Joshua D Powell, Megan N Thomas, Tavis K Anderson, Michael A Zeller, Phillip C Gauger, Amy L Vincent Baker
Human seasonal H3 clade 3C3a influenza A viruses (IAV) were detected four times in U.S. pigs from commercial swine farms in Michigan, Illinois, and Virginia in 2019. To evaluate the relative risk of this spillover to the pig population, whole genome sequencing and phylogenetic characterization were conducted, and the results revealed that all eight viral gene segments were closely related to 2018-2019 H3N2 human seasonal IAV. Next, a series of in vitro viral kinetics, receptor binding, and antigenic characterization studies were performed using a representative A/swine/Virginia/A02478738/2018(H3N2) (SW/VA/19) isolate. Viral replication kinetic studies of SW/VA/19 demonstrated less efficient replication curves than all 10 swine H3N2 viruses tested but higher than three human H3N2 strains. Serial passaging experiments of SW/VA/19 in swine cells did not increase virus replication, but changes at HA amino acid positions 9 and 159 occurred. In swine transmission studies, wild-type SW/VA/19 was shed in nasal secretions and transmitted to all indirect contact pigs, whereas the human seasonal strain A/Switzerland/9715293/2013(H3N2) from the same 3C3a clade failed to transmit. SW/VA/19 induced minimal macroscopic and microscopic lung lesions. Collectively, these findings demonstrate that these human seasonal H3N2 3C3a-like viruses did not require reassortment with endemic swine IAV gene segments for virus shedding and transmission in pigs. Limited detections in the U.S. pig population in the subsequent period of time suggest a yet-unknown restriction factor likely limiting the spread of these viruses in the U.S. pig population.IMPORTANCEInterspecies human-to-swine IAV transmission occurs globally and contributes to increased IAV diversity in pig populations. We present data that a swine isolate from a 2018-2019 human-to-swine transmission event was shed for multiple days in challenged and contact pigs. By characterizing this introduction through bioinformatic, molecular, and animal experimental approaches, these findings better inform animal health practices and vaccine decision-making. Since wholly human seasonal H3N2 viruses in the United States were not previously identified as being transmissible in pigs (i.e., reverse zoonosis), these findings reveal that the interspecies barriers for transmission to pigs may not require significant changes to all human seasonal H3N2, although additional changes may be required for sustained transmission in swine populations.
{"title":"2018-2019 human seasonal H3N2 influenza A virus spillovers into swine with demonstrated virus transmission in pigs were not sustained in the pig population.","authors":"Joshua D Powell, Megan N Thomas, Tavis K Anderson, Michael A Zeller, Phillip C Gauger, Amy L Vincent Baker","doi":"10.1128/jvi.00087-24","DOIUrl":"https://doi.org/10.1128/jvi.00087-24","url":null,"abstract":"<p><p>Human seasonal H3 clade 3C3a influenza A viruses (IAV) were detected four times in U.S. pigs from commercial swine farms in Michigan, Illinois, and Virginia in 2019. To evaluate the relative risk of this spillover to the pig population, whole genome sequencing and phylogenetic characterization were conducted, and the results revealed that all eight viral gene segments were closely related to 2018-2019 H3N2 human seasonal IAV. Next, a series of <i>in vitro</i> viral kinetics, receptor binding, and antigenic characterization studies were performed using a representative A/swine/Virginia/A02478738/2018(H3N2) (SW/VA/19) isolate. Viral replication kinetic studies of SW/VA/19 demonstrated less efficient replication curves than all 10 swine H3N2 viruses tested but higher than three human H3N2 strains. Serial passaging experiments of SW/VA/19 in swine cells did not increase virus replication, but changes at HA amino acid positions 9 and 159 occurred. In swine transmission studies, wild-type SW/VA/19 was shed in nasal secretions and transmitted to all indirect contact pigs, whereas the human seasonal strain A/Switzerland/9715293/2013(H3N2) from the same 3C3a clade failed to transmit. SW/VA/19 induced minimal macroscopic and microscopic lung lesions. Collectively, these findings demonstrate that these human seasonal H3N2 3C3a-like viruses did not require reassortment with endemic swine IAV gene segments