For more than three decades, dye-sensitized solar cells (DSSCs) have attracted numerous researchers as viable alternatives in photovoltaic technology. It offers several advantages, such as using eco-friendly materials, inexpensive processing techniques, indoor photovoltaic potentials, and integrating photovoltaics into building applications. Nevertheless, DSSCs will require further development in manufacturing methods and materials to remain competitive with other thin-film solar technologies that offer high photovoltaic efficiency. It is essential to give an overview of the latest developments in this area and highlight the primary elements required for realizing high-performance technologies, such as photoanode modification, dye formulation, and electrolyte optimization. Recent advancements have shown promising improvements in DSSCs with copper-based electrolytes, and integrating new interface materials like preadsorbents or postadsorbents has also opened new possibilities for DSSCs. Here, we comprehensively compare and discuss the key materials and device fabrication processes for high-performance DSSCs and present future research perspectives.
Lead halide perovskites are one of the most promising materials as active layers of optoelectronic devices. Phase segregation under illumination in mixed halide perovskites is one of the major issues in stable device operation. Herein, we rationalize illumination power dependent phase segregation phenomena, including two thresholds between which phase segregation occurs, and the reversal of phase segregation. Our experimental observation combining confocal photoluminescence mapping with in situ Raman spectroscopy supports the halide oxidation model. We observed phase segregation beyond the illuminated area, while the illuminated area remained mixed. Reversal of phase segregation under illumination was also observed. We propose that the spatial distribution of phase segregation is driven by halide oxidation and diffusion of the products through mass flow, as verified by light- and spatial-dependent lattice halide vibrations. Our insights into phase segregation may provide new perspectives for manipulating phase segregation by local light intensity for dynamically tunable optoelectronics.
Lithium–aluminum (LixAl, x = the molar ratio of Li to Al), an important alloy anode with a specific capacity over 2 times higher than that of the carbon anode used in commercial liquid electrolyte lithium-ion batteries (LELIBs), has been proven to be a failure in LELIBs due to the notorious pulverization phenomenon. However, whether or not such pulverization persists in all solid state lithium batteries (ASSLBs) remains unclear. Herein, we show that pulverization of the LixAl anode is mitigated in ASSLBs due to the applied external stack pressure, thus preventing the mechanical failure of the LixAl anode in ASSLBs. Moreover, electron microscopy investigation reveals that, instead of pulverization, electrochemomechanical stress induces 2 orders of magnitude grain size reduction from a few tens of microns to a few hundred nanometers. The grain-refined LixAl anode facilitates lithium ion transport, which improves the rate performance and specific capacity of the LixAl anode. Consequently, the assembled single-crystal LiNi0.83Co0.12Mn0.05O2|Li10Si0.3PS6.7Cl1.8|Li0.4Al ASSLBs reach 2000 cycles with a capacity retention of 100% at 3C (13.9 mA/cm2, room temperature), at a high areal capacity of 2.1 mAh/cm2. The all-solid pouch cell with a LixAl anode can reach an energy density of 219 Wh kg–1 based on the total mass of the cell. These results demonstrate the prospect of implementing the Al-based anode in ASSLBs for practical energy storage applications.