 条狗中有 1 条仅阿替洛尔诱发了 TdP;此外,4 条狗中有 3 条额外输注利培酮诱发了 TdP。利培酮可延长诱发 TdP 的动物的 QT 间期、J 峰和 T 峰-Tend。这些研究结果表明,β肾上腺素受体阻滞剂可降低再极化储备,从而增强利培酮的致扭转潜能,因此建议在IKr抑制相关的易复极患者中慎用β肾上腺素受体阻滞剂。
{"title":"β-Adrenoceptor blockade can augment the torsadogenic action of risperidone","authors":"Ai Goto,&nbsp;Ryuichi Kambayashi,&nbsp;Hiroko Izumi-Nakaseko,&nbsp;Yoshinori Takei,&nbsp;Atsushi Sugiyama","doi":"10.1016/j.jphs.2024.07.011","DOIUrl":"10.1016/j.jphs.2024.07.011","url":null,"abstract":"<div><p>Risperidone is a second-generation antipsychotic for treating schizophrenia and bipolar disorder. It can potently inhibit I<sub>Kr</sub>, but is classified into conditional risk for torsade de pointes (TdP) by CredibleMeds®. Our previous studies using chronic atrioventricular block dogs showed that risperidone alone did not induce TdP, and that <em>dl</em>-sotalol (β-adrenoceptor blockade plus I<sub>Kr</sub> inhibition) induced TdP three times more frequently than <em>d</em>-sotalol (I<sub>Kr</sub> inhibition alone). Since risperidone can block α<sub>1</sub>-adrenoceptor and decrease blood pressure, the resulting reflex-mediated increase of sympathetic tone on β-adrenoceptor might protect the heart from its I<sub>Kr</sub> inhibition-associated TdP. To validate this hypothesis, risperidone was administered to chronic atrioventricular block dogs after β-adrenoceptor blocker atenolol infusion with monitoring J-T<sub>peak</sub> and T<sub>peak</sub>-T<sub>end</sub>, which are proarrhythmic surrogate markers of \"substrate\" and \"trigger\" toward TdP, respectively. Atenolol alone induced TdP in 1 out of 5 dogs; moreover, an additional infusion of risperidone induced TdP in 3 out of 4 dogs. Risperidone prolonged QT interval, J-T<sub>peak</sub> and T<sub>peak</sub>-T<sub>end</sub> in animals that induced TdP. These findings indicate that β-adrenoceptor blockade can diminish repolarization reserve to augment risperidone’s torsadogenic potential, thus advising caution when using β-adrenoceptor blockers in patients with I<sub>Kr</sub> inhibition-linked labile repolarization.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 2","pages":"Pages 134-141"},"PeriodicalIF":3.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000562/pdfft?md5=6a6c58e055f64890f94f471ec0a9accb&pid=1-s2.0-S1347861324000562-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neohesperidin exerts antidepressant-like effect via the mechanistic target of rapamycin complex 1 in the medial prefrontal cortex in male mice 新橙皮甙通过雷帕霉素复合体1在雄性小鼠内侧前额叶皮层的机制靶点发挥抗抑郁样作用
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-30 DOI: 10.1016/j.jphs.2024.07.010
Satoshi Deyama, Shun Aoki, Rinako Sugie, Katsuyuki Kaneda

Neohesperidin, a citrus flavonoid, shows potential for activating the mechanistic target of rapamycin complex 1 (mTORC1). Here, the antidepressant-like effect of neohesperidin was examined in male ICR mice (naïve mice and mice treated repeatedly with prednisolone, a synthetic glucocorticoid, which induces depression-like behavior). Oral neohesperidin administration exerted an antidepressant-like effect in the forced swim test 1 h post-treatment, in naïve mice; this effect was no longer observed at 24 h. Neohesperidin also reversed prednisolone-induced depression-like behavior. This effect was blocked by infusing rapamycin, an mTORC1 inhibitor, into the medial prefrontal cortex. Neohesperidin may rapidly produce an antidepressant-like effect.