for virus shedding and transmission in pigs. Limited detections in the U.S. pig population in the subsequent period of time suggest a yet-unknown restriction factor likely limiting the spread of these viruses in the U.S. pig population.IMPORTANCEInterspecies human-to-swine IAV transmission occurs globally and contributes to increased IAV diversity in pig populations. We present data that a swine isolate from a 2018-2019 human-to-swine transmission event was shed for multiple days in challenged and contact pigs. By characterizing this introduction through bioinformatic, molecular, and animal experimental approaches, these findings better inform animal health practices and vaccine decision-making. Since wholly human seasonal H3N2 viruses in the United States were not previously identified as being transmissible in pigs (i.e., reverse zoonosis), these findings reveal that the interspecies barriers for transmission to pigs may not require significant changes to all human seasonal H3N2, although additional changes may be required for sustained transmission in swine populations.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0008724"},"PeriodicalIF":4.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human coronavirus (CoV) HKU1 infection typically causes common cold but can lead to pneumonia in children, older people, and immunosuppressed individuals. Recently, human transmembrane serine protease 2 (hTMPRSS2) was identified as the functional receptor for HKU1, but its region and residues critical for HKU1 S binding remain elusive. In this study, we find that HKU1 could utilize human and hamster, but not rat, mouse, or bat TMPRSS2 for virus entry, displaying a narrow host range. Using human-bat TMPRSS2 chimeras, we show that the serine peptidase (SP) domain of TMPRSS2 is essential for entry of HKU1. Further extensive mutagenesis analyses of the C-terminal regions of SP domains of human and bat TMPRSS2s identify residues 417 and 469 critical for entry of HKU1. Replacement of either D417 or Y469 with asparagine in hTMPRSS2 abolishes its abilities to mediate entry of HKU1 S pseudovirions and cell-cell fusion, whereas substitution of N417 with D or N469 with Y in bat TMPRSS2 (bTMPRSS2) renders it supporting HKU1 entry. Our findings contribute to a deeper understanding of coronavirus-receptor interactions and cross-species transmission.IMPORTANCEThe interactions of coronavirus (CoV) S proteins with their cognate receptors determine the host range and cross-species transmission potential. Recently, human transmembrane serine protease 2 (hTMPRSS2) was found to be the receptor for HKU1. Here, we show that the TMPRSS2 of hamster, but not rat, mouse, or bat, can serve as a functional entry receptor for HKU1. Moreover, swapping the residues at the positions of 417 and 469 of bTMPRSS2 with the corresponding residues of hTMPRSS2 confers it supporting entry of HKU1 S pseudovirions, indicating the critical role of these residues in HKU1 entry. Our study identified the critical residues in hTMPRSS2 responsible for receptor interaction and host range of HKU1.
{"title":"Identification of the critical residues of TMPRSS2 for entry and host range of human coronavirus HKU1.","authors":"Yahan Chen, Xiuyuan Ou, Pei Li, Fuwen Zan, Lin Tan, Zhaohui Qian","doi":"10.1128/jvi.01587-24","DOIUrl":"https://doi.org/10.1128/jvi.01587-24","url":null,"abstract":"<p><p>Human coronavirus (CoV) HKU1 infection typically causes common cold but can lead to pneumonia in children, older people, and immunosuppressed individuals. Recently, human transmembrane serine protease 2 (hTMPRSS2) was identified as the functional receptor for HKU1, but its region and residues critical for HKU1 S binding remain elusive. In this study, we find that HKU1 could utilize human and hamster, but not rat, mouse, or bat TMPRSS2 for virus entry, displaying a narrow host range. Using human-bat TMPRSS2 chimeras, we show that the serine peptidase (SP) domain of TMPRSS2 is essential for entry of HKU1. Further extensive mutagenesis analyses of the C-terminal regions of SP domains of human and bat TMPRSS2s identify residues 417 and 469 critical for entry of HKU1. Replacement of either D417 or Y469 with asparagine in hTMPRSS2 abolishes its abilities to mediate entry of HKU1 S pseudovirions and cell-cell fusion, whereas substitution of N417 with D or N469 with Y in bat TMPRSS2 (bTMPRSS2) renders it