Puffed-grain food is a crispy snack whose consumer satisfaction depends on snack crispness and crunchiness, which can be characterized by the sound and the acoustic signals of food breaking. This study aimed to evaluate whether acoustic characteristics can be used to predict the crispness of various puffed-grain food. Sensory evaluation was performed on puffed-grain products with varying hygroscopic durations and different types. The relation between sensory evaluation and acoustic characteristics of nine different types of food was examined. The Hilbert–Huang transform was used to perform energy segmentation of the acoustic signal of puffed-grain food and observe its energy migration process. The results showed that energy release was more concentrated in the low-frequency range for grain-puffed foods with different hygroscopic durations. No notable correlation was observed between the low-frequency interval and sensory crispness for the different types of puffed-grain foods. However, the acoustic features extracted from their inherent low-frequency intervals showed a significantly improved correlation with sensory crispness. Therefore, it provides a theoretical reference for applying acoustic characteristics to describe food texture.
{"title":"Correlation between acoustic characteristics and sensory evaluation of puffed-grain food based on energy analysis","authors":"Chengkai Zhu, Xinnan Hu, Xiwu Jia, Zhili Ji, Zhan Wang, Wangyang Shen","doi":"10.1111/jtxs.12832","DOIUrl":"https://doi.org/10.1111/jtxs.12832","url":null,"abstract":"<p>Puffed-grain food is a crispy snack whose consumer satisfaction depends on snack crispness and crunchiness, which can be characterized by the sound and the acoustic signals of food breaking. This study aimed to evaluate whether acoustic characteristics can be used to predict the crispness of various puffed-grain food. Sensory evaluation was performed on puffed-grain products with varying hygroscopic durations and different types. The relation between sensory evaluation and acoustic characteristics of nine different types of food was examined. The Hilbert–Huang transform was used to perform energy segmentation of the acoustic signal of puffed-grain food and observe its energy migration process. The results showed that energy release was more concentrated in the low-frequency range for grain-puffed foods with different hygroscopic durations. No notable correlation was observed between the low-frequency interval and sensory crispness for the different types of puffed-grain foods. However, the acoustic features extracted from their inherent low-frequency intervals showed a significantly improved correlation with sensory crispness. Therefore, it provides a theoretical reference for applying acoustic characteristics to describe food texture.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140550094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paulina Terrazas-Avila, Heidi M. Palma-Rodríguez, Ricardo O. Navarro-Cortez, Juan P. Hernández-Uribe, Javier Piloni-Martini, Apolonio Vargas-Torres
To ensure the best quality bread, it is important to consider the speed of digestion of starch and proteins, as well as how time fermentation and storage time influence the rate of starch digestion and the texture of the bread. This study compared the effect of fermentation time and days of storage on the texture, physicochemical, protein and starch digestibility of sourdough bread. Texture profile analysis showed that the fermentation time in recently baked sourdough bread affects hardness, chewiness, and springiness. The electrophoretic profile showed a decrease in band thickness with increase in fermentation time, consistent with a higher percentage of protein digestion. While fermentation time did not significantly affect rapidly digestible starch (RDS) and slowly digestible starch (SDS), storage time resulted in a decrease in RDS and an increase in SDS. Sourdough breads had higher levels of resistant starch (RS). The digestibility characteristics of protein and starch, as well as texture properties, are significantly influenced by fermentation and storage time. The evidence suggests that sourdough bread has the potential to improve the digestion of protein and to effectively regulate the glycemic response, which is due to its higher levels of SDS and RS.
