Oscillatory shear testing, used to characterize the viscoelastic response of soft materials, is often divided into small, medium, and large amplitude oscillatory shear (SAOS, MAOS, and LAOS) regions. SAOS is a common test that gives us a unified analysis and interpretation of linear viscoelastic behavior, whereas understanding MAOS and LAOS is still an active area of research. While numerous mathematical techniques have been proposed, a consensus interpretation is still missing. Recently, our understanding of nonlinear behavior in the LAOS regime has been developed using iterative recovery tests. Recovery rheology decomposes the strain into two components, allowing an unambiguous interpretation of the nonlinear behavior in terms of sequences of recoverable and unrecoverable processes. In this work, we revisit the MAOS material functions for polyvinyl alcohol-borax hydrogel and worm-like micelles using recovery rheology. We show that two mathematical formalisms, the Chebyshev and sequence of physical processes analyses, provide competing physical interpretations when they are derived from the total strain, but provide unified interpretations when describing the decomposed strains. We, therefore, show that what has often been treated as a mathematical problem can instead be solved experimentally by acknowledging the extra information provided by recovery rheology.
{"title":"Unified interpretation of MAOS responses via experimentally decomposed material functions","authors":"Yul Hui Shim, Piyush K. Singh, Simon A. Rogers","doi":"10.1122/8.0000702","DOIUrl":"https://doi.org/10.1122/8.0000702","url":null,"abstract":"Oscillatory shear testing, used to characterize the viscoelastic response of soft materials, is often divided into small, medium, and large amplitude oscillatory shear (SAOS, MAOS, and LAOS) regions. SAOS is a common test that gives us a unified analysis and interpretation of linear viscoelastic behavior, whereas understanding MAOS and LAOS is still an active area of research. While numerous mathematical techniques have been proposed, a consensus interpretation is still missing. Recently, our understanding of nonlinear behavior in the LAOS regime has been developed using iterative recovery tests. Recovery rheology decomposes the strain into two components, allowing an unambiguous interpretation of the nonlinear behavior in terms of sequences of recoverable and unrecoverable processes. In this work, we revisit the MAOS material functions for polyvinyl alcohol-borax hydrogel and worm-like micelles using recovery rheology. We show that two mathematical formalisms, the Chebyshev and sequence of physical processes analyses, provide competing physical interpretations when they are derived from the total strain, but provide unified interpretations when describing the decomposed strains. We, therefore, show that what has often been treated as a mathematical problem can instead be solved experimentally by acknowledging the extra information provided by recovery rheology.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":"205 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135739295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nagrani, Pranay P., Kulkarni, Ritwik V., Kelkar, Parth U., Corder, Ria D., Erk, Kendra A., Marconnet, Amy M., Christov, Ivan C.
Thermal greases, often used as thermal interface materials, are complex paste-like mixtures composed of a base polymer in which dense metallic (or ceramic) filler particles are dispersed to improve the heat transfer properties of the material. They have complex rheological properties that impact the performance of the thermal interface material over its lifetime. We perform rheological experiments on thermal greases and observe both stress relaxation and stress buildup regimes. This time-dependent rheological behavior of such complex fluid-like materials is not captured by steady shear-thinning models often used to describe these materials. We find that thixo-elasto-visco-plastic (TEVP) and nonlinear-elasto-visco-plastic (NEVP) constitutive models characterize the observed stress relaxation and buildup regimes, respectively. Specifically, we use the models within a data-driven approach based on physics-informed neural networks (PINNs). PINNs are used to solve the inverse problem of determining the rheological model parameters from the dynamic response in experiments. These training data are generated by startup flow experiments at different (constant) shear rates using a shear rheometer. We validate the “learned” models by comparing their predicted shear stress evolution to experiments under shear rates not used in the training datasets. We further validate the learned TEVP model by solving a forward problem numerically to determine the shear stress evolution for an input step-strain profile. Meanwhile, the NEVP model is further validated by comparison to a steady Herschel–Bulkley fit of the material’s flow curve.
