Rujuta V. Vaidya, Sarah Bodenstein, Dildorakhon Rasulova, Jerome F. La Peyre, Morgan W. Kelly
Triploid oysters are commonly used as the basis for production in the aquaculture of eastern oysters along the USA East and Gulf of Mexico coasts. While they are valued for their rapid growth, incidents of triploid mortality during summer months have been well documented in eastern oysters, especially at low salinity sites. We compared global transcriptomic responses of diploid and triploid oysters bred from the same three maternal source populations at two different hatcheries and outplanted to a high (annual mean salinity = 19.4 ± 6.7) and low (annual mean salinity = 9.3 ± 5.0) salinity site. Oysters were sampled for gene expression at the onset of a mortality event in the summer of 2021 to identify triploid-specific gene expression patterns associated with low salinity sites, which ultimately experienced greater triploid mortality. We also examined chromosome-specific gene expression to test for instances of aneuploidy in experimental triploid oyster lines, another possible contributor to elevated mortality in triploids. We observed a strong effect of hatchery conditions (cohort) on triploid-specific mortality (field data) and a strong interactive effect of hatchery, ploidy, and outplant site on gene expression. At the low salinity site where triploid oysters experienced high mortality, we observed downregulation of transcripts related to calcium signaling, ciliary activity, and cell cycle checkpoints in triploids relative to diploids. These transcripts suggest dampening of the salinity stress response and problems during cell division as key cellular processes associated with elevated mortality risk in triploid oysters. No instances of aneuploidy were detected in our triploid oyster lines. Our results suggest that triploid oysters may be fundamentally less tolerant of rapid decreases in salinity, indicating that oyster farmers may need to limit the use of triploid oysters to sites with more stable salinity conditions.
{"title":"Comparative Transcriptomic Analyses Reveal Differences in the Responses of Diploid and Triploid Eastern Oysters to Environmental Stress","authors":"Rujuta V. Vaidya, Sarah Bodenstein, Dildorakhon Rasulova, Jerome F. La Peyre, Morgan W. Kelly","doi":"10.1111/eva.70028","DOIUrl":"10.1111/eva.70028","url":null,"abstract":"<p>Triploid oysters are commonly used as the basis for production in the aquaculture of eastern oysters along the USA East and Gulf of Mexico coasts. While they are valued for their rapid growth, incidents of triploid mortality during summer months have been well documented in eastern oysters, especially at low salinity sites. We compared global transcriptomic responses of diploid and triploid oysters bred from the same three maternal source populations at two different hatcheries and outplanted to a high (annual mean salinity = 19.4 ± 6.7) and low (annual mean salinity = 9.3 ± 5.0) salinity site. Oysters were sampled for gene expression at the onset of a mortality event in the summer of 2021 to identify triploid-specific gene expression patterns associated with low salinity sites, which ultimately experienced greater triploid mortality. We also examined chromosome-specific gene expression to test for instances of aneuploidy in experimental triploid oyster lines, another possible contributor to elevated mortality in triploids. We observed a strong effect of hatchery conditions (cohort) on triploid-specific mortality (field data) and a strong interactive effect of hatchery, ploidy, and outplant site on gene expression. At the low salinity site where triploid oysters experienced high mortality, we observed downregulation of transcripts related to calcium signaling, ciliary activity, and cell cycle checkpoints in triploids relative to diploids. These transcripts suggest dampening of the salinity stress response and problems during cell division as key cellular processes associated with elevated mortality risk in triploid oysters. No instances of aneuploidy were detected in our triploid oyster lines. Our results suggest that triploid oysters may be fundamentally less tolerant of rapid decreases in salinity, indicating that oyster farmers may need to limit the use of triploid oysters to sites with more stable salinity conditions.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496204/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joachim Mergeay, Sander Smet, Sebastian Collet, Sabina Nowak, Ilka Reinhardt, Gesa Kluth, Maciej Szewczyk, Raquel Godinho, Carsten Nowak, Robert W. Mysłajek, Gregor Rolshausen
Molecular methods are routinely used to estimate the effective size of populations (Ne). However, underlying model assumptions are frequently violated to an unknown extent. Although simulations can detect sources of bias and help to adjust sampling strategies and analyses methods, additional information from empirical data can also be used to calibrate methods and improve molecular Ne estimation methods. Here, we take advantage of long-term genetic and ecological monitoring data of the grey wolf (Canis lupus) in Germany, and detailed population genetic studies in Poland, Spain and Portugal to improve Ne estimation strategies in this species, and species with similar life history traits. We first calculated Ne from average lifetime reproductive success and detailed census data from the German population, which served as a baseline to compare to molecular estimates based on linkage disequilibrium and sibship frequency. This yielded a robust Ne/Nc estimation that we used to calibrate molecular estimates of German, Polish and Iberian wolf populations. The linkage disequilibrium method was strongly influenced by spatial genetic structure, much more than the sibship frequency method. When Ne was estimated in local neighbourhoods, both methods yielded comparable results. Estimates of the metapopulation effective size seemed to correspond generally well with the sum of the estimates of local neighbourhoods. Overall, we found that the number of packs is a good proxy of the effective population size. Using this as a rule of thumb, we evaluated for all European wolf populations the Ne 500 indicator and concluded that half of the European wolf populations do not yet fulfil this criterion.