新橙皮甙是一种柑橘类黄酮,具有激活雷帕霉素复合体1(mTORC1)机制靶点的潜力。本文研究了新橙皮甙在雄性ICR小鼠(天真小鼠和反复使用泼尼松龙(一种合成糖皮质激素,可诱发抑郁样行为)中的抗抑郁样作用。在强迫游泳试验中,口服新橙皮甙可在治疗后1小时内对天真小鼠产生类似抗抑郁的效果;这种效果在24小时后不再观察到。向内侧前额叶皮层注入雷帕霉素(一种 mTORC1 抑制剂)可阻断这种效应。新橙皮甙可迅速产生类似抗抑郁的效果。
{"title":"Neohesperidin exerts antidepressant-like effect via the mechanistic target of rapamycin complex 1 in the medial prefrontal cortex in male mice","authors":"Satoshi Deyama,&nbsp;Shun Aoki,&nbsp;Rinako Sugie,&nbsp;Katsuyuki Kaneda","doi":"10.1016/j.jphs.2024.07.010","DOIUrl":"10.1016/j.jphs.2024.07.010","url":null,"abstract":"<div><p>Neohesperidin, a citrus flavonoid, shows potential for activating the mechanistic target of rapamycin complex 1 (mTORC1). Here, the antidepressant-like effect of neohesperidin was examined in male ICR mice (naïve mice and mice treated repeatedly with prednisolone, a synthetic glucocorticoid, which induces depression-like behavior). Oral neohesperidin administration exerted an antidepressant-like effect in the forced swim test 1 h post-treatment, in naïve mice; this effect was no longer observed at 24 h. Neohesperidin also reversed prednisolone-induced depression-like behavior. This effect was blocked by infusing rapamycin, an mTORC1 inhibitor, into the medial prefrontal cortex. Neohesperidin may rapidly produce an antidepressant-like effect.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 2","pages":"Pages 82-85"},"PeriodicalIF":3.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000550/pdfft?md5=e3920db2afd0c414595dc68e6f9a3abc&pid=1-s2.0-S1347861324000550-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141885295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opposite regulation by L-DOPA receptor GPR143 of the long and short forms of the dopamine D2 receptors 左旋多巴受体 GPR143 对多巴胺 D2 受体长短型的相反调节作用
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-30 DOI: 10.1016/j.jphs.2024.07.009
Rei Tajika , Daiki Masukawa , Masami Arai , Hiroyuki Nawa , Yoshio Goshima

Dopamine (DA) D2 receptors (D2Rs) have 2 isoforms, a long form (D2L) and a short form (D2S). D2L is predominantly postsynaptic in the striatal medium spiny neurons and cholinergic interneurons. D2S is principally presynaptic autoreceptors in the nigrostriatal DA neurons. Recently, we demonstrated that L-3,4-dihydroxyphenylalanine (L-DOPA) augments D2L function through the coupling between D2L and GPR143, a receptor of L-DOPA that was originally identified as the gene product of ocular albinism 1. Here we show that GPR143 modifies the functions of D2L and D2S in an opposite manner. Haloperidol-induced catalepsy was attenuated in DA neuron-specific Gpr143 gene-deficient (Dat-cre;Gpr143flox/y) mice, compared with wild-type (Wt) mice. Haloperidol increased in vivo DA release from the dorsolateral striatum, and this increase was augmented in Gpr143-/y mice compared with Wt mice. A D2R agonist quinpirole-induced increase in the phosphorylation of GSK3β(pGSK3β(S9)) was enhanced in Chinese hamster ovary (CHO) cells coexpressing D2L and GPR143 compared with cells expressing D2L alone, while it was suppressed in cells coexpressing D2S and GPR143 compared with D2S alone, suggesting that GPR143 differentially modifies D2R functions depending on its isoforms of D2L and D2S.