{"title":"The effects of fermentation time on sourdough bread: An analysis of texture profile, starch digestion rate, and protein hydrolysis rate","authors":"Paulina Terrazas-Avila, Heidi M. Palma-Rodríguez, Ricardo O. Navarro-Cortez, Juan P. Hernández-Uribe, Javier Piloni-Martini, Apolonio Vargas-Torres","doi":"10.1111/jtxs.12831","DOIUrl":"https://doi.org/10.1111/jtxs.12831","url":null,"abstract":"<p>To ensure the best quality bread, it is important to consider the speed of digestion of starch and proteins, as well as how time fermentation and storage time influence the rate of starch digestion and the texture of the bread. This study compared the effect of fermentation time and days of storage on the texture, physicochemical, protein and starch digestibility of sourdough bread. Texture profile analysis showed that the fermentation time in recently baked sourdough bread affects hardness, chewiness, and springiness. The electrophoretic profile showed a decrease in band thickness with increase in fermentation time, consistent with a higher percentage of protein digestion. While fermentation time did not significantly affect rapidly digestible starch (RDS) and slowly digestible starch (SDS), storage time resulted in a decrease in RDS and an increase in SDS. Sourdough breads had higher levels of resistant starch (RS). The digestibility characteristics of protein and starch, as well as texture properties, are significantly influenced by fermentation and storage time. The evidence suggests that sourdough bread has the potential to improve the digestion of protein and to effectively regulate the glycemic response, which is due to its higher levels of SDS and RS.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140550097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catriona M. Steele, Qian Liu, Haakon MacCallum, Melanie Peladeau-Pigeon, Jianshe Chen, Ben Hanson, Jan Vanderwegen, Peter Lam
In 2017, the International Dysphagia Diet Standardisation Initiative (IDDSI) introduced the IDDSI flow test which enables patients, clinicians, caregivers, food service professionals and researchers to classify liquid thickness into five levels based on the volume of liquid remaining in a standard 10 mL slip tip syringe after 10 s of flow under gravity. Within a few months of publishing the IDDSI flow test instructions, several barriers emerged: (1) the preferred model of syringe (BD 303134) was not equally accessible around the world, causing some users to perform flow tests with alternate models of syringe; (2) differences in syringe geometry across models led to variations in IDDSI flow test results; and (3) the need to use a second syringe for sample loading added complexity and cost to end users. To address these barriers, IDDSI designed the IDDSI funnel, a novel device, which combines the geometry of the BD 303134 syringe with a kitchen funnel to facilitate easy loading of liquid samples without need for a second syringe. In this report, we compare the IDDSI flow test results across two devices: syringe BD 303134 and IDDSI funnel. IDDSI level classifications were in complete agreement with the syringe reference test results in 67/73 (92%) of the test fluids and temperature conditions with mean difference of residual liquid across devices of 0.2 (2% full scale). These results demonstrate excellent correspondence between the two devices.
{"title":"Validation of the IDDSI funnel for liquid flow testing","authors":"Catriona M. Steele, Qian Liu, Haakon MacCallum, Melanie Peladeau-Pigeon, Jianshe Chen, Ben Hanson, Jan Vanderwegen, Peter Lam","doi":"10.1111/jtxs.12823","DOIUrl":"https://doi.org/10.1111/jtxs.12823","url":null,"abstract":"<p>In 2017, the International Dysphagia Diet Standardisation Initiative (IDDSI) introduced the IDDSI flow test which enables patients, clinicians, caregivers, food service professionals and researchers to classify liquid thickness into five levels based on the volume of liquid remaining in a standard 10 mL slip tip syringe after 10 s of flow under gravity. Within a few months of publishing the IDDSI flow test instructions, several barriers emerged: (1) the preferred model of syringe (BD 303134) was not equally accessible around the world, causing some users to perform flow tests with alternate models of syringe; (2) differences in syringe geometry across models led to variations in IDDSI flow test results; and (3) the need to use a second syringe for sample loading added complexity and cost to end users. To address these barriers, IDDSI designed the IDDSI funnel, a novel device, which combines the geometry of the BD 303134 syringe with a kitchen funnel to facilitate easy loading of liquid samples without need for a second syringe. In this report, we compare the IDDSI flow test results across two devices: syringe BD 303134 and IDDSI funnel. IDDSI level classifications were in complete agreement with the syringe reference test results in 67/73 (92%) of the test fluids and temperature conditions with mean difference of residual liquid across devices of 0.2 (2% full scale). These results demonstrate excellent correspondence between the two devices.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtxs.12823","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140550096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Berkay Berk, Sumeyye Cosar, Bekir G. Mazı, Mecit H. Oztop