分子方法通常用于估算种群的有效规模(N e)。然而,基本模型假设经常被违反,其程度不得而知。虽然模拟可以发现偏差来源并帮助调整采样策略和分析方法,但来自经验数据的额外信息也可用于校准方法和改进分子 N e 估算方法。在此,我们利用德国灰狼(Canis lupus)的长期遗传和生态监测数据,以及波兰、西班牙和葡萄牙的详细种群遗传研究,来改进该物种以及具有类似生活史特征的物种的N e估计策略。我们首先根据德国种群的平均终生繁殖成功率和详细的普查数据计算出 N e,并以此为基线与基于连锁不平衡和同胞关系频率的分子估计值进行比较。这样就得出了可靠的 N e/N c 估计值,我们用它来校准德国、波兰和伊比利亚狼种群的分子估计值。联系不平衡法受空间遗传结构的影响很大,远大于同胞兄弟关系频率法。当在局部邻域估算 N e 时,两种方法得出的结果不相上下。元种群有效规模的估计值似乎与局部邻域的估计值之和基本吻合。总的来说,我们发现狼群数量是有效种群数量的一个很好的代表。根据这一经验法则,我们对所有欧洲狼种群的 N e 500 指标进行了评估,得出的结论是,有一半的欧洲狼种群尚未达到这一标准。
{"title":"Estimating the Effective Size of European Wolf Populations","authors":"Joachim Mergeay, Sander Smet, Sebastian Collet, Sabina Nowak, Ilka Reinhardt, Gesa Kluth, Maciej Szewczyk, Raquel Godinho, Carsten Nowak, Robert W. Mysłajek, Gregor Rolshausen","doi":"10.1111/eva.70021","DOIUrl":"10.1111/eva.70021","url":null,"abstract":"<p>Molecular methods are routinely used to estimate the effective size of populations (<i>N</i><sub>e</sub>). However, underlying model assumptions are frequently violated to an unknown extent. Although simulations can detect sources of bias and help to adjust sampling strategies and analyses methods, additional information from empirical data can also be used to calibrate methods and improve molecular <i>N</i><sub>e</sub> estimation methods. Here, we take advantage of long-term genetic and ecological monitoring data of the grey wolf (<i>Canis lupus</i>) in Germany, and detailed population genetic studies in Poland, Spain and Portugal to improve <i>N</i><sub>e</sub> estimation strategies in this species, and species with similar life history traits. We first calculated <i>N</i><sub>e</sub> from average lifetime reproductive success and detailed census data from the German population, which served as a baseline to compare to molecular estimates based on linkage disequilibrium and sibship frequency. This yielded a robust <i>N</i><sub>e</sub>/<i>N</i><sub>c</sub> estimation that we used to calibrate molecular estimates of German, Polish and Iberian wolf populations. The linkage disequilibrium method was strongly influenced by spatial genetic structure, much more than the sibship frequency method. When <i>N</i><sub>e</sub> was estimated in local neighbourhoods, both methods yielded comparable results. Estimates of the metapopulation effective size seemed to correspond generally well with the sum of the estimates of local neighbourhoods. Overall, we found that the number of packs is a good proxy of the effective population size. Using this as a rule of thumb, we evaluated for all European wolf populations the <i>N</i><sub>e</sub> 500 indicator and concluded that half of the European wolf populations do not yet fulfil this criterion.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Margaux Bieuville, Antoine M. Dujon, Nynke Raven, Beata Ujvari, Pascal Pujol, Zahra Eslami-S, Catherine Alix Panabières, Jean-Pascal Capp, Frédéric Thomas
While it is recognised that most, if not all, multicellular organisms harbour neoplastic processes within their bodies, the timing of when these undesirable cell proliferations are most likely to occur and progress throughout the organism's lifetime remains only partially documented. Due to the different mechanisms implicated in tumourigenesis, it is highly unlikely that this probability remains constant at all times and stages of life. In this article, we summarise what is known about this variation, considering the roles of age, season and circadian rhythm. While most studies requiring that level of detail be done on humans, we also review available evidence in other animal species. For each of these timescales, we identify mechanisms or biological functions shaping the variation. When possible, we show that evolutionary processes likely played a role, either directly to regulate the cancer risk or indirectly through trade-offs. We find that neoplastic risk varies with age in a more complex way than predicted by early epidemiological models: rather than resulting from mutations alone, tumour development is dictated by tissue- and age-specific processes. Similarly, the seasonal cycle can be associated with risk variation in some species with life-history events such as sexual competition or mating being timed according to the season. Lastly, we show that the circadian cycle influences tumourigenesis in physiological, pathological and therapeutic contexts. We also highlight two biological functions at the core of these variations across our three timescales: immunity and metabolism. Finally, we show that our understanding of the entanglement between tumourigenic processes and biological cycles is constrained by the limited number of species for which we have extensive data. Improving our knowledge of the periods of vulnerability to the onset and/or progression of (malignant) tumours is a key issue that deserves further investigation, as it is key to successful cancer prevention strategies.