多巴胺(DA)D2 受体(D2Rs)有两种同工形式,即长型(D2L)和短型(D2S)。D2L 主要存在于纹状体中刺神经元和胆碱能中间神经元的突触后。D2S主要是黑质DA神经元的突触前自受体。最近,我们证明了 L-3,4-二羟基苯丙氨酸(L-DOPA)通过 D2L 与 GPR143 之间的耦合增强了 D2L 的功能,GPR143 是 L-DOPA 的受体,最初被鉴定为眼白症 1 的基因产物。在这里,我们发现 GPR143 以相反的方式改变了 D2L 和 D2S 的功能。与野生型小鼠相比,DA神经元特异性缺失()小鼠的氟哌啶醇诱导催眠作用减弱。氟哌啶醇增加了背外侧纹状体的体内DA释放,与小鼠相比,这种增加得到了加强。D2R激动剂喹吡罗诱导的GSK3β(pGSK3β(S9))磷酸化增加在共表达D2L和GPR143的中国仓鼠卵巢(CHO)细胞中与单独表达D2L的细胞相比得到增强,而在共表达D2S和GPR143的细胞中与单独表达D2S的细胞相比则受到抑制,这表明GPR143根据其D2L和D2S的同工形式对D2R的功能进行了不同的调节。
{"title":"Opposite regulation by L-DOPA receptor GPR143 of the long and short forms of the dopamine D2 receptors","authors":"Rei Tajika ,&nbsp;Daiki Masukawa ,&nbsp;Masami Arai ,&nbsp;Hiroyuki Nawa ,&nbsp;Yoshio Goshima","doi":"10.1016/j.jphs.2024.07.009","DOIUrl":"10.1016/j.jphs.2024.07.009","url":null,"abstract":"<div><p>Dopamine (DA) D2 receptors (D2Rs) have 2 isoforms, a long form (D2L) and a short form (D2S). D2L is predominantly postsynaptic in the striatal medium spiny neurons and cholinergic interneurons. D2S is principally presynaptic autoreceptors in the nigrostriatal DA neurons. Recently, we demonstrated that L-3,4-dihydroxyphenylalanine (L-DOPA) augments D2L function through the coupling between D2L and GPR143, a receptor of L-DOPA that was originally identified as the gene product of ocular albinism 1. Here we show that GPR143 modifies the functions of D2L and D2S in an opposite manner. Haloperidol-induced catalepsy was attenuated in DA neuron-specific <em>Gpr143 gene</em>-deficient (<em>Dat-cre;Gpr143</em><sup><em>flox/y</em></sup>) mice, compared with wild-type (<em>Wt</em>) mice. Haloperidol increased in vivo DA release from the dorsolateral striatum, and this increase was augmented in <em>Gpr143</em><sup><em>-/y</em></sup> mice compared with <em>Wt</em> mice. A D2R agonist quinpirole-induced increase in the phosphorylation of GSK3β(pGSK3β(S9)) was enhanced in Chinese hamster ovary (CHO) cells coexpressing D2L and GPR143 compared with cells expressing D2L alone, while it was suppressed in cells coexpressing D2S and GPR143 compared with D2S alone, suggesting that GPR143 differentially modifies D2R functions depending on its isoforms of D2L and D2S.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 2","pages":"Pages 77-81"},"PeriodicalIF":3.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000549/pdfft?md5=0fada20c7d5bb425a552b2ffd56ab094&pid=1-s2.0-S1347861324000549-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141885296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Galantamine suppresses α-synuclein aggregation by inducing autophagy via the activation of α7 nicotinic acetylcholine receptors 加兰他敏通过激活α7烟碱乙酰胆碱受体诱导自噬抑制α-突触核蛋白聚集
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-30 DOI: 10.1016/j.jphs.2024.07.008
Sora Nozaki , Masanori Hijioka , Xiaopeng Wen , Natsumi Iwashita , Junya Namba , Yoshiaki Nomura , Aoi Nakanishi , Soichiro Kitazawa , Ryo Honda , Yuji O. Kamatari , Ryo Kitahara , Kenji Suzuki , Masatoshi Inden , Yoshihisa Kitamura

Synucleinopathies, including Parkinson's disease and dementia with Lewy bodies, are neurodegenerative disorders characterized by the aberrant accumulation of α-synuclein (α-syn). Although no treatment is effective for synucleinopathies, the suppression of α-syn aggregation may contribute to the development of numerous novel therapeutic targets. Recent research revealed that nicotinic acetylcholine (nACh) receptor activation has neuroprotective effects and promotes the degradation of amyloid protein by activating autophagy. In an in vitro human-derived cell line model, we demonstrated that galantamine, the nAChR allosteric potentiating ligand, significantly reduced the cell number of SH-SY5Y cells with intracellular Lewy body-like aggregates by enhancing the sensitivity of α7-nAChR. In addition, galantamine promoted autophagic flux, and prevented the formation of Lewy body-resembled aggregates. In an in vivo synucleinopathy mouse model, the propagation of α-syn aggregation in the cerebral cortex was inhibited by galantamine administration for 90 days. These results suggest that α7-nAChR is expected to be a novel therapeutic target, and galantamine is a potential agent for synucleinopathies.