supporting HKU1 entry. Our findings contribute to a deeper understanding of coronavirus-receptor interactions and cross-species transmission.IMPORTANCEThe interactions of coronavirus (CoV) S proteins with their cognate receptors determine the host range and cross-species transmission potential. Recently, human transmembrane serine protease 2 (hTMPRSS2) was found to be the receptor for HKU1. Here, we show that the TMPRSS2 of hamster, but not rat, mouse, or bat, can serve as a functional entry receptor for HKU1. Moreover, swapping the residues at the positions of 417 and 469 of bTMPRSS2 with the corresponding residues of hTMPRSS2 confers it supporting entry of HKU1 S pseudovirions, indicating the critical role of these residues in HKU1 entry. Our study identified the critical residues in hTMPRSS2 responsible for receptor interaction and host range of HKU1.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0158724"},"PeriodicalIF":4.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sandeepan Das, Md Hasan Mallik, Partha Chattopadyay, Susenjit Mallick, Dibyajyoti Karmakar, Subhadip Ghora, Feroza Begum, Bilash Chatterjee, Dluya Samuel Thagriki, Amit Kumar Srivastava, Upasana Ray
<p><p>Dengue virus NS1 protein is a major pathogenic protein. In this study, we examined the role of NS1 in coagulopathy associated with Dengue infection, a common feature of Dengue virus pathogenesis. Since most coagulation factors are produced by hepatocytes and liver is key organ affected during infection, we conducted transcriptomics using total-RNA extracted from Huh7 cells overexpressing NS1 protein. Coagulation factors 1, 5, 10, and 13 were downregulated and was confirmed using quantitative real-time polymerase chain reaction (RT-PCR) and western blot assays in both adherent and non-adherent cell culture systems across all four serotypes of Dengue. We also determined that downregulation of coagulation factors is a result of reduced expression of transcription activator HNF4α. Furthermore, we demonstrated that phosphorylation of extracellular signal-regulated kinase (ERK) leads to HNF4α downregulation and subsequent downregulation of coagulation factors. The downregulation of HNF4α and the downregulation of subsequent coagulation factors were validated in BALB/c mice by hydrodynamic tail vein injection of NS1 expression plasmids. Western blot assays using plasma from Dengue patients indicated that at least two coagulation factors of the common pathway of coagulation cascade are downregulated during the febrile phase, with levels improving toward the convalescent phase. NS1-mediated downregulation of coagulation factors was observed for both intracellular and secreted NS1. The hypothesis was also validated using virus infection assays. Overall, our study highlights the role of NS1 in mediating coagulopathy by modulating the expression of coagulation factors through transcriptional suppression of HNF4α by elevated phosphorylated ERK. This signaling cascade could be targeted for therapeutic intervention against virus-related coagulopathies.</p><p><strong>Importance: </strong>Thrombocytopenia has been linked to coagulopathy of Dengue infection, and Dengue patients with coagulopathies are often administered platelet transfusion. For coagulopathies without thrombocytopenia, platelet transfusion might not help. We demonstrated the role of NS1 in coagulopathy by downregulating coagulation factors themselves. When thrombocytopenia does not exist or when thrombocytopenia as well as reduced levels of coagulation factors are the causative factors for coagulopathies, only platelet transfusion might not be effective. Alternative strategies, like administration of coagulation factor cocktails or platelet transfusion along with coagulation factor cocktail, might be promising. Our work also leads to a signaling pathway of NS1-mediated downregulation of coagulation factors via phosphorylated ERK and HNF4α. HNF4α is a transcription regulator for many other liver-based metabolic factors and pathways like lipid metabolism, carbohydrate metabolism, etc, and thus, therapeutic targeting of NS1-based downregulation of HNF4α can lead to designing therapeutic candida