{"title":"When Do Tumours Develop? Neoplastic Processes Across Different Timescales: Age, Season and Round the Circadian Clock","authors":"Margaux Bieuville, Antoine M. Dujon, Nynke Raven, Beata Ujvari, Pascal Pujol, Zahra Eslami-S, Catherine Alix Panabières, Jean-Pascal Capp, Frédéric Thomas","doi":"10.1111/eva.70024","DOIUrl":"10.1111/eva.70024","url":null,"abstract":"<p>While it is recognised that most, if not all, multicellular organisms harbour neoplastic processes within their bodies, the timing of when these undesirable cell proliferations are most likely to occur and progress throughout the organism's lifetime remains only partially documented. Due to the different mechanisms implicated in tumourigenesis, it is highly unlikely that this probability remains constant at all times and stages of life. In this article, we summarise what is known about this variation, considering the roles of age, season and circadian rhythm. While most studies requiring that level of detail be done on humans, we also review available evidence in other animal species. For each of these timescales, we identify mechanisms or biological functions shaping the variation. When possible, we show that evolutionary processes likely played a role, either directly to regulate the cancer risk or indirectly through trade-offs. We find that neoplastic risk varies with age in a more complex way than predicted by early epidemiological models: rather than resulting from mutations alone, tumour development is dictated by tissue- and age-specific processes. Similarly, the seasonal cycle can be associated with risk variation in some species with life-history events such as sexual competition or mating being timed according to the season. Lastly, we show that the circadian cycle influences tumourigenesis in physiological, pathological and therapeutic contexts. We also highlight two biological functions at the core of these variations across our three timescales: immunity and metabolism. Finally, we show that our understanding of the entanglement between tumourigenic processes and biological cycles is constrained by the limited number of species for which we have extensive data. Improving our knowledge of the periods of vulnerability to the onset and/or progression of (malignant) tumours is a key issue that deserves further investigation, as it is key to successful cancer prevention strategies.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496201/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In population genetics idealized Wright-Fisher (WF) populations are generally considered equivalent to real populations with regard to the major evolutionary processes that influence genotype and allele frequencies. As a result we often model the response of populations by focusing on the effective size Ne. The Diversity Partitioning Theorem (DPT) shows that you cannot model the behavior of a system solely on the basis of a diversity (accounting for unevenness among items) without taking richness into account. I show that the census population size (the number of adults, Nc) is equivalent to a richness, and that the effective size Ne is equivalent to a true diversity. It follows logically from the DPT that we require both Ne and Nc to understand how drift, selection, mutation, and gene flow interact to shape the course of evolution of populations. Here I review evidence that both Nc and Ne affect evolutionary trajectories of populations for neutral and adaptive processes. This also influences how we should consider evolutionary potential and genetic criteria for conservation of populations. The effective size of a population is of huge importance in evolutionary biology, but it should not be the sole focus when population size is concerned. Applied evolutionary studies need to integrate Nc in the equation more consistently when modeling the response to selection, mutation, migration, and drift.
在种群遗传学中,就影响基因型和等位基因频率的主要进化过程而言,理想化的赖特-费舍(WF)种群通常被认为等同于真实种群。因此,我们通常通过关注有效大小 N e 来模拟种群的反应。多样性分区定理(DPT)表明,如果不考虑丰富度,就不能仅根据多样性(考虑项目间的不均衡性)来模拟系统的行为。我的研究表明,普查种群数量(成虫数量,N c)等同于丰富度,而有效种群数量 N e 等同于真正的多样性。根据 DPT 的逻辑推理,我们需要 N e 和 N c 才能理解漂移、选择、变异和基因流是如何相互作用以形成种群进化过程的。在此,我将回顾 N c 和 N e 对中性和适应性过程的种群进化轨迹产生影响的证据。这也影响了我们应该如何考虑种群保护的进化潜力和遗传标准。种群的有效规模在进化生物学中非常重要,但在涉及种群规模时,它不应是唯一的关注点。应用进化研究在模拟对选择、突变、迁移和漂移的反应时,需要更一致地将 N c 纳入方程。
{"title":"Population Size in Evolutionary Biology Is More Than the Effective Size","authors":"Joachim Mergeay","doi":"10.1111/eva.70029","DOIUrl":"10.1111/eva.70029","url":null,"abstract":"<p>In population genetics idealized Wright-Fisher (WF) populations are generally considered equivalent to real populations with regard to the major evolutionary processes that influence genotype and allele frequencies. As a result we often model the response of populations by focusing on the effective size <i>N</i><sub><i>e</i></sub>. The Diversity Partitioning Theorem (DPT) shows that you cannot model the behavior of a system solely on the basis of a diversity (accounting for unevenness among items) without taking richness into account. I show that the census population size (the number of adults, <i>N</i><sub><i>c</i></sub>) is equivalent to a richness, and that the effective size <i>N</i><sub><i>e</i></sub> is equivalent to a true diversity. It follows logically from the DPT that we require both <i>N</i><sub><i>e</i></sub> and <i>N</i><sub><i>c</i></sub> to understand how drift, selection, mutation, and gene flow interact to shape the course of evolution of populations. Here I review evidence that both <i>N</i><sub><i>c</i></sub> and <i>N</i><sub><i>e</i></sub> affect evolutionary trajectories of populations for neutral and adaptive processes. This also influences how we should consider evolutionary potential and genetic criteria for conservation of populations. The effective size of a population is of huge importance in evolutionary biology, but it should not be the sole focus when population size is concerned. Applied evolutionary studies need to integrate <i>N</i><sub><i>c</i></sub> in the equation more consistently when modeling the response to selection, mutation, migration, and drift.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arman N. Pili, Nathan H. Schumaker, Morelia Camacho-Cervantes, Reid Tingley, David G. Chapple