{"title":"Data-driven rheological characterization of stress buildup and relaxation in thermal greases","authors":"Nagrani, Pranay P., Kulkarni, Ritwik V., Kelkar, Parth U., Corder, Ria D., Erk, Kendra A., Marconnet, Amy M., Christov, Ivan C.","doi":"10.1122/8.0000679","DOIUrl":"https://doi.org/10.1122/8.0000679","url":null,"abstract":"Thermal greases, often used as thermal interface materials, are complex paste-like mixtures composed of a base polymer in which dense metallic (or ceramic) filler particles are dispersed to improve the heat transfer properties of the material. They have complex rheological properties that impact the performance of the thermal interface material over its lifetime. We perform rheological experiments on thermal greases and observe both stress relaxation and stress buildup regimes. This time-dependent rheological behavior of such complex fluid-like materials is not captured by steady shear-thinning models often used to describe these materials. We find that thixo-elasto-visco-plastic (TEVP) and nonlinear-elasto-visco-plastic (NEVP) constitutive models characterize the observed stress relaxation and buildup regimes, respectively. Specifically, we use the models within a data-driven approach based on physics-informed neural networks (PINNs). PINNs are used to solve the inverse problem of determining the rheological model parameters from the dynamic response in experiments. These training data are generated by startup flow experiments at different (constant) shear rates using a shear rheometer. We validate the “learned” models by comparing their predicted shear stress evolution to experiments under shear rates not used in the training datasets. We further validate the learned TEVP model by solving a forward problem numerically to determine the shear stress evolution for an input step-strain profile. Meanwhile, the NEVP model is further validated by comparison to a steady Herschel–Bulkley fit of the material’s flow curve.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135789989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Li, Kimberly A. Dennis, Yu-Fan Lee, Eric M. Furst
The dynamics of charged and hard-sphere silica colloidal suspensions are measured using diffusing wave spectroscopy and are interpreted by the Generalized Stokes–Einstein Relation (GSER). At high concentration, the resulting moduli are in good qualitative agreement with bulk rheology, including the frequency response, but are higher by a quantitative factor. We show that the “two-point” GSER, which derives from the correlated motion of the colloidal particles, provides a better quantitative agreement between bulk and microrheology. The two-point GSER applies generally when the average scattering vector sampled by the multiple scattering events corresponds to a length scale greater than the scatterer diameter. We discuss applications for characterizing colloid interactions by measuring the high-frequency moduli of suspensions and extend the two-point analysis to tracer particle microrheology measurements of a semiflexible biopolymer network.
{"title":"Two-point microrheology and diffusing wave spectroscopy","authors":"Qi Li, Kimberly A. Dennis, Yu-Fan Lee, Eric M. Furst","doi":"10.1122/8.0000664","DOIUrl":"https://doi.org/10.1122/8.0000664","url":null,"abstract":"The dynamics of charged and hard-sphere silica colloidal suspensions are measured using diffusing wave spectroscopy and are interpreted by the Generalized Stokes–Einstein Relation (GSER). At high concentration, the resulting moduli are in good qualitative agreement with bulk rheology, including the frequency response, but are higher by a quantitative factor. We show that the “two-point” GSER, which derives from the correlated motion of the colloidal particles, provides a better quantitative agreement between bulk and microrheology. The two-point GSER applies generally when the average scattering vector sampled by the multiple scattering events corresponds to a length scale greater than the scatterer diameter. We discuss applications for characterizing colloid interactions by measuring the high-frequency moduli of suspensions and extend the two-point analysis to tracer particle microrheology measurements of a semiflexible biopolymer network.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135718704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The trade-off between hardness and stretchability is a cornerstone of materials science. Balancing this trade-off is important in the molecular design of both chemical and physical networks. In this study, we report the quantitative trade-off at the molecular level for physical networks. Namely, we analyze, based on the reversible gelation model, a scaling relationship between the characteristic terminal relaxation modulus Gc in linear viscoelasticity and the stretch ratio λmax at the stress overshoot during the nonlinear elongation flow for unentangled randomly associative polymers, i.e., λmax ∼ Gc−0.17 and λmax ∼ Gc−0.33 in the mean-field and critical-percolation regimes, respectively. We use sulfonated polystyrene having different alkali counterions as a model system to test the relationship. The exponent of λmax ∼ Gc−0.25 seen in the experiment is in between the two theoretical values. We also discuss the quantitative deviation with respect to the size distribution of the network strands.
