首页 > 最新文献

Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray最新文献

英文 中文
GrailQuest and HERMES: hunting for gravitational wave electromagnetic counterparts and probing space-time quantum foam GrailQuest和HERMES:寻找引力波电磁对应物,探测时空量子泡沫
Pub Date : 2021-01-12 DOI: 10.1117/12.2561779
L. Burderi, T. di Salvo, A. Riggio, A. Gambino, A. Sanna, F. Fiore, Fabrizio Amarilli, L. Amati, F. Ambrosino, G. Amelino-Camelia, A. Anitra, M. Barbera, M. Bechini, P. Bellutti, Roberto Bertaccin, G. Bertuccio, R. Campana, Jiewei Cao, S. Capozziello, F. Ceraudo, Tianxiang Chen, M. Cinelli, M. Citossi, A. Clerici, A. Colagrossi, E. Costa, S. Curzel, M. De Laurentis, Giovanni Della Casa, M. Della Valle, E. Demenev, M. Del Santo, G. Dilillo, P. Efremov, Y. Evangelista, M. Feroci, Chiara Ferruglio, Fabrizio Ferrandi, M. Fiorini, M. Fiorito, F. Frontera, F. Fuschino, Dejan Gacnik, G. Galgóczi, N. Gao, M. Gandola, G. Ghirlanda, Andreja Gamboc, M. Grassi, C. Guidorzi, A. Guzmán, R. Iaria, M. Karlica, U. Kostic, C. Labanti, G. La Rosa, U. Lo Cicero, Borja Lopez Fernandez, P. Lunghi, P. Malcovati, A. Maselli, A. Manca, F. Mele, Dorottya Milánkovich, Angel Monge, G. Morgante, L. Nava, B. Negri, P. Nogara, M. Ohno, D. Ottolina, A. Pasquale, A. Pál, M. Perri, M. Piccinin, R. Piazzolla, S. Pirrotta, S. Pliego-Caballe
Within Quantum Gravity theories, different models for space-time quantisation predict an energy dependent speed for photons. Although the predicted discrepancies are minuscule, GRB, occurring at cosmological distances, could be used to detect this signature of space-time granularity with a new concept of modular observatory of huge overall collecting area consisting in a fleet of small satellites in low orbits, with sub-microsecond time resolution and wide energy band (keV-MeV). The enormous number of collected photons will allow to effectively search these energy dependent delays. Moreover, GrailQuest will allow to perform temporal triangulation of high signal-to-noise impulsive events with arc-second positional accuracies: an extraordinary sensitive X-ray/Gamma all-sky monitor crucial for hunting the elusive electromagnetic counterparts of GW. A pathfinder of GrailQuest is already under development through the HERMES project: a fleet of six 3U cube-sats to be launched by 2021/22.
在量子引力理论中,不同的时空量子化模型预测了光子的能量依赖速度。虽然预测的差异很小,但发生在宇宙距离上的GRB可以用来探测这种时空粒度的特征,这是一种新的概念,即由低轨道上的小卫星组成的巨大整体收集区域的模块化天文台,具有亚微秒的时间分辨率和宽能带(k - mev)。收集到的大量光子将允许有效地搜索这些依赖于能量的延迟。此外,GrailQuest将允许对具有弧秒定位精度的高信噪比脉冲事件进行时间三角测量:这是一种非常敏感的x射线/伽马全天监测仪,对于寻找难以捉摸的GW电磁对应物至关重要。通过HERMES项目,GrailQuest的探路者已经在开发中:一个由6颗3U立方体卫星组成的舰队将于2021/22年发射。