In long-distance dispersal events, colonising species typically begin with a small number of founding individuals. A growing body of research suggests that establishment success of small founding populations can be determined by the context of the colonisation event and the new environment. Here, we illuminate the importance of these sources of context dependence. Using a spatially explicit, temporally dynamic, mechanistic, individual-based simulator of a model amphibian species, the cane toad (Rhinella marina), we simulated colonisation scenarios to investigate how (1) the number of founding individuals, (2) the number of dispersal events, (3) landscape's spatial composition and configuration of habitats (‘spatially heterogeneous landscapes’) and (4) the timing of arrival with regards to dynamic environmental conditions (‘dynamic environmental conditions’) influence the establishment success of small founding populations. We analysed the dynamic effects of these predictors on establishment success using running-window logistic regression models. We showed establishment success increases with the number of founding individuals, whereas the number of dispersal events had a weak effect. At ≥ 20 founding individuals, propagule size swamps the effects of other factors, to whereby establishment success is near-certain (≥ 90%). But below this level, confidence in establishment success dramatically decreases as number of founding individuals decreases. At low numbers of founding individuals, the prominent predictors are landscape spatial heterogeneity and dynamic environmental conditions. For instance, compared to the annual mean, founding populations with ≤ 5 individuals have up to 18% higher establishment success when they arrive in ‘packed’ landscapes with relatively limited and clustered essential habitats and right before the breeding season. Accounting for landscape spatial heterogeneity and dynamic environmental conditions is integral in understanding and predicting population establishment and species colonisation. This additional complexity is necessary for advancing biogeographical theory and its application, such as in guiding species reintroduction efforts and invasive alien species management.
{"title":"Landscape Heterogeneity and Environmental Dynamics Improve Predictions of Establishment Success of Colonising Small Founding Populations","authors":"Arman N. Pili, Nathan H. Schumaker, Morelia Camacho-Cervantes, Reid Tingley, David G. Chapple","doi":"10.1111/eva.70027","DOIUrl":"10.1111/eva.70027","url":null,"abstract":"<p>In long-distance dispersal events, colonising species typically begin with a small number of founding individuals. A growing body of research suggests that establishment success of small founding populations can be determined by the context of the colonisation event and the new environment. Here, we illuminate the importance of these sources of context dependence. Using a spatially explicit, temporally dynamic, mechanistic, individual-based simulator of a model amphibian species, the cane toad (<i>Rhinella marina</i>), we simulated colonisation scenarios to investigate how (1) the number of founding individuals, (2) the number of dispersal events, (3) landscape's spatial composition and configuration of habitats (‘spatially heterogeneous landscapes’) and (4) the timing of arrival with regards to dynamic environmental conditions (‘dynamic environmental conditions’) influence the establishment success of small founding populations. We analysed the dynamic effects of these predictors on establishment success using running-window logistic regression models. We showed establishment success increases with the number of founding individuals, whereas the number of dispersal events had a weak effect. At ≥ 20 founding individuals, propagule size swamps the effects of other factors, to whereby establishment success is near-certain (≥ 90%). But below this level, confidence in establishment success dramatically decreases as number of founding individuals decreases. At low numbers of founding individuals, the prominent predictors are landscape spatial heterogeneity and dynamic environmental conditions. For instance, compared to the annual mean, founding populations with ≤ 5 individuals have up to 18% higher establishment success when they arrive in ‘packed’ landscapes with relatively limited and clustered essential habitats and right before the breeding season. Accounting for landscape spatial heterogeneity and dynamic environmental conditions is integral in understanding and predicting population establishment and species colonisation. This additional complexity is necessary for advancing biogeographical theory and its application, such as in guiding species reintroduction efforts and invasive alien species management.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sonja J. Scheffer, Matthew L. Lewis, Norma Mujica, Charles MacVean, Helga Blanco-Metzler, Ravindra C. Joshi, Frode Jacobsen
Identification of the geographic origin of invasive species can be critical to effective management and amelioration of negative impacts in the introduced range. Liriomyza huidobrensis is a polyphagous leafmining fly that is a devastating pest of many vegetable and floriculture crops around the world. Considered native to South and possibly Central America, L. huidobrensis became invasive in the 1980s and has since spread to at least 30 countries on five continents. We used phylogeographic analysis of over 2 kb of mitochondrial cytochrome oxidase I and II sequence data from 403 field-collected specimens from both native and introduced populations to investigate the geographic origins of invasive L. huidobrensis worldwide. Within South America, there was substantial genetic variation, as well as the strong phylogeographic structure typical of a native range. In contrast, leafminers from the introduced range and Central America all contained little genetic variation and shared the same small set of haplotypes. These haplotypes trace to Peru as the ultimate geographic origin of invasive populations. Central America is rejected as part of the original geographic range of L. huidobrensis. Within Peru, the primary export region of Lima shared an extremely similar pattern of reduced haplotype variation to the invasive populations. An additional 18 specimens collected at US ports of entry did not share the same haplotype profile as contemporary invasive populations, raising perplexing questions on global pathways and establishment success in this species.