{"title":"A trade-off between hardness and stretchability of associative networks during the sol-to-gel transition","authors":"Xiao Cao, Li Peng, Xianbo Huang, Quan Chen","doi":"10.1122/8.0000689","DOIUrl":"https://doi.org/10.1122/8.0000689","url":null,"abstract":"The trade-off between hardness and stretchability is a cornerstone of materials science. Balancing this trade-off is important in the molecular design of both chemical and physical networks. In this study, we report the quantitative trade-off at the molecular level for physical networks. Namely, we analyze, based on the reversible gelation model, a scaling relationship between the characteristic terminal relaxation modulus Gc in linear viscoelasticity and the stretch ratio λmax at the stress overshoot during the nonlinear elongation flow for unentangled randomly associative polymers, i.e., λmax ∼ Gc−0.17 and λmax ∼ Gc−0.33 in the mean-field and critical-percolation regimes, respectively. We use sulfonated polystyrene having different alkali counterions as a model system to test the relationship. The exponent of λmax ∼ Gc−0.25 seen in the experiment is in between the two theoretical values. We also discuss the quantitative deviation with respect to the size distribution of the network strands.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135718551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A linear stability analysis is carried out for viscoelastic filaments (formed by an unentangled polymer solution) during capillary thinning in the regime of unfolded polymer coils taking into account the relative motion of the solvent and the polymer. The conditions for the onset of filament instability with respect to axisymmetric modulation of its surface are found. The analysis is valid for relatively fast processes occurring at times shorter than the characteristic thinning time. It is shown that the growth rate of such pearling instability is determined by the osmotic modulus of the solution and the degree of orientation of macromolecules. In the case of nonassociative polymers, the instability develops (with the growth rate exceeding the rate of filament thinning) when the longitudinal length of stretched polymer chains exceeds the diameter of the filament. The theory is also applicable to soft gels and associative polymer solutions with very long relaxation times. The predictions of the theory are in agreement with experimental data.
{"title":"Blistering instability during capillary thinning of solutions of homo- and associative polymers","authors":"Andrey V. Subbotin, Alexander N. Semenov","doi":"10.1122/8.0000703","DOIUrl":"https://doi.org/10.1122/8.0000703","url":null,"abstract":"A linear stability analysis is carried out for viscoelastic filaments (formed by an unentangled polymer solution) during capillary thinning in the regime of unfolded polymer coils taking into account the relative motion of the solvent and the polymer. The conditions for the onset of filament instability with respect to axisymmetric modulation of its surface are found. The analysis is valid for relatively fast processes occurring at times shorter than the characteristic thinning time. It is shown that the growth rate of such pearling instability is determined by the osmotic modulus of the solution and the degree of orientation of macromolecules. In the case of nonassociative polymers, the instability develops (with the growth rate exceeding the rate of filament thinning) when the longitudinal length of stretched polymer chains exceeds the diameter of the filament. The theory is also applicable to soft gels and associative polymer solutions with very long relaxation times. The predictions of the theory are in agreement with experimental data.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":"188 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135154168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conor G. Harris, Christina E. Rice, Abhishek Shetty, Luqman Mahir, Ronald G. Larson
To estimate yield stress and other rheological properties relevant to modeling of wax deposition in pipelines where flow is continuous, but stress varies across the pipe radius, model wax-oil mixtures are cooled at multiple cooling rates under constant shear stress until a temperature is reached, at which flow is arrested by gelation due to wax crystal formation. From these data, combined with a measurement of temperature-dependence of precipitated wax concentration by differential scanning calorimetry, an apparent yield stress σy, below which flow is arrested at each temperature, is related to the concentration of precipitated wax Cp and the cooling rate. Results are reported for multiple concentrations in oil of two independent wax mixtures: a many-component commercial wax mimicking the composition of field oil, and a simpler six-alkane mixture. These transient rheological data are fit to a pseudo “Herschel–Bulkley” constitutive equation from which it is found that the yield stresses obtained during flow under cooling are generally an order of magnitude, or more, lower than the yield stresses obtained in the previous work in flow at a comparable constant temperature after cooling in the absence of flow. We also find a strong decrease in the arrest temperature with a decreasing cooling rate, with no convergence even at the lowest cooling rate of 0.0625 °C min−1, indicating that under slower cooling, flow continues even under low stresses. The cooling-rate-dependent yield stress obtained in our study under constant stress provides a challenge to the recent models of gelation under flow stress and is of relevance to wax deposition in pipelines.
