Pub Date : 2022-03-31DOI: 10.5010/jpb.2022.49.1.039
H. Nie, Sujung Kim, Jongbo Kim, Suk-Yoon. Kwon, Sunhyung Kim
{"title":"Comparative analysis of AGPase proteins and conserved domains in sweetpotato (Ipomoea batatas (L.) Lam.) and its two wild relatives","authors":"H. Nie, Sujung Kim, Jongbo Kim, Suk-Yoon. Kwon, Sunhyung Kim","doi":"10.5010/jpb.2022.49.1.039","DOIUrl":"https://doi.org/10.5010/jpb.2022.49.1.039","url":null,"abstract":"","PeriodicalId":16797,"journal":{"name":"Journal of Plant Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42551124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-31DOI: 10.5010/jpb.2021.48.4.246
Chaimae Senhaji, F. Gaboun, Rabha Abdelwahd, G. Diria, S. Udupa, A. Douira, D. Iraqi
{"title":"Biolistic transformation of Moroccan durum wheat varieties by using mature embryo-derived calli","authors":"Chaimae Senhaji, F. Gaboun, Rabha Abdelwahd, G. Diria, S. Udupa, A. Douira, D. Iraqi","doi":"10.5010/jpb.2021.48.4.246","DOIUrl":"https://doi.org/10.5010/jpb.2021.48.4.246","url":null,"abstract":"","PeriodicalId":16797,"journal":{"name":"Journal of Plant Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43176546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-31DOI: 10.5010/jpb.2021.48.4.236
Viet-Yen Nguyen, R. Rai, Jong-Hwa Kim, Ji-Young Kim, J. Na
This study aimed to characterize the morphological variations in the vegetative and floral traits of 73 wild Lilium amabile plants from six habitats in Korea. It was observed that L. amabile is distributed nationwide at any altitude from 300 m (Mt Mangdaeam) to 1550 m (Mt Halla). The majority of the natural habitats of L. amabile were found on mountain slopes, and some were found in rugged mountain regions. The down-facing flowers of this species not only had many blotches but also dense trichomes, and the flowering time was found to be from mid-June to mid-July. ANOVA revealed significant variations in vegetative and floral traits among the six habitats, indicating that the environment has substantial influences on the various growth parameters of L. amabile , such as plant height; number of leaves, bracts, papillae, and flowers; leaf angle; and lengths of the anther, longest blotch, and nectary of the petiole. In addition, the vegetative and floral traits were found closely correlated with each other under the direct impact of the environment. These findings will facilitate to find the appropriate environmental conditions for the conservation and development of L. amabile population as future lily-breeding materials.
{"title":"Ecogeographical variations of the vegetative and floral traits of Lilium amabile Palibian","authors":"Viet-Yen Nguyen, R. Rai, Jong-Hwa Kim, Ji-Young Kim, J. Na","doi":"10.5010/jpb.2021.48.4.236","DOIUrl":"https://doi.org/10.5010/jpb.2021.48.4.236","url":null,"abstract":"This study aimed to characterize the morphological variations in the vegetative and floral traits of 73 wild Lilium amabile plants from six habitats in Korea. It was observed that L. amabile is distributed nationwide at any altitude from 300 m (Mt Mangdaeam) to 1550 m (Mt Halla). The majority of the natural habitats of L. amabile were found on mountain slopes, and some were found in rugged mountain regions. The down-facing flowers of this species not only had many blotches but also dense trichomes, and the flowering time was found to be from mid-June to mid-July. ANOVA revealed significant variations in vegetative and floral traits among the six habitats, indicating that the environment has substantial influences on the various growth parameters of L. amabile , such as plant height; number of leaves, bracts, papillae, and flowers; leaf angle; and lengths of the anther, longest blotch, and nectary of the petiole. In addition, the vegetative and floral traits were found closely correlated with each other under the direct impact of the environment. These findings will facilitate to find the appropriate environmental conditions for the conservation and development of L. amabile population as future lily-breeding materials.","PeriodicalId":16797,"journal":{"name":"Journal of Plant Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47210364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-31DOI: 10.5010/jpb.2021.48.3.201
Sang-Gu Lee, Seonwoo Oh, S. Park, Hyoun-Min Park, Eun-Ha Kim, SouYoung Jin, Tae-Hun Ryu
To ensure the safety of developing or importing genetically modified organisms (GMOs), Korea has enacted the “LMO Act.” Accordingly, the safety of using GMOs as food or feed is evaluated in accordance with the concept of “substantial equivalence” proposed by OECD. The allergenicity of GMOs is assessed as a part of their safety evaluation. The methods of allergenicity assessment have been discussed by various international organizations, such as the OECD, FAO, and WHO. The main methods used for the allergenicity assessment of proteins newly expressed in GMOs include assessment of the physicochemical stability of these proteins, evaluation of their amino acid homology with existing allergenic proteins, and serum screening. In this study, we describe guidelines and related studies for the allergenicity assessment of GM crops.