{"title":"Dengue virus NS1 leads to downregulation of HNF4 alpha in liver cells resulting in a decrease in coagulation factors I, V, X, and XIII, contributing to coagulopathy.","authors":"Sandeepan Das, Md Hasan Mallik, Partha Chattopadyay, Susenjit Mallick, Dibyajyoti Karmakar, Subhadip Ghora, Feroza Begum, Bilash Chatterjee, Dluya Samuel Thagriki, Amit Kumar Srivastava, Upasana Ray","doi":"10.1128/jvi.01418-24","DOIUrl":"https://doi.org/10.1128/jvi.01418-24","url":null,"abstract":"<p><p>Dengue virus NS1 protein is a major pathogenic protein. In this study, we examined the role of NS1 in coagulopathy associated with Dengue infection, a common feature of Dengue virus pathogenesis. Since most coagulation factors are produced by hepatocytes and liver is key organ affected during infection, we conducted transcriptomics using total-RNA extracted from Huh7 cells overexpressing NS1 protein. Coagulation factors 1, 5, 10, and 13 were downregulated and was confirmed using quantitative real-time polymerase chain reaction (RT-PCR) and western blot assays in both adherent and non-adherent cell culture systems across all four serotypes of Dengue. We also determined that downregulation of coagulation factors is a result of reduced expression of transcription activator HNF4α. Furthermore, we demonstrated that phosphorylation of extracellular signal-regulated kinase (ERK) leads to HNF4α downregulation and subsequent downregulation of coagulation factors. The downregulation of HNF4α and the downregulation of subsequent coagulation factors were validated in BALB/c mice by hydrodynamic tail vein injection of NS1 expression plasmids. Western blot assays using plasma from Dengue patients indicated that at least two coagulation factors of the common pathway of coagulation cascade are downregulated during the febrile phase, with levels improving toward the convalescent phase. NS1-mediated downregulation of coagulation factors was observed for both intracellular and secreted NS1. The hypothesis was also validated using virus infection assays. Overall, our study highlights the role of NS1 in mediating coagulopathy by modulating the expression of coagulation factors through transcriptional suppression of HNF4α by elevated phosphorylated ERK. This signaling cascade could be targeted for therapeutic intervention against virus-related coagulopathies.</p><p><strong>Importance: </strong>Thrombocytopenia has been linked to coagulopathy of Dengue infection, and Dengue patients with coagulopathies are often administered platelet transfusion. For coagulopathies without thrombocytopenia, platelet transfusion might not help. We demonstrated the role of NS1 in coagulopathy by downregulating coagulation factors themselves. When thrombocytopenia does not exist or when thrombocytopenia as well as reduced levels of coagulation factors are the causative factors for coagulopathies, only platelet transfusion might not be effective. Alternative strategies, like administration of coagulation factor cocktails or platelet transfusion along with coagulation factor cocktail, might be promising. Our work also leads to a signaling pathway of NS1-mediated downregulation of coagulation factors via phosphorylated ERK and HNF4α. HNF4α is a transcription regulator for many other liver-based metabolic factors and pathways like lipid metabolism, carbohydrate metabolism, etc, and thus, therapeutic targeting of NS1-based downregulation of HNF4α can lead to designing therapeutic candida","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0141824"},"PeriodicalIF":4.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grant S Hansman, Todd Reese, Marie Pancera, Penny A Rudd, Veronika Masic, Thomas Haselhorst, Mark von Itzstein
{"title":"Structural analysis of a non-pathogenic hare calicivirus capsid bound to a histo-blood group antigen co-factor.","authors":"Grant S Hansman, Todd Reese, Marie Pancera, Penny A Rudd, Veronika Masic, Thomas Haselhorst, Mark von Itzstein","doi":"10.1128/jvi.01675-24","DOIUrl":"https://doi.org/10.1128/jvi.01675-24","url":null,"abstract":"","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0167524"},"PeriodicalIF":4.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabian H Weissbach, Océane M Follonier, Svenia Schmid, Karoline Leuzinger, Michael Schmid, Hans H Hirsch