{"title":"GrailQuest and HERMES: hunting for gravitational wave electromagnetic counterparts and probing space-time quantum foam","authors":"L. Burderi, T. di Salvo, A. Riggio, A. Gambino, A. Sanna, F. Fiore, Fabrizio Amarilli, L. Amati, F. Ambrosino, G. Amelino-Camelia, A. Anitra, M. Barbera, M. Bechini, P. Bellutti, Roberto Bertaccin, G. Bertuccio, R. Campana, Jiewei Cao, S. Capozziello, F. Ceraudo, Tianxiang Chen, M. Cinelli, M. Citossi, A. Clerici, A. Colagrossi, E. Costa, S. Curzel, M. De Laurentis, Giovanni Della Casa, M. Della Valle, E. Demenev, M. Del Santo, G. Dilillo, P. Efremov, Y. Evangelista, M. Feroci, Chiara Ferruglio, Fabrizio Ferrandi, M. Fiorini, M. Fiorito, F. Frontera, F. Fuschino, Dejan Gacnik, G. Galgóczi, N. Gao, M. Gandola, G. Ghirlanda, Andreja Gamboc, M. Grassi, C. Guidorzi, A. Guzmán, R. Iaria, M. Karlica, U. Kostic, C. Labanti, G. La Rosa, U. Lo Cicero, Borja Lopez Fernandez, P. Lunghi, P. Malcovati, A. Maselli, A. Manca, F. Mele, Dorottya Milánkovich, Angel Monge, G. Morgante, L. Nava, B. Negri, P. Nogara, M. Ohno, D. Ottolina, A. Pasquale, A. Pál, M. Perri, M. Piccinin, R. Piazzolla, S. Pirrotta, S. Pliego-Caballe","doi":"10.1117/12.2561779","DOIUrl":"https://doi.org/10.1117/12.2561779","url":null,"abstract":"Within Quantum Gravity theories, different models for space-time quantisation predict an energy dependent speed for photons. Although the predicted discrepancies are minuscule, GRB, occurring at cosmological distances, could be used to detect this signature of space-time granularity with a new concept of modular observatory of huge overall collecting area consisting in a fleet of small satellites in low orbits, with sub-microsecond time resolution and wide energy band (keV-MeV). The enormous number of collected photons will allow to effectively search these energy dependent delays. Moreover, GrailQuest will allow to perform temporal triangulation of high signal-to-noise impulsive events with arc-second positional accuracies: an extraordinary sensitive X-ray/Gamma all-sky monitor crucial for hunting the elusive electromagnetic counterparts of GW. A pathfinder of GrailQuest is already under development through the HERMES project: a fleet of six 3U cube-sats to be launched by 2021/22.","PeriodicalId":170593,"journal":{"name":"Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126665714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Frontiers of astrophysics with SmallSats 用小卫星探索天体物理学前沿
Pub Date : 2020-12-17 DOI: 10.1117/12.2590132
E. Shkolnik
SmallSats extend the frontiers of astrophysics, and present an opportunity with which to develop the next generation of scientists and engineers. Achieving high-impact research with SmallSats is increasingly feasible due to advances in technologies such as precision pointing, compact sensitive detectors and the miniaturization of propulsion systems. Science cases for SmallSat observatories (including CubeSats) being developed now include the discovery and characterization of exoplanets, stars, black holes and radio transients. SmallSats also represent a fantastic “on-ramp” to bring more people into mission development by providing opportunities for students and new PIs to get hands-on, end-to-end leadership, research and engineering experience. This combination of people development with new technology provides diverse opportunities to advance astrophysics knowledge.