This study investigated the influence of substituting 60, 80, and 100% of the sugar in traditional cocoa hazelnut paste (control) formulation with inulin-stevia (90:10, w/w) mixture on textural and rheological characteristics, melting behavior, water activity (aw), particle size distribution (PSD), and color. Textural, rheological, melting properties, and color of samples were analyzed after 1, 2, and 3 months of storage at 11°C. Nuclear magnetic resonance (NMR) relaxometry experiments were also performed to understand the interaction of new ingredients with oil. Replacement of sugar with inulin-stevia gave darker color, reduced Casson yield stress, and changed the textural parameters and melting profile of the samples depending on the level but did not create a remarkable effect on PSD and Casson plastic viscosity. Increasing inulin-stevia content yielded lower aw and higher T2a values indicating decreased mobility of water. Complete removal of sugar caused low spreadability. The results showed that an 80% replacement level yielded a product with similar textural parameters and fat-melting mouth feeling compared to control sample. Cocoa hazelnut spreads prepared with inulin and stevia showed good textural stability during storage.
{"title":"Textural, rheological, melting properties, particle size distribution, and NMR relaxometry of cocoa hazelnut spread with inulin-stevia addition as sugar replacer","authors":"Berkay Berk, Sumeyye Cosar, Bekir G. Mazı, Mecit H. Oztop","doi":"10.1111/jtxs.12834","DOIUrl":"https://doi.org/10.1111/jtxs.12834","url":null,"abstract":"<p>This study investigated the influence of substituting 60, 80, and 100% of the sugar in traditional cocoa hazelnut paste (control) formulation with inulin-stevia (90:10, w/w) mixture on textural and rheological characteristics, melting behavior, water activity (a<sub>w</sub>), particle size distribution (PSD), and color. Textural, rheological, melting properties, and color of samples were analyzed after 1, 2, and 3 months of storage at 11°C. Nuclear magnetic resonance (NMR) relaxometry experiments were also performed to understand the interaction of new ingredients with oil. Replacement of sugar with inulin-stevia gave darker color, reduced Casson yield stress, and changed the textural parameters and melting profile of the samples depending on the level but did not create a remarkable effect on PSD and Casson plastic viscosity. Increasing inulin-stevia content yielded lower a<sub>w</sub> and higher T<sub>2a</sub> values indicating decreased mobility of water. Complete removal of sugar caused low spreadability. The results showed that an 80% replacement level yielded a product with similar textural parameters and fat-melting mouth feeling compared to control sample. Cocoa hazelnut spreads prepared with inulin and stevia showed good textural stability during storage.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtxs.12834","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140550095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Freezing and blanching are essential processing steps in the production of frozen yellow peaches, inevitably leading to texture softening of the fruit. In this study, the synergistic mechanism of stem blanching, freezing conditions (−20°C, −40°C, −80°C, and liquid nitrogen [−173°C]), and sample sizes (cubes, slices, and half peaches) on macroscopic properties of texture, cellular structure, and ice crystal size distribution of frozen yellow peaches were measured. Blanching enhanced the heat and mass transfer rates in the subsequent freezing process. For nonblanched samples, cell membrane integrity was lost at any freezing rate, causing a significant reduction in textural quality. Slow freezing further exacerbated the texture softening, while the ultra-rapid freezing caused structural rupture. For blanched samples, the half peaches softened the most. The water holding capacity and fracture stress were not significantly affected by changes in freezing rate, although the ice crystal size distribution was more susceptible to the freezing rate. Peach cubes that had undergone blanching and rapid freezing (−80°C) experienced 4% less drip loss than nonblanched samples. However, blanching softened yellow peaches more than any freezing conditions. The implementation of uniform and shorter duration blanching, along with rapid freezing, has been proven to be more effective in preserving the texture of frozen yellow peaches. Optimization of the blanching process may be more important than increasing the freezing rate to improve the textural quality of frozen yellow peaches.