{"title":"Allergenicity assessment of novel proteins expressed in genetically modified organisms","authors":"Sang-Gu Lee, Seonwoo Oh, S. Park, Hyoun-Min Park, Eun-Ha Kim, SouYoung Jin, Tae-Hun Ryu","doi":"10.5010/jpb.2021.48.3.201","DOIUrl":"https://doi.org/10.5010/jpb.2021.48.3.201","url":null,"abstract":"To ensure the safety of developing or importing genetically modified organisms (GMOs), Korea has enacted the “LMO Act.” Accordingly, the safety of using GMOs as food or feed is evaluated in accordance with the concept of “substantial equivalence” proposed by OECD. The allergenicity of GMOs is assessed as a part of their safety evaluation. The methods of allergenicity assessment have been discussed by various international organizations, such as the OECD, FAO, and WHO. The main methods used for the allergenicity assessment of proteins newly expressed in GMOs include assessment of the physicochemical stability of these proteins, evaluation of their amino acid homology with existing allergenic proteins, and serum screening. In this study, we describe guidelines and related studies for the allergenicity assessment of GM crops.","PeriodicalId":16797,"journal":{"name":"Journal of Plant Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45587810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-31DOI: 10.5010/jpb.2021.48.4.207
B. J. Naik, Seong-Cheol Kim, R. Seenaiah, P. A. Basha, E. Song
Coffee is the most frequently consumed functional beverage world wide. The average daily coffee consumption is increasing. This crop, which plays an important role in the global economy is under great threat from climate change. To with stand the current climate change, farmers have to learn crop cultivation techniques, strategies to protect crops from diseases, and understand which type of seed varieties to use to avoid crop loss. The present review briefly discusses the coffee cultivation techniques, impact of climate changes on coffee production, processing techniques of coffee, and the importance of coffee in our society, including its chemical composition and prevention against, major diseases. Furthermore, the importance and role of advanced nanotechnology along with molecular approaches for coffee crop improvement and facing challenges are explained.
{"title":"Coffee cultivation techniques, impact of climate change on coffee production, role of nanoparticles and molecular markers in coffee crop improvement, and challenges","authors":"B. J. Naik, Seong-Cheol Kim, R. Seenaiah, P. A. Basha, E. Song","doi":"10.5010/jpb.2021.48.4.207","DOIUrl":"https://doi.org/10.5010/jpb.2021.48.4.207","url":null,"abstract":"Coffee is the most frequently consumed functional beverage world wide. The average daily coffee consumption is increasing. This crop, which plays an important role in the global economy is under great threat from climate change. To with stand the current climate change, farmers have to learn crop cultivation techniques, strategies to protect crops from diseases, and understand which type of seed varieties to use to avoid crop loss. The present review briefly discusses the coffee cultivation techniques, impact of climate changes on coffee production, processing techniques of coffee, and the importance of coffee in our society, including its chemical composition and prevention against, major diseases. Furthermore, the importance and role of advanced nanotechnology along with molecular approaches for coffee crop improvement and facing challenges are explained.","PeriodicalId":16797,"journal":{"name":"Journal of Plant Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46898039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-31DOI: 10.5010/jpb.2021.48.4.228
Young-Cheon Kim, Dong Sook Lee, Youjin Jung, Eun Bin Choi, Jungeun An, Sanghyeob Lee, Jong-Seop Lee
The amino acids found in plants play important roles in protein biosynthesis, signaling processes, and stress responses, and as components in other biosynthesis pathways. Amino acid degradation helps maintain plant cells' energy states under certain carbon starvation conditions. Branched-chain amino acid transferases (BCATs) play an essential role in the metabolism of branched-chain amino acids (BCAAs) such as isoleucine, leucine and valine. In this paper, we performed genome-wide RNA-seq analysis using CsBCAT7 -overexpressing Arabidopsis plants. We observed significant changes in genes related to flowering time and genes that are germination-responsive in transgenic plants. RNA-seq and RT-qPCR analyses revealed that the expression levels of some BCAA catabolic genes were upregulated in these same transgenic plants, and that this correlated with a delay in their senescence phenotype when the plants were placed in extended darkness conditions. These results suggest a connection between BCAT and the genes implicated in BCAA catabolism.