包括帕金森病和路易体痴呆在内的突触核蛋白病是一种以α-突触核蛋白(α-syn)异常聚集为特征的神经退行性疾病。虽然目前还没有治疗突触核蛋白病的有效方法,但抑制α-syn的聚集可能有助于开发许多新的治疗靶点。最近的研究发现,激活烟碱乙酰胆碱(nACh)受体具有神经保护作用,并能通过激活自噬促进淀粉样蛋白的降解。在一个人源细胞系模型中,我们证实了加兰他敏(nAChR异位增效配体)通过提高α-nAChR的敏感性,显著减少了SH-SY5Y细胞内路易体样聚集体的细胞数量。此外,加兰他敏还能促进自噬通量,阻止路易体重组聚集体的形成。在突触核蛋白病小鼠模型中,服用加兰他敏90天后,大脑皮层中α-syn聚集的扩散受到抑制。这些结果表明,α-nAChR有望成为一个新的治疗靶点,加兰他敏是一种治疗突触核蛋白病的潜在药物。
{"title":"Galantamine suppresses α-synuclein aggregation by inducing autophagy via the activation of α7 nicotinic acetylcholine receptors","authors":"Sora Nozaki ,&nbsp;Masanori Hijioka ,&nbsp;Xiaopeng Wen ,&nbsp;Natsumi Iwashita ,&nbsp;Junya Namba ,&nbsp;Yoshiaki Nomura ,&nbsp;Aoi Nakanishi ,&nbsp;Soichiro Kitazawa ,&nbsp;Ryo Honda ,&nbsp;Yuji O. Kamatari ,&nbsp;Ryo Kitahara ,&nbsp;Kenji Suzuki ,&nbsp;Masatoshi Inden ,&nbsp;Yoshihisa Kitamura","doi":"10.1016/j.jphs.2024.07.008","DOIUrl":"10.1016/j.jphs.2024.07.008","url":null,"abstract":"<div><p>Synucleinopathies, including Parkinson's disease and dementia with Lewy bodies, are neurodegenerative disorders characterized by the aberrant accumulation of α-synuclein (α-syn). Although no treatment is effective for synucleinopathies, the suppression of α-syn aggregation may contribute to the development of numerous novel therapeutic targets. Recent research revealed that nicotinic acetylcholine (nACh) receptor activation has neuroprotective effects and promotes the degradation of amyloid protein by activating autophagy. In an <em>in vitro</em> human-derived cell line model, we demonstrated that galantamine, the nAChR allosteric potentiating ligand, significantly reduced the cell number of SH-SY5Y cells with intracellular Lewy body-like aggregates by enhancing the sensitivity of α<sub>7</sub>-nAChR. In addition, galantamine promoted autophagic flux, and prevented the formation of Lewy body-resembled aggregates. In an <em>in vivo</em> synucleinopathy mouse model, the propagation of α-syn aggregation in the cerebral cortex was inhibited by galantamine administration for 90 days. These results suggest that α<sub>7</sub>-nAChR is expected to be a novel therapeutic target, and galantamine is a potential agent for synucleinopathies.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 2","pages":"Pages 102-114"},"PeriodicalIF":3.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000537/pdfft?md5=aa744b27678a643ecef9a42546b74b7a&pid=1-s2.0-S1347861324000537-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141885299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glucocorticoid-induced acute diuresis in rats in relation to the reduced renal expression of sodium-dependent cotransporter genes 糖皮质激素诱导的大鼠急性利尿与依赖钠的共转运体基因的肾表达减少有关
IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-25 DOI: 10.1016/j.jphs.2024.07.005
Peiyan Zhao , Yoshiki Higashijima , Hiroko Sonoda , Rio Morinaga , Keito Uema , Akane Oguchi , Toshiyuki Matsuzaki , Masahiro Ikeda

Although several studies have shown that glucocorticoids exert diuretic effects in animals and humans, the underlying mechanism responsible for the acute diuretic effect remains obscure. Here we examined the mechanism in terms of gene-expression. We observed that glucocorticoids, including dexamethasone (Dex) and prednisolone (PSL), acutely induced diuresis in rats in a dose-dependent manner. Free water clearance values were negative after Dex or PSL treatment, similar to those observed after treatment with osmotic diuretics (furosemide and acetazolamide). Dex significantly increased the urinary excretion of sodium, potassium, chloride, glucose, and inorganic phosphorus. Renal microarray analysis revealed that Dex significantly altered the renal expression of genes related to transmembrane transport activity. The mRNA levels of sodium/phosphate (NaPi-2a/Slc34a1, NaPi-2b/Slc34a2, and NaPi-2c/Slc34a3) and sodium/glucose cotransporters (Sglt2/Slc5a2) were significantly reduced in the Dex-treated kidney, being negatively correlated with the urinary excretion of their corresponding solutes. Dex did not affect renal expression of the natriuretic peptide receptor 1 (Npr1) gene, or the expression, localization, and phosphorylation of aquaporin-2 (AQP2), a water channel protein. These findings suggest that the acute diuretic effects of glucocorticoids might be mediated by reduced expression of sodium-dependent cotransporter genes.