<p><p>BK polyomavirus (BKPyV) contributes to premature renal failure in 10%-20% of kidney transplant recipients. Current treatment relies on reducing immunosuppression to regain BKPyV-specific immune control. Subsequently, declining allograft function may result from persisting viral cytopathology, BKPyV-specific immune reconstitution, or alloimmunity/rejection, all being poorly distinguishable by current histological or molecular approaches. To reduce the complexity encountered in BKPyV-replicating kidneys, we analyzed differentially expressed genes (DEGs) in primary human renal proximal tubular epithelial cells at 24 and 48 h post-infection (hpi) using single-cell RNA-sequencing (10x-Genomics-3´ kit). At 24 hpi, viral transcript reads predominantly mapped to the early viral gene region (<i>EVGR</i>) and shifted to >100-fold higher late viral gene region (<i>LVGR</i>) levels at 48 hpi, matching the sequential bi-directional viral protein expression from the circular double-stranded BKPyV-DNA genome. Besides expected coverage "hills" at viral 3´-poly-A sites, unexpected "spike" and "pulse" reads resulted from off-target TSO priming. "Spike" and "pulse" patterns were rare for the mostly unidirectional reads mapping to the circular mitochondrial genome. Bioinformatic curation removed "spikes" and "pulses" and reclassified 10% of DEGs in renal proximal tubular epithelial cells (RPTECs). Up-regulated gene ontologies included S and G2/M phase, double-stranded DNA repair, proximal tubulopathy, and renal tubular dysfunction, whereas allograft rejection, antigen presentation, innate immunity, translation, and autophagy were down-regulated. BKPyV-<i>LVGR</i> expression induced a novel mitochondrial cell stress pattern consisting of discordant up-regulation and down-regulation of mitochondria-encoded and nucleus-encoded mitochondrial genes, respectively. We explored which top-scoring gene sets of late-phase BKPyV-replicating RPTECs can identify BKPyV-associated nephropathy in kidney transplant biopsies. The results should facilitate distinguishing BKPyV-associated pathology from other entities in kidney transplant biopsies.IMPORTANCEBK polyomavirus (BKPyV) infects more than 90% of the general population and then persists in the reno-urinary tract. Subsequently, low-level urinary shedding is seen in 10% of healthy BKPyV-seropositive persons, indicating that BKPyV replication occurs despite the presence of virus-specific cellular and humoral immunity. Notably, transplantation of donor kidneys with low-level BKPyV replication is a risk factor for progression to high-level BKPyV viruria, new-onset BKPyV-DNAemia and biopsy-proven BKPyV nephropathy. Here, we identify a short list of robust up- and down-regulated nucleus-encoded differentially expressed genes potentially allowing to discriminate viral from allograft immune damage. By carefully curating viral and mitochondrial transcriptomes, we identify a novel virus-associated mitochondrial stress pattern of up-
{"title":"Single-cell RNA-sequencing of BK polyomavirus replication in primary human renal proximal tubular epithelial cells identifies specific transcriptome signatures and a novel mitochondrial stress pattern.","authors":"Fabian H Weissbach, Océane M Follonier, Svenia Schmid, Karoline Leuzinger, Michael Schmid, Hans H Hirsch","doi":"10.1128/jvi.01382-24","DOIUrl":"https://doi.org/10.1128/jvi.01382-24","url":null,"abstract":"<p><p>BK polyomavirus (BKPyV) contributes to premature renal failure in 10%-20% of kidney transplant recipients. Current treatment relies on reducing immunosuppression to regain BKPyV-specific immune control. Subsequently, declining allograft function may result from persisting viral cytopathology, BKPyV-specific immune reconstitution, or alloimmunity/rejection, all being poorly distinguishable by current histological or molecular approaches. To reduce the complexity encountered in BKPyV-replicating kidneys, we analyzed differentially expressed genes (DEGs) in primary human renal proximal tubular epithelial cells at 24 and 48 h post-infection (hpi) using single-cell RNA-sequencing (10x-Genomics-3´ kit). At 24 hpi, viral transcript reads predominantly mapped to the early viral gene region (<i>EVGR</i>) and shifted to >100-fold higher late viral gene region (<i>LVGR</i>) levels at 48 hpi, matching the sequential bi-directional viral protein expression from the circular double-stranded BKPyV-DNA genome. Besides expected coverage \"hills\" at viral 3´-poly-A sites, unexpected \"spike\" and \"pulse\" reads resulted from off-target TSO priming. \"Spike\" and \"pulse\" patterns were rare for the mostly unidirectional reads mapping to the circular mitochondrial genome. Bioinformatic