小型卫星拓展了天体物理学的前沿,并为培养下一代科学家和工程师提供了机会。由于精确指向、紧凑敏感探测器和推进系统小型化等技术的进步,利用小型卫星进行高影响研究越来越可行。目前正在开发的小型卫星观测站(包括立方体卫星)的科学案例包括发现和表征系外行星、恒星、黑洞和无线电瞬变。小型卫星也代表了一个奇妙的“入口”,通过为学生和新的pi提供实践,端到端领导,研究和工程经验的机会,将更多的人带入任务开发。这种人的发展与新技术的结合为推进天体物理学知识提供了多种机会。
{"title":"Frontiers of astrophysics with SmallSats","authors":"E. Shkolnik","doi":"10.1117/12.2590132","DOIUrl":"https://doi.org/10.1117/12.2590132","url":null,"abstract":"SmallSats extend the frontiers of astrophysics, and present an opportunity with which to develop the next generation of scientists and engineers. Achieving high-impact research with SmallSats is increasingly feasible due to advances in technologies such as precision pointing, compact sensitive detectors and the miniaturization of propulsion systems. Science cases for SmallSat observatories (including CubeSats) being developed now include the discovery and characterization of exoplanets, stars, black holes and radio transients. SmallSats also represent a fantastic “on-ramp” to bring more people into mission development by providing opportunities for students and new PIs to get hands-on, end-to-end leadership, research and engineering experience. This combination of people development with new technology provides diverse opportunities to advance astrophysics knowledge.","PeriodicalId":170593,"journal":{"name":"Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129456308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SUAVE, a disruptive far UV telescope designed for long lasting performances in space SUAVE是一种颠覆性的远紫外望远镜,专为在太空中长期运行而设计
Pub Date : 2020-12-14 DOI: 10.1117/12.2563375
L. Damé, M. Meftah, N. Rouanet, P. Gilbert, P. Etcheto, J. Berthon
SUAVE (Solar Ultraviolet Advanced Variability Experiment) is a far UV imaging solar telescope (Lyman Alpha, 121.6 nm, Herzberg continuum, 200-242 nm, etc.) of novel design (off-axis telescope with "mushroom type" SiC mirrors) for ultimate thermal stability and long lasting performances over years instead of, often, a few weeks or months in this wavelength range. SUAVE has no entrance window for long and uncompromising observations in the UV (no coatings of mirrors, flux limited to less than 2 solar constants on filters to avoid their degradation), associated with an ultimate thermal control (no central obscuration resulting in limited thermal gradients and easier heat evacuation, focus control, stabilization). Design and anticipated performances will be detailed as well as results of representative thermal/optical tests performed on the SiC primary mirror and support regulated plate (SiC also). SUAVE is the main instrument of the Solar/Climate SoSWEET-SOUP constellation mission.
SUAVE(太阳紫外线高级变化率实验)是一种远紫外成像太阳望远镜(莱曼阿尔法,121.6 nm,赫茨伯格连续体,200-242 nm等),具有新颖的设计(离轴望远镜与“蘑菇型”SiC反射镜),具有最终的热稳定性和长期持久的性能,而不是通常的几周或几个月在这个波长范围内。SUAVE没有入口窗口,在紫外线下进行长时间和不妥协的观测(没有镜面涂层,通量限制在过滤器上小于2个太阳常数,以避免其退化),与最终的热控制有关(没有中心遮挡,导致有限的热梯度和更容易的热疏散,焦点控制,稳定)。将详细介绍设计和预期性能,以及在SiC主镜和支撑调节板(也包括SiC)上进行的代表性热/光学测试的结果。SUAVE是太阳/气候SoSWEET-SOUP星座任务的主要仪器。
{"title":"SUAVE, a disruptive far UV telescope designed for long lasting performances in space","authors":"L. Damé, M. Meftah, N. Rouanet, P. Gilbert, P. Etcheto, J. Berthon","doi":"10.1117/12.2563375","DOIUrl":"https://doi.org/10.1117/12.2563375","url":null,"abstract":"SUAVE (Solar Ultraviolet Advanced Variability Experiment) is a far UV imaging solar telescope (Lyman Alpha, 121.6 nm, Herzberg continuum, 200-242 nm, etc.) of novel design (off-axis telescope with \"mushroom type\" SiC mirrors) for ultimate thermal stability and long lasting performances over years instead of, often, a few weeks or months in this wavelength range. SUAVE has no entrance window for long and uncompromising observations in the UV (no coatings of mirrors, flux limited to less than 2 solar constants on filters to avoid their degradation), associated with an ultimate thermal control (no central obscuration resulting in limited thermal gradients and easier heat evacuation, focus control, stabilization). Design and anticipated performances will be detailed as well as results of representative thermal/optical tests performed on the SiC primary mirror and support regulated plate (SiC also). SUAVE is the main instrument of the Solar/Climate SoSWEET-SOUP constellation mission.","PeriodicalId":170593,"journal":{"name":"Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121234805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Initial ground calibration of the Resolve detector system on XRISM XRISM上Resolve探测器系统的初始地面标定
Pub Date : 2020-12-13 DOI: 10.1117/12.2561477
F. Porter, M. Eckart, M. Leutenegger, Tomomi Watanabe, C. Kilbourne, R. Kelley, Michael C. Witthoeft, R. Cumbee, M. Sawada, N. Hell, G. Brown, Y. Ishisaki, S. Yamada
The Resolve detector system is calibrated on the ground in three stages: at the focal plane assembly, at the calorimeter spectrometer insert, and at the full instrument level. We have just completed the first two stages and have measured the detailed core line shape and spectral redistribution functions, by pixel, and as a function of energy. In addition, we have measured the energy scale function that translates instrument units into spectral units, by pixel, and as a function of detector heat sink temperature. We discuss the results of the Resolve calibration program to date as well as implications for the calibration of future high resolution x-ray spectrometers.