尽管多项研究表明,糖皮质激素在动物和人体内具有利尿作用,但导致急性利尿作用的潜在机制仍不清楚。在此,我们从基因表达的角度研究了这一机制。我们观察到,包括地塞米松(Dex)和泼尼松龙(PSL)在内的糖皮质激素能以剂量依赖的方式急性诱导大鼠利尿。在使用地塞米松或泼尼松龙治疗后,自由水清除率为负值,这与使用渗透性利尿剂(呋塞米和乙酰唑胺)治疗后观察到的情况相似。Dex能明显增加钠、钾、氯、葡萄糖和无机磷的尿排泄量。肾脏芯片分析表明,Dex 明显改变了与跨膜转运活性有关的肾脏基因的表达。钠/磷酸盐(NaPi-2a/Slc34a1、NaPi-2b/Slc34a2和NaPi-2c/Slc34a3)和钠/葡萄糖共转运体(Sglt2/Slc5a2)的mRNA水平在Dex治疗的肾脏中显著降低,并与相应溶质的尿排泄量呈负相关。Dex并不影响肾脏中钠利尿肽受体1(Npr1)基因的表达,也不影响水通道蛋白aquaporin-2(AQP2)的表达、定位和磷酸化。这些研究结果表明,糖皮质激素的急性利尿作用可能是通过依赖钠的共转运体基因的表达减少而介导的。
{"title":"Glucocorticoid-induced acute diuresis in rats in relation to the reduced renal expression of sodium-dependent cotransporter genes","authors":"Peiyan Zhao ,&nbsp;Yoshiki Higashijima ,&nbsp;Hiroko Sonoda ,&nbsp;Rio Morinaga ,&nbsp;Keito Uema ,&nbsp;Akane Oguchi ,&nbsp;Toshiyuki Matsuzaki ,&nbsp;Masahiro Ikeda","doi":"10.1016/j.jphs.2024.07.005","DOIUrl":"10.1016/j.jphs.2024.07.005","url":null,"abstract":"<div><p>Although several studies have shown that glucocorticoids exert diuretic effects in animals and humans, the underlying mechanism responsible for the acute diuretic effect remains obscure. Here we examined the mechanism in terms of gene-expression. We observed that glucocorticoids, including dexamethasone (Dex) and prednisolone (PSL), acutely induced diuresis in rats in a dose-dependent manner. Free water clearance values were negative after Dex or PSL treatment, similar to those observed after treatment with osmotic diuretics (furosemide and acetazolamide). Dex significantly increased the urinary excretion of sodium, potassium, chloride, glucose, and inorganic phosphorus. Renal microarray analysis revealed that Dex significantly altered the renal expression of genes related to transmembrane transport activity. The mRNA levels of sodium/phosphate (<em>NaPi-2a</em>/<em>Slc34a1</em>, <em>NaPi-2b/Slc34a2</em>, and <em>NaPi-2c</em>/<em>Slc34a3</em>) and sodium/glucose cotransporters (<em>Sglt2</em>/<em>Slc5a2</em>) were significantly reduced in the Dex-treated kidney, being negatively correlated with the urinary excretion of their corresponding solutes. Dex did not affect renal expression of the natriuretic peptide receptor 1 (<em>Npr1</em>) gene, or the expression, localization, and phosphorylation of aquaporin-2 (AQP2), a water channel protein. These findings suggest that the acute diuretic effects of glucocorticoids might be mediated by reduced expression of sodium-dependent cotransporter genes.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 2","pages":"Pages 115-124"},"PeriodicalIF":3.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000501/pdfft?md5=24cc0b983274fa57852681e87efd3633&pid=1-s2.0-S1347861324000501-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141844691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of pharmacological sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1