为了估计与管道中蜡沉积建模相关的屈服应力和其他流变特性,在管道中,流动是连续的,但应力随管道半径的变化而变化,在恒定的剪切应力下,以多种冷却速率冷却模型蜡油混合物,直到达到一定温度,在该温度下,由于蜡晶体的形成,凝胶作用阻止了流动。结合差示扫描量热法测定的析出蜡浓度随温度的变化规律,得出了析出蜡浓度Cp和冷却速率与表观屈服应力σy的关系。报告了两种不同浓度的蜡混合物的结果:一种是模拟油田油成分的多组分商业蜡,一种是更简单的六烷烃混合物。这些瞬态流变数据符合伪“Herschel-Bulkley”本构方程,从该本构方程中可以发现,在冷却下流动过程中获得的屈服应力通常比在冷却后无流动的类似恒温流动中获得的屈服应力低一个数量级或更多。我们还发现,随着冷却速率的降低,止动温度明显下降,即使在最低冷却速率为0.0625°C min - 1时也没有收敛,这表明在较慢的冷却下,即使在低应力下,流动也会继续。我们在恒定应力下获得的与冷却速率相关的屈服应力对流动应力下凝胶化的最新模型提出了挑战,并且与管道中的蜡沉积有关。
{"title":"Precipitated wax content and yield stress of model wax-oil mixtures determined by arrest of flow during cooling at fixed stress","authors":"Conor G. Harris, Christina E. Rice, Abhishek Shetty, Luqman Mahir, Ronald G. Larson","doi":"10.1122/8.0000596","DOIUrl":"https://doi.org/10.1122/8.0000596","url":null,"abstract":"To estimate yield stress and other rheological properties relevant to modeling of wax deposition in pipelines where flow is continuous, but stress varies across the pipe radius, model wax-oil mixtures are cooled at multiple cooling rates under constant shear stress until a temperature is reached, at which flow is arrested by gelation due to wax crystal formation. From these data, combined with a measurement of temperature-dependence of precipitated wax concentration by differential scanning calorimetry, an apparent yield stress σy, below which flow is arrested at each temperature, is related to the concentration of precipitated wax Cp and the cooling rate. Results are reported for multiple concentrations in oil of two independent wax mixtures: a many-component commercial wax mimicking the composition of field oil, and a simpler six-alkane mixture. These transient rheological data are fit to a pseudo “Herschel–Bulkley” constitutive equation from which it is found that the yield stresses obtained during flow under cooling are generally an order of magnitude, or more, lower than the yield stresses obtained in the previous work in flow at a comparable constant temperature after cooling in the absence of flow. We also find a strong decrease in the arrest temperature with a decreasing cooling rate, with no convergence even at the lowest cooling rate of 0.0625 °C min−1, indicating that under slower cooling, flow continues even under low stresses. The cooling-rate-dependent yield stress obtained in our study under constant stress provides a challenge to the recent models of gelation under flow stress and is of relevance to wax deposition in pipelines.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":"169 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135154028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simulations of the failure of cohesive granular steps with varying intensities of the contact adhesive force are presented. The simulations are compared with experimental and numerical studies of wet shear flows [Badetti et al., J. Rheol. 62, 1175–1196 (2018) and Khamseh et al., Phys. Rev. E 92, 022201 (2015)], computing the apparent friction coefficient. We observe consistent behaviors. We reproduce the dependence between the macroscopic cohesion and the contact adhesion [Rumpf, Chem. Ing. Tech. 42, 538–540 (1970) and Richefeu et al., Phys. Rev. E 73(5), 051304 (2006)] observed experimentally for sticky polymer-coated grains, as well as the range of friction explored [Gans et al., Phys. Rev. E 101, 032904 (2020)]. Focusing on the interface between moving and static materials, and assuming a linear failure, we infer the orientation of the failure plane with the horizontal. We disclose a nonmonotonous evolution with the intensity of the contact adhesion. Assuming an ideal Coulomb material allows for proposing an interpretation to this nonmonotonous behavior. Although the systems are past incipient failure, we consider an edge of material at equilibrium, for which the failure angle is related to the internal frictional properties of the material. In this framework, the nonmonotonous evolution of the failure orientation may hint at a cohesion-induced weakening mechanism, by which stronger contact adhesion involve weaker friction.