{"title":"Synergistic mechanism of steam blanching and freezing conditions on the texture of frozen yellow peaches based on macroscopic and microscopic properties","authors":"Meilin Xian, Jinfeng Bi, Lina Hu, Yitong Xie, Yinuo Zhao, Xin Jin","doi":"10.1111/jtxs.12830","DOIUrl":"https://doi.org/10.1111/jtxs.12830","url":null,"abstract":"<p>Freezing and blanching are essential processing steps in the production of frozen yellow peaches, inevitably leading to texture softening of the fruit. In this study, the synergistic mechanism of stem blanching, freezing conditions (−20°C, −40°C, −80°C, and liquid nitrogen [−173°C]), and sample sizes (cubes, slices, and half peaches) on macroscopic properties of texture, cellular structure, and ice crystal size distribution of frozen yellow peaches were measured. Blanching enhanced the heat and mass transfer rates in the subsequent freezing process. For nonblanched samples, cell membrane integrity was lost at any freezing rate, causing a significant reduction in textural quality. Slow freezing further exacerbated the texture softening, while the ultra-rapid freezing caused structural rupture. For blanched samples, the half peaches softened the most. The water holding capacity and fracture stress were not significantly affected by changes in freezing rate, although the ice crystal size distribution was more susceptible to the freezing rate. Peach cubes that had undergone blanching and rapid freezing (−80°C) experienced 4% less drip loss than nonblanched samples. However, blanching softened yellow peaches more than any freezing conditions. The implementation of uniform and shorter duration blanching, along with rapid freezing, has been proven to be more effective in preserving the texture of frozen yellow peaches. Optimization of the blanching process may be more important than increasing the freezing rate to improve the textural quality of frozen yellow peaches.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Tecuanhuey, Alicia Girardi, Lucia Corrà, Josep Busom Descarrega, Laurent Sagalowicz, Marine Devezeaux de Lavergne
Tribology is the science of measuring friction between surfaces. While it has been widely used to investigate texture sensations of food applications, it is seldom applied in pure edible oil systems. In this research, we measured friction, viscosity, and solid fat content (SFC) of nine vegetable oils at 30 and 60°C. Polarized static microscopy was used to assess crystal formation between 60 and 30°C. Descriptive sensory analysis and quantification of oral oil coatings were performed on the oils at 60°C. Expressing the friction factor of oil over the Hersey number (calculated using high sheer-viscosity values) showed no differences in friction between 30 and 60°C, except for shea stearin. Static microscopy revealed crystallization occurred at 30°C for shea stearin, whereas no or few crystals were present for other oils. At 30°C, friction at 1 × 10−2 m/s showed an inverse correlation with SFC (R = −0.95) and with high shear rate viscosity (R = −0.84), as well as an inverse correlation (R = −0.73) with “oily mouthcoating” perception. These results suggest that friction could be a predictor of fat-related perceptions of simple oil systems. Additionally, we hypothesize that the presence of crystals in oils could lower friction via a ball-bearing lubrication mechanism.