Resolve探测器系统在地面上分三个阶段进行校准:焦平面组装、量热计光谱仪插入和整个仪器水平。我们刚刚完成了前两个阶段,并测量了详细的核心线形状和光谱再分布函数,按像素计算,并作为能量的函数。此外,我们还测量了能量标度函数,该函数将仪器单位转换为光谱单位,按像素计算,并作为探测器散热器温度的函数。我们讨论了Resolve校准程序到目前为止的结果以及对未来高分辨率x射线光谱仪校准的影响。
{"title":"Initial ground calibration of the Resolve detector system on XRISM","authors":"F. Porter, M. Eckart, M. Leutenegger, Tomomi Watanabe, C. Kilbourne, R. Kelley, Michael C. Witthoeft, R. Cumbee, M. Sawada, N. Hell, G. Brown, Y. Ishisaki, S. Yamada","doi":"10.1117/12.2561477","DOIUrl":"https://doi.org/10.1117/12.2561477","url":null,"abstract":"The Resolve detector system is calibrated on the ground in three stages: at the focal plane assembly, at the calorimeter spectrometer insert, and at the full instrument level. We have just completed the first two stages and have measured the detailed core line shape and spectral redistribution functions, by pixel, and as a function of energy. In addition, we have measured the energy scale function that translates instrument units into spectral units, by pixel, and as a function of detector heat sink temperature. We discuss the results of the Resolve calibration program to date as well as implications for the calibration of future high resolution x-ray spectrometers.","PeriodicalId":170593,"journal":{"name":"Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117206171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Development of precision Wolter mirrors towards PhoENiX mission for the Sun 为凤凰号太阳任务研制的精密沃尔特反射镜
Pub Date : 2020-12-13 DOI: 10.1117/12.2562077
T. Sakao, S. Matsuyama, J. Yamada, Takato Inoue, Kentaro Hata, Hiroyuki Yamaguchi, T. Hagiwara, Nami Nakamura, K. Yamauchi, Y. Kohmura, Y. Suematsu, N. Narukage
We present ongoing efforts on the development of precision Wolter mirrors for the Soft X-ray Imaging Spectrometer (SXIS) aboard PhoENiX mission proposed to JAXA for studying mechanism(s) of particle acceleration and its relationship with magnetic reconnection in solar flares. The Wolter mirrors for PhoENiX/SXIS are made by direct polishing of glass-ceramic substrates. So far, we succeeded in fabricating a small size of high precision Wolter surfaces (e.g., PSF core size of ~0.2 arcsec HPD at 8 keV) as well as good indication of extending the mirror area along the cylindrical direction. Recent status of the mirror development will be reported.