{"title":"Cohesive granular columns collapsing: Numerics questioning failure, cohesion, and friction","authors":"L. Staron, L. Duchemin, P. Lagrée","doi":"10.1122/8.0000674","DOIUrl":"https://doi.org/10.1122/8.0000674","url":null,"abstract":"Simulations of the failure of cohesive granular steps with varying intensities of the contact adhesive force are presented. The simulations are compared with experimental and numerical studies of wet shear flows [Badetti et al., J. Rheol. 62, 1175–1196 (2018) and Khamseh et al., Phys. Rev. E 92, 022201 (2015)], computing the apparent friction coefficient. We observe consistent behaviors. We reproduce the dependence between the macroscopic cohesion and the contact adhesion [Rumpf, Chem. Ing. Tech. 42, 538–540 (1970) and Richefeu et al., Phys. Rev. E 73(5), 051304 (2006)] observed experimentally for sticky polymer-coated grains, as well as the range of friction explored [Gans et al., Phys. Rev. E 101, 032904 (2020)]. Focusing on the interface between moving and static materials, and assuming a linear failure, we infer the orientation of the failure plane with the horizontal. We disclose a nonmonotonous evolution with the intensity of the contact adhesion. Assuming an ideal Coulomb material allows for proposing an interpretation to this nonmonotonous behavior. Although the systems are past incipient failure, we consider an edge of material at equilibrium, for which the failure angle is related to the internal frictional properties of the material. In this framework, the nonmonotonous evolution of the failure orientation may hint at a cohesion-induced weakening mechanism, by which stronger contact adhesion involve weaker friction.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46721219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stelios Alexandris, Daniel Ashkenazi, J. Vermant, D. Vlassopoulos, M. Gottlieb
When surface-active molecules or particles assemble at fluid–fluid interfaces, these interfaces acquire complex rheological properties that are of importance in processes that involve flow and deformation of interfaces. Although much progress has been made, interfacial rheology measurements and, in particular, the measurement of interfacial rheological properties of polymers at the air-water interface remain challenging. These are due to weak interactions with the water subphase, the polymer backbone conformation, the glass transition of the interfacial layer, and memory effects. In the present work, we describe systematic rheological measurements of polymer-laden interfaces. The measurements were performed with four different interfacial shear rheometers that can be classified into two types: rheometers in which the surface pressure can be controlled independently, and devices based on fixtures mounted on standard rotational rheometers and lacking control of the surface pressure. We use poly(tert-butyl methacrylate) and poly(methyl methacrylate), two high glass transition temperature, hydrophobic polymers anchored to the water subphase by means of the acrylate group. Using a Langmuir–Pockels (LP) trough, we identify the transition of the polymer monolayer from a viscous to a solid elastic or soft-glassy interface as the polymer surface concentration increases by compression. Then, we compare the linear viscoelastic properties of the interface as obtained by each rheometer. Our results show poor reproducibility and comparability of the rheological data as obtained by different rheometers for the same polymer. This is mainly due to differences in the method used to prepare the layers. For LP-based devices, spreading under dilute conditions and subsequent compression yields layers of compressed glassy blobs with reproducible results. On the other hand, for devices without surface pressure control, deposition of the amount needed to reach a desired concentration may lead to the formation of ill-defined layers resulting in irreproducible data. Furthermore, we find that only when spreading the polymer to form a dilute layer and then controlling the surface pressure by compression, we can clearly distinguish the fluidlike from solidlike interfaces, and a clear correlation is observed between the surface pressure (or interfacial polymer concentration) and the rheological properties of the interface.
{"title":"Interfacial shear rheology of glassy polymers at liquid interfaces","authors":"Stelios Alexandris, Daniel Ashkenazi, J. Vermant, D. Vlassopoulos, M. Gottlieb","doi":"10.1122/8.0000685","DOIUrl":"https://doi.org/10.1122/8.0000685","url":null,"abstract":"When surface-active molecules or particles assemble at fluid–fluid interfaces, these interfaces acquire complex rheological properties that are of importance in processes that involve flow and deformation of interfaces. Although much progress has been made, interfacial rheology measurements and, in particular, the measurement of interfacial rheological properties of polymers at the air-water interface remain challenging. These are due to weak interactions with the water subphase, the polymer backbone conformation, the glass transition of the interfacial layer, and memory effects. In the present work, we describe systematic rheological measurements of polymer-laden interfaces. The measurements were performed with four different interfacial shear rheometers that can be classified into two types: rheometers in which the surface pressure can be controlled independently, and devices based on fixtures mounted on standard rotational rheometers and lacking control of the surface pressure. We use poly(tert-butyl methacrylate) and poly(methyl methacrylate), two high glass transition temperature, hydrophobic polymers anchored to the water subphase by means of the acrylate group. Using a Langmuir–Pockels (LP) trough, we identify the transition of the polymer monolayer from a viscous to a solid elastic or soft-glassy interface as the polymer surface concentration increases by compression. Then, we compare