{"title":"Understanding mechanisms behind the oily mouthcoating perception of pure vegetable oils using tribology","authors":"Maria Tecuanhuey, Alicia Girardi, Lucia Corrà, Josep Busom Descarrega, Laurent Sagalowicz, Marine Devezeaux de Lavergne","doi":"10.1111/jtxs.12829","DOIUrl":"https://doi.org/10.1111/jtxs.12829","url":null,"abstract":"<p>Tribology is the science of measuring friction between surfaces. While it has been widely used to investigate texture sensations of food applications, it is seldom applied in pure edible oil systems. In this research, we measured friction, viscosity, and solid fat content (SFC) of nine vegetable oils at 30 and 60°C. Polarized static microscopy was used to assess crystal formation between 60 and 30°C. Descriptive sensory analysis and quantification of oral oil coatings were performed on the oils at 60°C. Expressing the friction factor of oil over the Hersey number (calculated using high sheer-viscosity values) showed no differences in friction between 30 and 60°C, except for shea stearin. Static microscopy revealed crystallization occurred at 30°C for shea stearin, whereas no or few crystals were present for other oils. At 30°C, friction at 1 × 10<sup>−2</sup> m/s showed an inverse correlation with SFC (<i>R</i> = −0.95) and with high shear rate viscosity (<i>R</i> = −0.84), as well as an inverse correlation (<i>R</i> = −0.73) with “oily mouthcoating” perception. These results suggest that friction could be a predictor of fat-related perceptions of simple oil systems. Additionally, we hypothesize that the presence of crystals in oils could lower friction via a ball-bearing lubrication mechanism.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtxs.12829","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The texture properties after cooking for 12 min were selected to optimize the sheeting parameters, and the results were verified using the comprehensive quality of dried noodles. The distribution of water, characteristics of gluten protein, and interaction between gluten network and starch were analyzed to clarify the mechanism of the quality of dried noodles. Results showed that the optimal folding angle was 45°, under this condition, the largest anti-extension displacement perpendicular to the rolling direction and the smallest cooking loss were obtained. The hardness and smoothness of cooked noodles increased by about 14% to 17%. Further, the transverse relaxation time of strongly bound water significantly decreased, while the relative content and binding strength increased. The hydrogen bonds and α-helix contents increased by about 68.8% and 53.1%, respectively. Folding and sheeting enhanced the combination of starch granules and gluten network causing, decreased in the average length and porosity of the gluten network. It is depicted from the results that the method of optimizing the sheeting process based on the texture of dried noodles cooked for 12 min was feasible. And the 45° folding and sheeting could help to improve the quality of dried noodles.
{"title":"Folding during sheeting improved qualities of dried noodles through gluten network proteins","authors":"Yaojia Li, Haitao Zheng, Yajing Qi, Jawad Ashraf, Shuyun Zhu, Bin Xu","doi":"10.1111/jtxs.12826","DOIUrl":"10.1111/jtxs.12826","url":null,"abstract":"<p>The texture properties after cooking for 12 min were selected to optimize the sheeting parameters, and the results were verified using the comprehensive quality of dried noodles. The distribution of water, characteristics of gluten protein, and interaction between gluten network and starch were analyzed to clarify the mechanism of the quality of dried noodles. Results showed that the optimal folding angle was 45°, under this condition, the largest anti-extension displacement perpendicular to the rolling direction and the smallest cooking loss were obtained. The hardness and smoothness of cooked noodles increased by about 14% to 17%. Further, the transverse relaxation time of strongly bound water significantly decreased, while the relative content and binding strength increased. The hydrogen bonds and α-helix contents increased by about 68.8% and 53.1%, respectively. Folding and sheeting enhanced the combination of starch granules and gluten network causing, decreased in the average length and porosity of the gluten network. It is depicted from the results that the method of optimizing the sheeting process based on the texture of dried noodles cooked for 12 min was feasible. And the 45° folding and sheeting could help to improve the quality of dried noodles.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evdoxia Asimakopoulou, Thomas Goudoulas, Ioannis I. Andreadis, Dimitrios G. Fatouros, Mehraj Ahmad, Chrisi Vasiliadou, Athina Theocharidou, Christos Ritzoulis
Rheological analysis of citrus pectin at pH 3 and 7 elucidates its structural dynamics, revealing distinct behaviors influenced by pH. At pH 3, pectin exhibits shear-thinning, with solvent-independent unified rheological profiles identifying three concentration regimes: 0.5%–1.5%, 2%–3%, and 3.5%–4%. These regimes, alongside Cox–Merz superpositions, outline the semi-dilute (c*) and concentrated (c**) transitions at 1.5%–2% and 3%–3.5%, respectively. Moreover, a Morris equation exponent of 0.65 indicates flexible, mobility-restricted macromolecules. Conversely, at pH 7, increased viscosities and Morris plot linearity for p = .1 suggest rigid chain behavior due to electrostatic repulsion among ionized acidic groups. This rigidity leads to concentration-dependent self-assembly structures that diverge from expected unified rheological profiles, a deviation amplified by heating–cooling cycles. This study clarifies the impact of pH on citrus pectin's rheology and emphasizes the intricate relationship between polymeric chain rigidity, self-assembly, and viscosity. By providing a refined understanding of these mechanisms, our findings contribute to the broader field of polysaccharide research, offering insights critical for developing and optimizing pectin-based applications in various industries.