确定入侵物种的地理起源对于有效管理和改善引入地区的负面影响至关重要。Liriomyza huidobrensis 是一种多食性食叶蝇,是世界各地许多蔬菜和花卉作物的毁灭性害虫。L.huidobrensis被认为原产于南美洲,也可能原产于中美洲,但在20世纪80年代开始入侵,至今已扩散到五大洲至少30个国家。我们对从原生种群和引进种群的 403 个野外采集标本中获得的超过 2 kb 的线粒体细胞色素氧化酶 I 和 II 序列数据进行了系统地理学分析,以研究全球入侵 L. huidobrensis 的地理起源。在南美洲,存在大量遗传变异,以及典型的原生种群的强大系统地理结构。与此相反,来自引进区和中美洲的潜叶蝇几乎没有遗传变异,而且共享同一组小的单倍型。这些单倍型追溯到秘鲁,认为秘鲁是入侵种群的最终地理起源地。中美洲被否定为 L. huidobrensis 原始地理分布的一部分。在秘鲁,主要出口地区利马与入侵种群有着极其相似的单倍型变异减少模式。在美国入境口岸采集的另外 18 个标本与当代入侵种群的单倍型特征不尽相同,这引发了有关该物种的全球路径和建立成功率的令人困惑的问题。
{"title":"Peruvian origin and global invasions of five continents by the highly damaging agricultural pest Liriomyza huidobrensis (Diptera: Agromyzidae)","authors":"Sonja J. Scheffer, Matthew L. Lewis, Norma Mujica, Charles MacVean, Helga Blanco-Metzler, Ravindra C. Joshi, Frode Jacobsen","doi":"10.1111/eva.13702","DOIUrl":"10.1111/eva.13702","url":null,"abstract":"<p>Identification of the geographic origin of invasive species can be critical to effective management and amelioration of negative impacts in the introduced range. <i>Liriomyza huidobrensis</i> is a polyphagous leafmining fly that is a devastating pest of many vegetable and floriculture crops around the world. Considered native to South and possibly Central America, <i>L. huidobrensis</i> became invasive in the 1980s and has since spread to at least 30 countries on five continents. We used phylogeographic analysis of over 2 kb of mitochondrial cytochrome oxidase I and II sequence data from 403 field-collected specimens from both native and introduced populations to investigate the geographic origins of invasive <i>L. huidobrensis</i> worldwide. Within South America, there was substantial genetic variation, as well as the strong phylogeographic structure typical of a native range. In contrast, leafminers from the introduced range and Central America all contained little genetic variation and shared the same small set of haplotypes. These haplotypes trace to Peru as the ultimate geographic origin of invasive populations. Central America is rejected as part of the original geographic range of <i>L. huidobrensis.</i> Within Peru, the primary export region of Lima shared an extremely similar pattern of reduced haplotype variation to the invasive populations. An additional 18 specimens collected at US ports of entry did not share the same haplotype profile as contemporary invasive populations, raising perplexing questions on global pathways and establishment success in this species.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miguel Baltazar-Soares, Alice Balard, Melanie J. Heckwolf
Fast-paced selective pressures imposed by climate change and anthropogenic activities call for adaptive evolutionary responses to emerge at ecological timescales. However, the evolution and heritability of genomic variation underlie mechanistic constraints, which dictate a slower pace of adaptation exclusively relying on standing genetic variation and novel mutations. Environmentally responsive epigenetic mechanisms can allow acclimatisation and adaptive phenotypes to arise faster than DNA sequence-based mechanisms alone. Nevertheless, the knowledge gap between identifying epigenetic marks and effectively deeming them functional is still wide in a natural context and often outside the scope of model organisms. With this Special Issue, we aimed to narrow this gap by presenting a compilation of original research articles, reviews and opinions on the topic of epigenetics in wild populations. We contextualised this collection within the overarching topic of conservation biology, as we firmly propose that epigenetic research can significantly enhance the effectiveness of conservation measures. Contributions highlighted the putative role of epigenetic variation in the acclimatisation and adaptive potential of species and populations directly and indirectly affected by climatic shifts and anthropogenic actions. They further exemplified how epigenetic variation can be used as biomarkers for monitoring variations in physiology, phenology and behaviour. Lastly, reviews and perspective articles illustrated the past and present of epigenetic research in wild populations while suggesting future research avenues.