the linear viscoelastic properties of the interface as obtained by each rheometer. Our results show poor reproducibility and comparability of the rheological data as obtained by different rheometers for the same polymer. This is mainly due to differences in the method used to prepare the layers. For LP-based devices, spreading under dilute conditions and subsequent compression yields layers of compressed glassy blobs with reproducible results. On the other hand, for devices without surface pressure control, deposition of the amount needed to reach a desired concentration may lead to the formation of ill-defined layers resulting in irreproducible data. Furthermore, we find that only when spreading the polymer to form a dilute layer and then controlling the surface pressure by compression, we can clearly distinguish the fluidlike from solidlike interfaces, and a clear correlation is observed between the surface pressure (or interfacial polymer concentration) and the rheological properties of the interface.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44371435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For physically gelled colloidal suspensions, there are two routes to transform the gel from solid to liquid. One is to raise the temperature, and the other is to increase the shear deformation. In this investigation, we found that the phase boundary of this solid-to-liquid transformation exhibits a surprising Z-shaped curve in the strain-temperature plane. This nonmonotonic feature in phase transition appears to be present in various nanoparticle-filled colloidal gels with significant differences in chemical composition, filler type, structure, particle shape, average diameter, and particle size distribution. By applying the Kraus model to the breakage and restoration of filler networks and comparing our findings to nonequilibrium glassy behavior, we found that this nonmonotonic phenomenon can be theoretically predicted by combining the glassy melting kinetics of filler networks at high temperatures with the viscosity-retarded dissociation between particles at low temperatures.
{"title":"Z-shaped dejamming phase diagram of colloidal gels","authors":"B. Xia, Shoubo Li, Xiaorong Wang","doi":"10.1122/8.0000666","DOIUrl":"https://doi.org/10.1122/8.0000666","url":null,"abstract":"For physically gelled colloidal suspensions, there are two routes to transform the gel from solid to liquid. One is to raise the temperature, and the other is to increase the shear deformation. In this investigation, we found that the phase boundary of this solid-to-liquid transformation exhibits a surprising Z-shaped curve in the strain-temperature plane. This nonmonotonic feature in phase transition appears to be present in various nanoparticle-filled colloidal gels with significant differences in chemical composition, filler type, structure, particle shape, average diameter, and particle size distribution. By applying the Kraus model to the breakage and restoration of filler networks and comparing our findings to nonequilibrium glassy behavior, we found that this nonmonotonic phenomenon can be theoretically predicted by combining the glassy melting kinetics of filler networks at high temperatures with the viscosity-retarded dissociation between particles at low temperatures.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48166848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conductive polymeric materials are commonly obtained by adding conductive nanoparticles to blends of immiscible polymers that form a cocontinuous morphology. However, during processing, morphology changes, affecting material properties. This study investigates the impact of steady shear deformation on the morphological and electrical properties of a model system consisting of polypropylene/polystyrene/multiwall carbon nanotubes (MWCNTs). The findings reveal that the deformation results in the coarsening of the blend morphology and disruption of the electrical network, increasing both the rheological and electrical percolation threshold concentrations. The evolution of both electrical and morphological properties depends on MWCNT concentration, strain amplitude, and shear rate. The MWCNT concentration, below a certain level, leads to a disruption in electrical conductivity at high shear rates. However, if the MWCNT concentration is above 1 wt. %, the balance between filler network breakup and nanoparticle diffusion is maintained, resulting in stable electrical conductivity and morphology.
{"title":"Effect of steady shear deformation on electrically conductive PP/PS/MWCNT composites","authors":"D. Strugova, É. David, N. Demarquette","doi":"10.1122/8.0000647","DOIUrl":"https://doi.org/10.1122/8.0000647","url":null,"abstract":"Conductive polymeric materials are commonly obtained by adding conductive nanoparticles to blends of immiscible polymers that form a cocontinuous morphology. However, during processing, morphology changes, affecting material properties. This study investigates the impact of steady shear deformation on the morphological and electrical properties of a model system consisting of polypropylene/polystyrene/multiwall carbon nanotubes (MWCNTs). The findings reveal that the deformation results in the coarsening of the blend morphology and disruption of the electrical network, increasing both the rheological and electrical percolation threshold concentrations. The evolution of both electrical and morphological properties depends on MWCNT concentration, strain amplitude, and shear rate. The MWCNT concentration, below a certain level, leads to a disruption in electrical conductivity at high shear rates. However, if the MWCNT concentration is above 1 wt. %, the balance between filler network breakup and nanoparticle diffusion is maintained, resulting in stable electrical conductivity and morphology.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45815368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}