{"title":"Analytical rheology as a tool for the structural investigation of citrus pectin","authors":"Evdoxia Asimakopoulou, Thomas Goudoulas, Ioannis I. Andreadis, Dimitrios G. Fatouros, Mehraj Ahmad, Chrisi Vasiliadou, Athina Theocharidou, Christos Ritzoulis","doi":"10.1111/jtxs.12828","DOIUrl":"10.1111/jtxs.12828","url":null,"abstract":"<p>Rheological analysis of citrus pectin at pH 3 and 7 elucidates its structural dynamics, revealing distinct behaviors influenced by pH. At pH 3, pectin exhibits shear-thinning, with solvent-independent unified rheological profiles identifying three concentration regimes: 0.5%–1.5%, 2%–3%, and 3.5%–4%. These regimes, alongside Cox–Merz superpositions, outline the semi-dilute (c*) and concentrated (c**) transitions at 1.5%–2% and 3%–3.5%, respectively. Moreover, a Morris equation exponent of 0.65 indicates flexible, mobility-restricted macromolecules. Conversely, at pH 7, increased viscosities and Morris plot linearity for <i>p</i> = .1 suggest rigid chain behavior due to electrostatic repulsion among ionized acidic groups. This rigidity leads to concentration-dependent self-assembly structures that diverge from expected unified rheological profiles, a deviation amplified by heating–cooling cycles. This study clarifies the impact of pH on citrus pectin's rheology and emphasizes the intricate relationship between polymeric chain rigidity, self-assembly, and viscosity. By providing a refined understanding of these mechanisms, our findings contribute to the broader field of polysaccharide research, offering insights critical for developing and optimizing pectin-based applications in various industries.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtxs.12828","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140131798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There is an increasing demand for texture sensations of bread during mastication, with reformulation being needed. This study investigated how bread structure influences oral processing behavior and texture perception. Variations in bread structure were created by manipulating ingredient additions, including pumpkin content and pumpkin processing methods. Results indicated that the physical, chemical, and structural properties drove the oral processing behaviors, and texture sensations were highly correlated with bolus properties. At the beginning and middle of the mastication, bolus from breads with low pumpkin-content required more saliva and exhibited greater hardness, lower adhesiveness, and a higher proportion of small-piece particles than the bolus from high pumpkin-content breads. Bolus from pumpkin pulp breads required more saliva, and was softer, stickier, and generated particles with a lower degree of degradation than the bolus from pumpkin puree breads. However, at the end period, the bolus properties tended to change to similar values. Low pumpkin content breads were initially perceived chewy, whereas high pumpkin content, soft. The dominance rate for soft sensation was higher and lasted longer in breads with pumpkin puree than in breads with pumpkin pulp. Finally, six bread samples were all perceived as hydrated, sticky, and crumbly. This study contributes to a better understanding of the impact of reformulation on oral behavior and sensory properties.