curation removed \"spikes\" and \"pulses\" and reclassified 10% of DEGs in renal proximal tubular epithelial cells (RPTECs). Up-regulated gene ontologies included S and G2/M phase, double-stranded DNA repair, proximal tubulopathy, and renal tubular dysfunction, whereas allograft rejection, antigen presentation, innate immunity, translation, and autophagy were down-regulated. BKPyV-<i>LVGR</i> expression induced a novel mitochondrial cell stress pattern consisting of discordant up-regulation and down-regulation of mitochondria-encoded and nucleus-encoded mitochondrial genes, respectively. We explored which top-scoring gene sets of late-phase BKPyV-replicating RPTECs can identify BKPyV-associated nephropathy in kidney transplant biopsies. The results should facilitate distinguishing BKPyV-associated pathology from other entities in kidney transplant biopsies.IMPORTANCEBK polyomavirus (BKPyV) infects more than 90% of the general population and then persists in the reno-urinary tract. Subsequently, low-level urinary shedding is seen in 10% of healthy BKPyV-seropositive persons, indicating that BKPyV replication occurs despite the presence of virus-specific cellular and humoral immunity. Notably, transplantation of donor kidneys with low-level BKPyV replication is a risk factor for progression to high-level BKPyV viruria, new-onset BKPyV-DNAemia and biopsy-proven BKPyV nephropathy. Here, we identify a short list of robust up- and down-regulated nucleus-encoded differentially expressed genes potentially allowing to discriminate viral from allograft immune damage. By carefully curating viral and mitochondrial transcriptomes, we identify a novel virus-associated mitochondrial stress pattern of up-","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0138224"},"PeriodicalIF":4.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Japanese encephalitis virus (JEV) stands as a prominent vector-borne zoonotic pathogen, displaying neurotropism and eliciting Parkinson's disease (PD)-like symptoms among most symptomatic survivors. A characteristic feature of PD is the aggregation of mutated α-synuclein (α-syn) that damages the dopaminergic neurons. Considering this link between JEV-induced PD-like symptoms and α-syn pathogenesis, we explored the role of α-syn in JEV infectivity in neuronal cells. Our investigation revealed a significant increase in endogenous α-syn expression in JEV-infected cells. In addition, exogenous α-syn (Exoα-syn) treatment substantially reduced JEV replication, suggesting its anti-JEV effect. Furthermore, Exoα-syn treatment led to the upregulation of superoxide dismutase 1 (SOD1) and reduction in reactive oxygen species (ROS). The results were validated by endogenous α-syn-silencing, which decreased SOD1 and raised ROS levels in neuronal cells. Similarly, the SOD1 inhibition via LCS-1 also intensified ROS and JEV infection. Silencing of SOD1 in α-syn overexpressing neuro2a cells exhibited increased JEV replication. Overall, our results suggest that α-syn exerts an anti-JEV effect by regulating protein involved in oxidative stress inside neuronal cells. This study contributes valuable insights into the interplay between α-syn expression and JEV infectivity, shedding light on avenues further to investigate the potential role of α-syn in JEV pathogenesis.
Importance: Japanese encephalitis virus (JEV) poses a significant threat, particularly to children. Despite extensive research efforts, the development of effective treatments against JEV has been impeded. One of the major setbacks is a lack of comprehensive understanding of neurotropism. The study focuses on alpha-synuclein (α-syn), a neuronal protein, and aims to determine its role in JEV pathogenesis. The present study reveals that the host cell upregulates α-syn in response to JEV infection. α-syn restrains JEV propagation by modulating superoxide dismutase 1 (SOD1) expression which further blocks JEV-induced ROS generation. Endogenous α-syn silencing led to a decrease in SOD1 expression and increased viral titer. α-syn plays a crucial role in counteracting oxidative stress through SOD1, which is essential for limiting JEV replication. This study provides broader implications for antiviral strategies and their possible role in neurodegenerative diseases; however, there is still much to explore, particularly regarding α-syn aggregation kinetics in JEV infection.
