Microcystins produced by cyanobacteria pose a great threat to human health by releasing toxins upon cell death. In the present study, we studied microcystin production in the cyanobacterial strains Anabaena cylindrica (B629 and 2949) and Fremyella diplosiphon (SF33) exposed to 1, 2 and 4 g/L sodium chloride (NaCl). Cultures grown for 7 days in BG11/HEPES medium were pelleted, re-grown in the corresponding NaCl levels, and enzyme linked immunosorbent assay (ELISA) performed. ELISA assays revealed enhanced microcystin production in A. cylindrica B629 exposed to 4 g/L NaCl and A. cylindrica 29414 exposed to 2 and 4 g/L NaCl, after growth in the corresponding NaCl levels for 14 days. We observed a significant decrease (p >0.05) in microcystin levels in the control strains after exposure to NaCl for 5 days. After exposure to 1, 2, or 4 g/L NaCl for 10 days, no microcystin release was observed in A. cylindrica B629, A. cylindrica 29414 or F. diplosiphon SF33. Sodium dodecyl sulfate polyacrylamide gel electrophoresis identified the presence of an additional band at 120 - 130 kDa in A. cylindrica B629 exposed to 2 and 4 g/L NaCl, and at 14 kDa in cultures amended with 1 and 2 g/L NaCl as well as the untreated control, indicating that exposure to salinity induces alterations in protein expression.
The community structures of phytoplankton are important factors and indicators of lake water quality. Harmful algal blooms severely impact water supply, recreational activities and wildlife habitat. This study aimed to examine the phytoplankton composition and variations using microscopy, and identify harmful Cyanobacteria in weekly samples taken from four sites at Harsha Lake in southwest Ohio. Over the course of the summer in 2015, the phytoplankton of Harsha Lake consisted mainly of 13 taxa belonging to Bacillariophyta, Chlorophyta, Cryptophyta, Cyanobacteria, Dinophyta and Euglenophyta. Their significant successions started with Bacillariophyta and/or Chlorophyta, then bloomed with Cyanobacteria and ended with Chlorophyta and/or Dinophyta. Cyanobacteria members: Microcystis, Planktothrix, Dolichospermum, Aphanizomenon, Cylindrospermopsis, and Oscillatoria from the Cyanophyceae were identified to be dominant genera. These organisms varied spatially and temporally in similar patterns along with the variations of nutrients and formed the summer bloom with the total biomasses ranging from 0.01 to 114.89 mg L-1 with mean of 22.88 mg L-1. M. aeruginosa and P. rubescens were revealed as the microcystin producers, while A. circinalis and Aphanizomenon sp. were identified as a saxitoxin producer through cloning and sequencing PCR products of mcyA, mcyE and sxtA genes. The biomasses of phytoplankton, Cyanobacteria and Microcystis were positively correlated to nutrients, especially to total nitrogen. The total ELISA measurement for microcystin positively correlated with Cyanobacteria (R2 = 0.66, P < 0.0001), Microcystis (R2 = 0.64, P < 0.0001) and phytoplankton (R2 = 0.59, P < 0.0001). The basic information on the occurrence and biomasses of Cyanobacteria and total phytoplankton, and the analysis for toxic species, which were the first report for the inland water in Ohio, USA, will document the succession patterns of phytoplankton and toxin production over a season and provide data to predict risk occurrence to both human and ecological factors.
The North Coast karst aquifer system of Puerto Rico, the most productive aquifer of the island, is a vital water source for drinking water and local ecosystems. High freshwater demands alter the coastal groundwater system that impacts both human populations and coastal ecosystems of the island. To predict how this system might respond to rainfall events and high pumping demands, we used the equivalent porous medium (EPM) technique to develop a three-dimensional ground-water flow model to estimate hydrogeological parameters and assess groundwater resources in the Manatí-Vega Baja karst aquifer. The approach is based on the hypothesis that the simplified EPM approach will reproduce groundwater hydrodynamics in this complex karst environment. The steady-state model was calibrated with trial and error and parameter estimation methods using an observed groundwater table of 1995 (r = 0.86, p < 0.0001, n = 39). The large-scale simulation suggested that groundwater flow roughly follows the elevation slope [i.e. south to north). Calibrated hydraulic conductivities range from 0.5 to 86 m/d, whereas the hydro-geologic data strongly suggest higher permeability in the middle karst section of the study area. The transient model adequately estimates the observed groundwater fluctuations in response to rainfall events from 1980 until 2014. The transient results indicate that the conceptual model accuracy is more acceptable with a mean error (ME) of -0.132 m, mean absolute error (MAE) of 0.542 m and root mean square (RMSE) error of 0.365 m. The results of water budget simulation show that the total recharge satisfies the total groundwater withdrawal rate in the past, but continuous closure of more contaminated wells causes groundwater levels to increase in the future. The results indicate that the assumption of applicability of EPM approach is sustained and supported by measured data in the study area. Taking future water demands into account, this model could be applied further to predict the changes of groundwater levels and mass balance under different exploitation scenarios.