为了研究太阳耀斑中粒子加速的机理及其与磁重联的关系,我们提出了正在进行的开发用于软x射线成像光谱仪(SXIS)上的菲尼克斯任务的精密Wolter反射镜的努力。用于PhoENiX/SXIS的Wolter反射镜是通过直接抛光玻璃陶瓷基板制成的。到目前为止,我们成功地制造了一个小尺寸的高精度Wolter表面(例如,在8 keV下,PSF核心尺寸为~0.2 arcsec HPD),以及沿圆柱形方向扩展镜面区域的良好迹象。将报告镜像开发的最新情况。
{"title":"Development of precision Wolter mirrors towards PhoENiX mission for the Sun","authors":"T. Sakao, S. Matsuyama, J. Yamada, Takato Inoue, Kentaro Hata, Hiroyuki Yamaguchi, T. Hagiwara, Nami Nakamura, K. Yamauchi, Y. Kohmura, Y. Suematsu, N. Narukage","doi":"10.1117/12.2562077","DOIUrl":"https://doi.org/10.1117/12.2562077","url":null,"abstract":"We present ongoing efforts on the development of precision Wolter mirrors for the Soft X-ray Imaging Spectrometer (SXIS) aboard PhoENiX mission proposed to JAXA for studying mechanism(s) of particle acceleration and its relationship with magnetic reconnection in solar flares. The Wolter mirrors for PhoENiX/SXIS are made by direct polishing of glass-ceramic substrates. So far, we succeeded in fabricating a small size of high precision Wolter surfaces (e.g., PSF core size of ~0.2 arcsec HPD at 8 keV) as well as good indication of extending the mirror area along the cylindrical direction. Recent status of the mirror development will be reported.","PeriodicalId":170593,"journal":{"name":"Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133999535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the performance and stability of ultraviolet optical coatings using atomic layer deposition 利用原子层沉积技术提高紫外光学涂层的性能和稳定性
Pub Date : 2020-12-13 DOI: 10.1117/12.2563250
J. Hennessy, S. Nikzad, A. Jewell
{"title":"Improving the performance and stability of ultraviolet optical coatings using atomic layer deposition","authors":"J. Hennessy, S. Nikzad, A. Jewell","doi":"10.1117/12.2563250","DOIUrl":"https://doi.org/10.1117/12.2563250","url":null,"abstract":"","PeriodicalId":170593,"journal":{"name":"Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray","volume":"79 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114809998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conceptual design of the detection chain for the X-IFU on Athena 雅典娜号上X-IFU探测链的概念设计
Pub Date : 2020-12-13 DOI: 10.1117/12.2563628
H. Geoffray, S. Bandler, W. Doriese, M. Kirivanta, D. PRELE, L. Ravera, A. Argan, M. Barbera, J. Kuur, B. Leeuwen, H. Weers, R. Hoogeveen, J. Herder, S. Smith, J. Adams, J. Chervenak, M. Durkin, C. Reintsema, J. Ullom, Y. Parot, D. Barret, C. Macculi, L. Piro, F. Brachet, A. Ledot, B. Jackson
CNES (French Space Agency) is in charge of the development of the X-IFU instrument for Athena. The main sensor array detection chain sub-system of the X-IFU instrument is one of the major sub-subsystem of the instrument, as the main contributor to the performance. This sub-system involves major partners of the X-IFU instrument, e.g GFSC, SRON, VTT, APC, and IRAP. The purpose of this paper is to present the baseline of the definition of the X-IFU detection chain in the frame at end of phase A/beginning of phase B. The readout is based on Time Domain Multiplexing (TDM). There are strong design issues which couple the different sub-components of the detection chain (the main sensor array, the cold electronics stages, and the warm electronics). The detection chain environment (thermal, mechanical and EMI/EMC environment) also requires a transverse analysis. This paper focuses on those aspects while providing design description of the sub-components of the detection chain.