{"title":"Effect of modifying pumpkin preparation on oral processing of breads","authors":"Wenjiao Li, Qi Zhao, Qian Mao","doi":"10.1111/jtxs.12827","DOIUrl":"10.1111/jtxs.12827","url":null,"abstract":"<p>There is an increasing demand for texture sensations of bread during mastication, with reformulation being needed. This study investigated how bread structure influences oral processing behavior and texture perception. Variations in bread structure were created by manipulating ingredient additions, including pumpkin content and pumpkin processing methods. Results indicated that the physical, chemical, and structural properties drove the oral processing behaviors, and texture sensations were highly correlated with bolus properties. At the beginning and middle of the mastication, bolus from breads with low pumpkin-content required more saliva and exhibited greater hardness, lower adhesiveness, and a higher proportion of small-piece particles than the bolus from high pumpkin-content breads. Bolus from pumpkin pulp breads required more saliva, and was softer, stickier, and generated particles with a lower degree of degradation than the bolus from pumpkin puree breads. However, at the end period, the bolus properties tended to change to similar values. Low pumpkin content breads were initially perceived chewy, whereas high pumpkin content, soft. The dominance rate for soft sensation was higher and lasted longer in breads with pumpkin puree than in breads with pumpkin pulp. Finally, six bread samples were all perceived as hydrated, sticky, and crumbly. This study contributes to a better understanding of the impact of reformulation on oral behavior and sensory properties.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140131799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Yang, Yuxin Jiang, Mingao Li, Shanggui Deng, Yuanpei Gao, Yi Hu
To inhibit the quality deterioration caused by the frozen storage of surimi products, this work investigated the effect of freezing methods, including raw-freezing-setting-heating, raw-setting-freezing-heating, and raw-setting-heating-freezing, on quality changes in surimi gel. The moisture loss, physical–chemical properties, and protein structure conformation of surimi gel derived from Bombay duck (BD) were assessed following frozen storage periods of 20, 40, and 60 days. The findings suggest that the raw-setting-heating-freezing method yielded optimal surimi gel properties with extended frozen storage time. Employing this approach led to a reduction in thawing loss, while cooking loss remained constant. After 60 days of frozen storage, the hardness exhibited an initial increase followed by a subsequent decrease, and water-holding capacity increased to 68.2%. Notably, the impact on surimi gel during the late stage of frozen storage was more pronounced throughout the formation of ice crystals, resulting in decreased disulfide bond content. Scanning hematoxylin–eosin (HE) staining slices of samples following thawing and heating demonstrated that the raw-setting-heating-freezing method could better resist the effect of ice crystals in frozen storage period on surimi tissue, while the gel on setting process could delay the erosion imposed on by ice crystals during frozen storage. This study provides a scientific foundation for the industrialization on frozen BD surimi products.
{"title":"Quality change in Bombay duck (Harpadon nehereus) surimi during frozen storage using different freezing methods","authors":"Jing Yang, Yuxin Jiang, Mingao Li, Shanggui Deng, Yuanpei Gao, Yi Hu","doi":"10.1111/jtxs.12824","DOIUrl":"10.1111/jtxs.12824","url":null,"abstract":"<p>To inhibit the quality deterioration caused by the frozen storage of surimi products, this work investigated the effect of freezing methods, including raw-freezing-setting-heating, raw-setting-freezing-heating, and raw-setting-heating-freezing, on quality changes in surimi gel. The moisture loss, physical–chemical properties, and protein structure conformation of surimi gel derived from Bombay duck (BD) were assessed following frozen storage periods of 20, 40, and 60 days. The findings suggest that the raw-setting-heating-freezing method yielded optimal surimi gel properties with extended frozen storage time. Employing this approach led to a reduction in thawing loss, while cooking loss remained constant. After 60 days of frozen storage, the hardness exhibited an initial increase followed by a subsequent decrease, and water-holding capacity increased to 68.2%. Notably, the impact on surimi gel during the late stage of frozen storage was more pronounced throughout the formation of ice crystals, resulting in decreased disulfide bond content. Scanning hematoxylin–eosin (HE) staining slices of samples following thawing and heating demonstrated that the raw-setting-heating-freezing method could better resist the effect of ice crystals in frozen storage period on surimi tissue, while the gel on setting process could delay the erosion imposed on by ice crystals during frozen storage. This study provides a scientific foundation for the industrialization on frozen BD surimi products.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}