气候变化和人类活动造成的快节奏选择性压力要求在生态时间尺度上出现适应性进化反应。然而,基因组变异的进化和遗传性是机理制约因素的基础,这就决定了完全依靠长期遗传变异和新突变的适应速度较慢。与基于 DNA 序列的机制相比,环境反应性表观遗传机制能更快地适应环境并产生适应性表型。然而,在自然环境中,从识别表观遗传标记到有效地将其视为功能性标记之间的知识差距仍然很大,而且往往超出了模式生物的范围。本特刊汇集了有关野生种群表观遗传学的原创研究文章、综述和观点,旨在缩小这一差距。我们坚定地认为,表观遗传学研究可以显著提高保护措施的有效性,因此我们将这组文章放在了保护生物学的大背景下。来稿强调了表观遗传变异在物种和种群的适应性和适应潜力方面可能发挥的作用,这些物种和种群直接或间接地受到了气候变化和人为活动的影响。这些文章进一步举例说明了如何利用表观遗传变异作为生物标记来监测生理、物候和行为的变化。最后,评论和观点文章介绍了野生种群表观遗传学研究的过去和现在,同时提出了未来的研究途径。
{"title":"Epigenetic Diversity and the Evolutionary Potential of Wild Populations","authors":"Miguel Baltazar-Soares, Alice Balard, Melanie J. Heckwolf","doi":"10.1111/eva.70011","DOIUrl":"10.1111/eva.70011","url":null,"abstract":"<p>Fast-paced selective pressures imposed by climate change and anthropogenic activities call for adaptive evolutionary responses to emerge at ecological timescales. However, the evolution and heritability of genomic variation underlie mechanistic constraints, which dictate a slower pace of adaptation exclusively relying on standing genetic variation and novel mutations. Environmentally responsive epigenetic mechanisms can allow acclimatisation and adaptive phenotypes to arise faster than DNA sequence-based mechanisms alone. Nevertheless, the knowledge gap between identifying epigenetic marks and effectively deeming them functional is still wide in a natural context and often outside the scope of model organisms. With this Special Issue, we aimed to narrow this gap by presenting a compilation of original research articles, reviews and opinions on the topic of epigenetics in wild populations. We contextualised this collection within the overarching topic of conservation biology, as we firmly propose that epigenetic research can significantly enhance the effectiveness of conservation measures. Contributions highlighted the putative role of epigenetic variation in the acclimatisation and adaptive potential of species and populations directly and indirectly affected by climatic shifts and anthropogenic actions. They further exemplified how epigenetic variation can be used as biomarkers for monitoring variations in physiology, phenology and behaviour. Lastly, reviews and perspective articles illustrated the past and present of epigenetic research in wild populations while suggesting future research avenues.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494020/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mathilde Salamon, Louis Astorg, Antoine Paccard, Frederic Chain, Andrew P. Hendry, Alison M. Derry, Rowan D. H. Barrett
Biological invasions have caused the loss of freshwater biodiversity worldwide. The interplay between adaptive responses and demographic characteristics of populations impacted by invasions is expected to be important for their resilience, but the interaction between these factors is poorly understood. The freshwater gastropod Amnicola limosus is native to the Upper St. Lawrence River and distributed along a water calcium concentration gradient within which high-calcium habitats are impacted by an invasive predator fish (Neogobius melanostomus, round goby), whereas low-calcium habitats provide refuges for the gastropods from the invasive predator. Our objectives were to (1) test for adaptation of A. limosus to the invasive predator and the low-calcium habitats, and (2) investigate if migrant gastropods could move from refuge populations to declining invaded populations (i.e., demographic rescue), which could also help maintain genetic diversity through gene flow (i.e., genetic rescue). We conducted a laboratory reciprocal transplant of wild F0A. limosus sourced from the two habitat types (high calcium/invaded and low calcium/refuge) to measure adult survival and fecundity in home and transplant treatments of water calcium concentration (low/high) and round goby cue (present/absent). We then applied pooled whole-genome sequencing of 12 gastropod populations from across the calcium/invasion gradient. We identified patterns of life-history traits and genetic differentiation across the habitats that are consistent with local adaptation to low-calcium concentrations in refuge populations and to round goby predation in invaded populations. We also detected restricted gene flow from the low-calcium refugia towards high-calcium invaded populations, implying that the potential for demographic and genetic rescue is limited by natural dispersal. Our study highlights the importance of considering the potentially conflicting effects of local adaptation and gene flow for the resilience of populations coping with invasive predators.