法国航天局(CNES)负责为雅典娜开发X-IFU仪器。X-IFU仪器的主传感器阵列检测链子系统是仪器的主要子子系统之一,是仪器性能的主要贡献者。该子系统涉及X-IFU仪器的主要合作伙伴,如GFSC、SRON、VTT、APC和IRAP。本文的目的是在相位A结束/相位b开始的帧中给出X-IFU检测链定义的基线。读出基于时域复用(TDM)。有很强的设计问题耦合检测链的不同子组件(主传感器阵列,冷电子阶段和热电子)。检测链环境(热、机械和EMI/EMC环境)也需要横向分析。本文对这些方面进行了重点研究,并给出了检测链各子组件的设计描述。
{"title":"Conceptual design of the detection chain for the X-IFU on Athena","authors":"H. Geoffray, S. Bandler, W. Doriese, M. Kirivanta, D. PRELE, L. Ravera, A. Argan, M. Barbera, J. Kuur, B. Leeuwen, H. Weers, R. Hoogeveen, J. Herder, S. Smith, J. Adams, J. Chervenak, M. Durkin, C. Reintsema, J. Ullom, Y. Parot, D. Barret, C. Macculi, L. Piro, F. Brachet, A. Ledot, B. Jackson","doi":"10.1117/12.2563628","DOIUrl":"https://doi.org/10.1117/12.2563628","url":null,"abstract":"CNES (French Space Agency) is in charge of the development of the X-IFU instrument for Athena. The main sensor array detection chain sub-system of the X-IFU instrument is one of the major sub-subsystem of the instrument, as the main contributor to the performance. This sub-system involves major partners of the X-IFU instrument, e.g GFSC, SRON, VTT, APC, and IRAP. The purpose of this paper is to present the baseline of the definition of the X-IFU detection chain in the frame at end of phase A/beginning of phase B. The readout is based on Time Domain Multiplexing (TDM). There are strong design issues which couple the different sub-components of the detection chain (the main sensor array, the cold electronics stages, and the warm electronics). The detection chain environment (thermal, mechanical and EMI/EMC environment) also requires a transverse analysis. This paper focuses on those aspects while providing design description of the sub-components of the detection chain.","PeriodicalId":170593,"journal":{"name":"Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray","volume":"118 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115453852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Frequency domain multiplexing technology of transition-edge sensors for x-ray astronomy x射线天文过渡边缘传感器频域复用技术
Pub Date : 2020-12-13 DOI: 10.1117/12.2561271
H. Akamatsu, D. Vaccaro, L. Gottardi, J. Kuur, C. Vries, S. Bandler, M. Bruijn, J. Chervenak, M. D’Andrea, Jiansong Gao, J. Herder, R. Hoogeveen, M. Kiviranta, A. Linden, B. Jackson, A. Miniussi, K. Nagayoshi, K. Ravensberg, M. Ridder, K. Sakai, S. Smith, E. Taralli, S. Visser, N. Wakeham, M. D. Wit
{"title":"Frequency domain multiplexing technology of transition-edge sensors for x-ray astronomy","authors":"H. Akamatsu, D. Vaccaro, L. Gottardi, J. Kuur, C. Vries, S. Bandler, M. Bruijn, J. Chervenak, M. D’Andrea, Jiansong Gao, J. Herder, R. Hoogeveen, M. Kiviranta, A. Linden, B. Jackson, A. Miniussi, K. Nagayoshi, K. Ravensberg, M. Ridder, K. Sakai, S. Smith, E. Taralli, S. Visser, N. Wakeham, M. D. Wit","doi":"10.1117/12.2561271","DOIUrl":"https://doi.org/10.1117/12.2561271","url":null,"abstract":"","PeriodicalId":170593,"journal":{"name":"Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114379193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The X-ray Integral Field Unit instrument: science, design, performances and status (Conference Presentation) x射线积分场单元仪器:科学、设计、性能和现状(会议报告)
Pub Date : 2020-12-13 DOI: 10.1117/12.2562617
P. Peille, D. Barret, V. Albouys, J. Herder, L. Piro, M. Cappi, J. Huovelin, R. Kelley, J. Mas-Hesse, K. Mitsuda, S. Paltani, G. Rauw, A. Różańska, J. Svoboda, J. Wilms
The X-ray Integral Field Unit (X-IFU) will be the cryogenic X-ray spectro-imager of the ESA Athena space observatory. It will implement a matrix of 3168 superconducting Transition Edge Sensors at 90 mK to provide a very high spectral resolution of 2.5 eV up to the energy of 7 keV, across a 5’ large field of view. The X-IFU successfully passed its Preliminary Requirements Review in mid-2019. After providing an overview of the driving science cases, the key requirements, I will present a status on the instrument development.