{"title":"Transcriptome analysis of a transgenic Arabidopsis plant overexpressing CsBCAT7 reveals the relationship between CsBCAT7 and branched-chain amino acid catabolism","authors":"Young-Cheon Kim, Dong Sook Lee, Youjin Jung, Eun Bin Choi, Jungeun An, Sanghyeob Lee, Jong-Seop Lee","doi":"10.5010/jpb.2021.48.4.228","DOIUrl":"https://doi.org/10.5010/jpb.2021.48.4.228","url":null,"abstract":"The amino acids found in plants play important roles in protein biosynthesis, signaling processes, and stress responses, and as components in other biosynthesis pathways. Amino acid degradation helps maintain plant cells' energy states under certain carbon starvation conditions. Branched-chain amino acid transferases (BCATs) play an essential role in the metabolism of branched-chain amino acids (BCAAs) such as isoleucine, leucine and valine. In this paper, we performed genome-wide RNA-seq analysis using CsBCAT7 -overexpressing Arabidopsis plants. We observed significant changes in genes related to flowering time and genes that are germination-responsive in transgenic plants. RNA-seq and RT-qPCR analyses revealed that the expression levels of some BCAA catabolic genes were upregulated in these same transgenic plants, and that this correlated with a delay in their senescence phenotype when the plants were placed in extended darkness conditions. These results suggest a connection between BCAT and the genes implicated in BCAA catabolism.","PeriodicalId":16797,"journal":{"name":"Journal of Plant Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47320132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-30DOI: 10.5010/jpb.2021.48.3.173
Manoj Raturi, A. Thakur
Basal callus formation and leaf abscission is a problem in clonal micropropagation. We have described an in vitro clonal propagation protocol of Dalbergia sissoo Roxb (shisham) ‘FRI-14’ in which AgNO 3 played important role not only in mitigating problem of leaf abscission and basal callus, but also improved shoot induction and multiplication. Best induction and shoot multiplication was obtained on MS media with 1.5 mg/l 6-BAP and 10 mg/l AgNO 3 and half-strength MS media with 0.5 mg/l 6-BAP, 2 mg/l AgNO 3 and 50 mg/l Adenine sulphate whereas best ex vitro rooting was obtained with 200 mg/l IBA in pulse treatment.
{"title":"Silver nitrate and silver-thiosulphate mitigates callus and leaf abscission during Shisham clonal micro-propagation","authors":"Manoj Raturi, A. Thakur","doi":"10.5010/jpb.2021.48.3.173","DOIUrl":"https://doi.org/10.5010/jpb.2021.48.3.173","url":null,"abstract":"Basal callus formation and leaf abscission is a problem in clonal micropropagation. We have described an in vitro clonal propagation protocol of Dalbergia sissoo Roxb (shisham) ‘FRI-14’ in which AgNO 3 played important role not only in mitigating problem of leaf abscission and basal callus, but also improved shoot induction and multiplication. Best induction and shoot multiplication was obtained on MS media with 1.5 mg/l 6-BAP and 10 mg/l AgNO 3 and half-strength MS media with 0.5 mg/l 6-BAP, 2 mg/l AgNO 3 and 50 mg/l Adenine sulphate whereas best ex vitro rooting was obtained with 200 mg/l IBA in pulse treatment.","PeriodicalId":16797,"journal":{"name":"Journal of Plant Biotechnology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41424727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-30DOI: 10.5010/jpb.2021.48.3.186
C. Hong, G. Jang, H. Ryu
{"title":"Gibberellins enhance plant growth and ginsenoside content in Panax ginseng","authors":"C. Hong, G. Jang, H. Ryu","doi":"10.5010/jpb.2021.48.3.186","DOIUrl":"https://doi.org/10.5010/jpb.2021.48.3.186","url":null,"abstract":"","PeriodicalId":16797,"journal":{"name":"Journal of Plant Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45540947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-30DOI: 10.5010/jpb.2021.48.3.124