{"title":"Limited Migration From Physiological Refugia Constrains the Rescue of Native Gastropods Facing an Invasive Predator","authors":"Mathilde Salamon, Louis Astorg, Antoine Paccard, Frederic Chain, Andrew P. Hendry, Alison M. Derry, Rowan D. H. Barrett","doi":"10.1111/eva.70004","DOIUrl":"10.1111/eva.70004","url":null,"abstract":"<p>Biological invasions have caused the loss of freshwater biodiversity worldwide. The interplay between adaptive responses and demographic characteristics of populations impacted by invasions is expected to be important for their resilience, but the interaction between these factors is poorly understood. The freshwater gastropod <i>Amnicola limosus</i> is native to the Upper St. Lawrence River and distributed along a water calcium concentration gradient within which high-calcium habitats are impacted by an invasive predator fish (<i>Neogobius melanostomus</i>, round goby), whereas low-calcium habitats provide refuges for the gastropods from the invasive predator. Our objectives were to (1) test for adaptation of <i>A. limosus</i> to the invasive predator and the low-calcium habitats, and (2) investigate if migrant gastropods could move from refuge populations to declining invaded populations (i.e., demographic rescue), which could also help maintain genetic diversity through gene flow (i.e., genetic rescue). We conducted a laboratory reciprocal transplant of wild F<sub>0</sub> <i>A. limosus</i> sourced from the two habitat types (high calcium/invaded and low calcium/refuge) to measure adult survival and fecundity in home and transplant treatments of water calcium concentration (low/high) and round goby cue (present/absent). We then applied pooled whole-genome sequencing of 12 gastropod populations from across the calcium/invasion gradient. We identified patterns of life-history traits and genetic differentiation across the habitats that are consistent with local adaptation to low-calcium concentrations in refuge populations and to round goby predation in invaded populations. We also detected restricted gene flow from the low-calcium refugia towards high-calcium invaded populations, implying that the potential for demographic and genetic rescue is limited by natural dispersal. Our study highlights the importance of considering the potentially conflicting effects of local adaptation and gene flow for the resilience of populations coping with invasive predators.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493756/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laia Pérez-Sorribes, Pau Villar-Yanez, Linnéa Smeds, Joachim Mergeay
Many methods are now available to calculate Ne, but their performance varies depending on assumptions. Although simulated data are useful to discover certain types of bias, real empirical data supported by detailed known population histories allow us to discern how well methods perform with actual messy and complex data. Here, we focus on two genomic data sets of grey wolf populations for which population size changes of the past 40–120 years are well documented. We use this background to explore in what detail we can retrieve the known population history from these populations, in the light of pitfalls relating to population history, sampling design and the change in the spatial scale at which Ne is estimated as we go further back in time. The Scandinavian wolf population was founded in the early 1980s from a few individuals and has gradually expanded up to 510 wolves. Although the founder event of the Scandinavian population was detected by GONE, the founding effective population size was strongly overestimated when the most recent samples were used, but less so when older samples were considered. Nevertheless, the present-day Ne corresponds to theoretical expectations. The western Great Lakes wolf population of Minnesota is the only population in the contiguous United States that persisted throughout the 20th century, surviving intense persecution. We found a good concordance between the estimated Ne and trends in census size data, but the reconstruction of Ne clearly highlights the difficulty of interpreting results in spatially structured populations that underwent demographic fluctuations.
现在有许多计算 Ne 的方法,但其性能因假设条件不同而各异。虽然模拟数据有助于发现某些类型的偏差,但有详细已知种群历史支持的真实经验数据可以让我们分辨出这些方法在实际混乱和复杂数据中的表现如何。在这里,我们将重点放在灰狼种群的两个基因组数据集上,这些数据集详细记录了过去 40-120 年间种群数量的变化。我们将利用这一背景,根据与种群历史、取样设计以及随着时间的推移Ne估计的空间尺度的变化有关的隐患,探讨从这些种群中检索已知种群历史的详细程度。斯堪的纳维亚狼种群始建于 20 世纪 80 年代初,最初只有几只,后来逐渐扩大到 510 只。虽然斯堪的纳维亚种群的创始事件已被 GONE 检测到,但当使用最新样本时,创始有效种群规模被严重高估,而当考虑较早样本时,高估程度较低。尽管如此,现今的 Ne 还是符合理论预期。明尼苏达州五大湖西部的狼种群是美国毗连地区唯一一个在整个20世纪都持续存在的种群,它经受住了猛烈的迫害。我们发现估计的Ne值与普查规模数据的趋势之间有很好的一致性,但Ne值的重建清楚地凸显了在经历了人口波动的空间结构种群中解释结果的困难。
{"title":"Comparing Genetic Ne Reconstructions Over Time With Long-Time Wolf Monitoring Data in Two Populations","authors":"Laia Pérez-Sorribes, Pau Villar-Yanez, Linnéa Smeds, Joachim Mergeay","doi":"10.1111/eva.70022","DOIUrl":"https://doi.org/10.1111/eva.70022","url":null,"abstract":"<p>Many methods are now available to calculate <i>N</i><sub><i>e</i></sub>, but their performance varies depending on assumptions. Although simulated data are useful to discover certain types of bias, real empirical data supported by detailed known population histories allow us to discern how well methods perform with actual messy and complex data. Here, we focus on two genomic data sets of grey wolf populations for which population size changes of the past 40–120 years are well documented. We use this background to explore in what detail we can retrieve the known