x射线积分场单元(X-IFU)将是欧空局雅典娜空间天文台的低温x射线光谱成像仪。它将实现一个由3168个超导过渡边缘传感器组成的矩阵,在90 mK下提供2.5 eV到7 keV的非常高的光谱分辨率,跨越5 '大视场。X-IFU在2019年年中成功通过了初步需求审查。在概述了驾驶科学案例、关键要求之后,我将介绍仪器开发的现状。
{"title":"The X-ray Integral Field Unit instrument: science, design, performances and status (Conference Presentation)","authors":"P. Peille, D. Barret, V. Albouys, J. Herder, L. Piro, M. Cappi, J. Huovelin, R. Kelley, J. Mas-Hesse, K. Mitsuda, S. Paltani, G. Rauw, A. Różańska, J. Svoboda, J. Wilms","doi":"10.1117/12.2562617","DOIUrl":"https://doi.org/10.1117/12.2562617","url":null,"abstract":"The X-ray Integral Field Unit (X-IFU) will be the cryogenic X-ray spectro-imager of the ESA Athena space observatory. It will implement a matrix of 3168 superconducting Transition Edge Sensors at 90 mK to provide a very high spectral resolution of 2.5 eV up to the energy of 7 keV, across a 5’ large field of view. The X-IFU successfully passed its Preliminary Requirements Review in mid-2019. After providing an overview of the driving science cases, the key requirements, I will present a status on the instrument development.","PeriodicalId":170593,"journal":{"name":"Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114975970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A diffraction-limited Wolter nested-shell telescope concept with pico-radian resolution 具有皮弧度分辨率的衍射限制的沃尔特套壳望远镜概念
Pub Date : 2020-12-13 DOI: 10.1117/12.2562496
M. Schattenburg, R. Heilmann, H. Marshall, Brandon D. Chalifoux, E. Kara
We present a novel nested-shell Wolter x-ray telescope design that can achieve diffraction-limited performance over the entire telescope aperture. The new design features a compact single-spacecraft mirror assembly, similar in form to that proposed for Lynx, and a separate detector spacecraft. A wide range of design parameter space was considered. We present a specific example which features 10 micro-arcsec resolution, a wide band (0.1-10 keV) with > 2 m2 effective area out to 10 keV, a large flat field (>1010 pixels), achieving diffraction-limited performance (Strehl ratio > 0.8). We will also briefly discuss a potential science case for this telescope.
我们提出了一种新颖的巢壳Wolter x射线望远镜设计,可以在整个望远镜孔径内实现衍射限制性能。新设计的特点是一个紧凑的单航天器反射镜组件,类似于为山猫提出的形式,以及一个独立的探测器航天器。考虑了大范围的设计参数空间。我们提出了一个具体的例子,具有10微弧秒分辨率,宽波段(0.1-10 keV),有效面积> 2 m2至10 keV,大平面场(>1010像素),实现衍射限制性能(Strehl比> 0.8)。我们还将简要讨论这个望远镜的潜在科学案例。
{"title":"A diffraction-limited Wolter nested-shell telescope concept with pico-radian resolution","authors":"M. Schattenburg, R. Heilmann, H. Marshall, Brandon D. Chalifoux, E. Kara","doi":"10.1117/12.2562496","DOIUrl":"https://doi.org/10.1117/12.2562496","url":null,"abstract":"We present a novel nested-shell Wolter x-ray telescope design that can achieve diffraction-limited performance over the entire telescope aperture. The new design features a compact single-spacecraft mirror assembly, similar in form to that proposed for Lynx, and a separate detector spacecraft. A wide range of design parameter space was considered. We present a specific example which features 10 micro-arcsec resolution, a wide band (0.1-10 keV) with > 2 m2 effective area out to 10 keV, a large flat field (>1010 pixels), achieving diffraction-limited performance (Strehl ratio > 0.8). We will also briefly discuss a potential science case for this telescope.","PeriodicalId":170593,"journal":{"name":"Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125811443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1