Yu-Jin Jung, Joung Soon Park, Ji Yun Go, H. Lee, Jin Young Kim, Ye Ji Lee, K. Nam, Yong-Gu Cho, K. Kang
Nitrate is an important nutrient and signaling molecule in plants that modulates the expression of many genes and regulates plant growth. In this study, we cover the research status of transcription factors related to the control of gene expression by nitrate signaling in higher plants. Nitrate reductase is a key enzyme in nitrogen assimilation, as it catalyzes the nitrate-to-nitrite reduction process in plants. A variety of factors, including nitrate, light, metabolites, phytohormones, low temperature, and drought, modulate the expression levels of nitrate reductase genes and nitrate reductase activity, which is consistent with the physiological role if. Recently, several transcription factors controlling the expression of nitrate reductase genes have been identified in higher plants. NODULE-INCEPTION-Like Proteins (NLPs) are transcription factors responsible for the nitrate-inducible expression of nitrate reductase genes. Since NLPs also control the nitrate-inducible expression of genes encoding the nitrate transporter, nitrite transporter, and nitrite reductase, the expression levels of nitrate reduction pathway-associated genes are coordinately modulated by NLPs in response to nitrate. Understanding the function of nitrate in plants will be useful to create crops with low nitrogen use.
硝酸盐是植物体内重要的营养物质和信号分子,可调节多种基因的表达,调控植物生长。本文综述了高等植物中硝酸盐信号调控基因表达相关转录因子的研究现状。硝酸还原酶是植物氮素同化的关键酶,它催化植物体内硝酸盐还原为亚硝酸盐的过程。硝酸盐、光照、代谢物、植物激素、低温、干旱等多种因素调节了硝酸盐还原酶基因的表达水平和活性,这与硝酸盐还原酶的生理作用是一致的。近年来,在高等植物中发现了几种控制硝酸还原酶基因表达的转录因子。nodule - incepon - like protein (nlp)是硝酸盐诱导的硝酸盐还原酶基因表达的转录因子。由于nlp还控制硝酸盐诱导的硝酸盐转运体、亚硝酸盐转运体和亚硝酸盐还原酶编码基因的表达,因此硝酸盐还原途径相关基因的表达水平受到nlp的协调调节,以响应硝酸盐。了解硝酸盐在植物中的作用将有助于创造低氮作物。
{"title":"Research status of transcription factors involved in controlling gene expression by nitrate signaling in higher plants","authors":"Yu-Jin Jung, Joung Soon Park, Ji Yun Go, H. Lee, Jin Young Kim, Ye Ji Lee, K. Nam, Yong-Gu Cho, K. Kang","doi":"10.5010/jpb.2021.48.3.124","DOIUrl":"https://doi.org/10.5010/jpb.2021.48.3.124","url":null,"abstract":"Nitrate is an important nutrient and signaling molecule in plants that modulates the expression of many genes and regulates plant growth. In this study, we cover the research status of transcription factors related to the control of gene expression by nitrate signaling in higher plants. Nitrate reductase is a key enzyme in nitrogen assimilation, as it catalyzes the nitrate-to-nitrite reduction process in plants. A variety of factors, including nitrate, light, metabolites, phytohormones, low temperature, and drought, modulate the expression levels of nitrate reductase genes and nitrate reductase activity, which is consistent with the physiological role if. Recently, several transcription factors controlling the expression of nitrate reductase genes have been identified in higher plants. NODULE-INCEPTION-Like Proteins (NLPs) are transcription factors responsible for the nitrate-inducible expression of nitrate reductase genes. Since NLPs also control the nitrate-inducible expression of genes encoding the nitrate transporter, nitrite transporter, and nitrite reductase, the expression levels of nitrate reduction pathway-associated genes are coordinately modulated by NLPs in response to nitrate. Understanding the function of nitrate in plants will be useful to create crops with low nitrogen use.","PeriodicalId":16797,"journal":{"name":"Journal of Plant Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47811334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}