population history from these populations, in the light of pitfalls relating to population history, sampling design and the change in the spatial scale at which <i>N</i><sub><i>e</i></sub> is estimated as we go further back in time. The Scandinavian wolf population was founded in the early 1980s from a few individuals and has gradually expanded up to 510 wolves. Although the founder event of the Scandinavian population was detected by GONE, the founding effective population size was strongly overestimated when the most recent samples were used, but less so when older samples were considered. Nevertheless, the present-day <i>N</i><sub><i>e</i></sub> corresponds to theoretical expectations. The western Great Lakes wolf population of Minnesota is the only population in the contiguous United States that persisted throughout the 20th century, surviving intense persecution. We found a good concordance between the estimated <i>N</i><sub><i>e</i></sub> and trends in census size data, but the reconstruction of <i>N</i><sub><i>e</i></sub> clearly highlights the difficulty of interpreting results in spatially structured populations that underwent demographic fluctuations.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adam M. Fisher, Amelia-Rose V. McKenzie, Tom A. R. Price, Michael B. Bonsall, Robert J. Knell
We are still largely reliant on pesticides for the suppression of arthropod pests which threaten human health and food production, but the recent rise of evolved resistance among important pest species has reduced pesticide efficacy. Despite this, our understanding of strategies that effectively limit the evolution of resistance remains weak. Male-killing sex ratio distorting microbes (SRDMs), such as Wolbachia and Spiroplasma, are common among arthropod species. Previous theoretical work has suggested that they could limit adaptive potential in two ways: first, because by distorting sex ratios they reduce the effective population size, and second, because infected females produce no male offspring which restricts gene flow. Here we present the results of a novel experiment in which we test the extent by which these two mechanisms limit the adaptive response of arthropods to pesticide. Using a fully factorial design, we manipulated the adult sex ratio of laboratory populations of Drosophila melanogaster, both in the presence and absence of SRDMs, and exposed these populations to six generations of pesticide poisoning. This design allows the effects of SRDMs on sex ratio and their effects on gene flow to be estimated separately. After six generations, individuals from populations with even sex ratios displayed a higher resistance to pesticide relative to individuals from female-biased populations. By contrast, we found no effect of the presence of SRDMs in host populations on pesticide resistance independent of sex ratio. In addition, males were more susceptible to pesticide than females—this was true of flies from both naïve and previously exposed populations. These findings provide the first empirical proof of concept that sex ratio distortion arising from SRDMs can limit adaptation to pesticides, but cast doubt on the theoretical effect of male-killers limiting adaptation by disrupting gene flow.
{"title":"Do Sex Ratio Distorting Microbes Inhibit the Evolution of Pesticide Resistance? An Experimental Test","authors":"Adam M. Fisher, Amelia-Rose V. McKenzie, Tom A. R. Price, Michael B. Bonsall, Robert J. Knell","doi":"10.1111/eva.70003","DOIUrl":"https://doi.org/10.1111/eva.70003","url":null,"abstract":"<p>We are still largely reliant on pesticides for the suppression of arthropod pests which threaten human health and food production, but the recent rise of evolved resistance among important pest species has reduced pesticide efficacy. Despite this, our understanding of strategies that effectively limit the evolution of resistance remains weak. Male-killing sex ratio distorting microbes (SRDMs), such as <i>Wolbachia</i> and <i>Spiroplasma</i>, are common among arthropod species. Previous theoretical work has suggested that they could limit adaptive potential in two ways: first, because by distorting sex ratios they reduce the effective population size, and second, because infected females produce no male offspring which restricts gene flow. Here we present the results of a novel experiment in which we test the extent by which these two mechanisms limit the adaptive response of arthropods to pesticide. Using a fully factorial design, we manipulated the adult sex ratio of laboratory populations of <i>Drosophila melanogaster</i>, both in the presence and absence of SRDMs, and exposed these populations to six generations of pesticide poisoning. This design allows the effects of SRDMs on sex ratio and their effects on gene flow to be estimated separately. After six generations, individuals from populations with even sex ratios displayed a higher resistance to pesticide relative to individuals from female-biased populations. By contrast, we found no effect of the presence of SRDMs in host populations on pesticide resistance independent of sex ratio. In addition, males were more susceptible to pesticide than females—this was true of flies from both naïve and previously exposed populations. These findings provide the first empirical proof of concept that sex ratio distortion arising from SRDMs can limit adaptation to pesticides, but cast doubt on the theoretical effect of male-killers limiting adaptation by disrupting gene flow.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}