{"title":"Alpha-synuclein expression in neurons modulates Japanese encephalitis virus infection.","authors":"Anjali Gupta, Vijay Singh Bohara, Aditya Singh Chauhan, Anshuman Mohapatra, Harpreet Kaur, Ajanta Sharma, Nitin Chaudhary, Sachin Kumar","doi":"10.1128/jvi.00418-24","DOIUrl":"https://doi.org/10.1128/jvi.00418-24","url":null,"abstract":"<p><p>Japanese encephalitis virus (JEV) stands as a prominent vector-borne zoonotic pathogen, displaying neurotropism and eliciting Parkinson's disease (PD)-like symptoms among most symptomatic survivors. A characteristic feature of PD is the aggregation of mutated α-synuclein (α-syn) that damages the dopaminergic neurons. Considering this link between JEV-induced PD-like symptoms and α-syn pathogenesis, we explored the role of α-syn in JEV infectivity in neuronal cells. Our investigation revealed a significant increase in endogenous α-syn expression in JEV-infected cells. In addition, exogenous α-syn (Exoα-syn) treatment substantially reduced JEV replication, suggesting its anti-JEV effect. Furthermore, Exoα-syn treatment led to the upregulation of superoxide dismutase 1 (SOD1) and reduction in reactive oxygen species (ROS). The results were validated by endogenous α-syn-silencing, which decreased SOD1 and raised ROS levels in neuronal cells. Similarly, the SOD1 inhibition <i>via</i> LCS-1 also intensified ROS and JEV infection. Silencing of SOD1 in α-syn overexpressing neuro2a cells exhibited increased JEV replication. Overall, our results suggest that α-syn exerts an anti-JEV effect by regulating protein involved in oxidative stress inside neuronal cells. This study contributes valuable insights into the interplay between α-syn expression and JEV infectivity, shedding light on avenues further to investigate the potential role of α-syn in JEV pathogenesis.</p><p><strong>Importance: </strong>Japanese encephalitis virus (JEV) poses a significant threat, particularly to children. Despite extensive research efforts, the development of effective treatments against JEV has been impeded. One of the major setbacks is a lack of comprehensive understanding of neurotropism. The study focuses on alpha-synuclein (α-syn), a neuronal protein, and aims to determine its role in JEV pathogenesis. The present study reveals that the host cell upregulates α-syn in response to JEV infection. α-syn restrains JEV propagation by modulating superoxide dismutase 1 (SOD1) expression which further blocks JEV-induced ROS generation. Endogenous α-syn silencing led to a decrease in SOD1 expression and increased viral titer. α-syn plays a crucial role in counteracting oxidative stress through SOD1, which is essential for limiting JEV replication. This study provides broader implications for antiviral strategies and their possible role in neurodegenerative diseases; however, there is still much to explore, particularly regarding α-syn aggregation kinetics in JEV infection.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0041824"},"PeriodicalIF":4.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haitao Ding, Hanh T Nguyen, Wenwei Li, Ashlesha Deshpande, Shijian Zhang, Fan Jiang, Zhiqing Zhang, Saumya Anang, Walther Mothes, Joseph Sodroski, John C Kappes
During the process by which human immunodeficiency virus (HIV-1) enters cells, the envelope glycoprotein (Env) trimer on the virion surface engages host cell receptors. Binding to the receptor CD4 induces Env to undergo transitions from a pretriggered, "closed" (State-1) conformation to more "open" (State 2/3) conformations. Most broadly neutralizing antibodies (bNAbs), which are difficult to elicit, recognize the pretriggered (State-1) conformation. More open Env conformations are recognized by poorly neutralizing antibodies (pNAbs), which are readily elicited during natural infection and vaccination with current Env immunogens. Env heterogeneity likely contributes to HIV-1 persistence by skewing antibody responses away from the pretriggered conformation. The conformationally flexible gp160 Env precursor on the infected cell or virion surface potentially presents multiple pNAb epitopes to the host immune system. Although proteolytic cleavage to produce the functional, mature Env trimer [(gp120/gp41)3] stabilizes State-1, many primary HIV-1 Envs spontaneously sample more open conformations. Here, we establish inducible cell lines that produce replication-defective HIV-1 particles with Env trimers stabilized in a pretriggered conformation. The mature Env is enriched on virus-like particles (VLPs). Using complementary approaches, we estimate an average of 25-50 Env trimers on each VLP. The stabilizing changes in Env limit the natural conformational heterogeneity of the VLP Env trimers, allowing recognition by bNAbs but not pNAbs. These defective VLPs provide a more homogeneous source of pretriggered Env trimers in a native membrane environment. Thus, these VLPs may facilitate the characterization of this functionally important Env conformation and its interaction with the immune system.IMPORTANCEA major impediment to the development of an effective HIV/AIDS vaccine is the inefficiency with which human immunodeficiency virus (HIV-1) envelope glycoproteins elicit antibodies that neutralize multiple virus strains. Neutralizing antibodies recognize a particular shape of the envelope glycoproteins that resides on the viral membrane before the virus engages the host cell. Here, we report the creation of stable cell lines that inducibly produce non-infectious HIV-like particles. The normally flexible envelope glycoprotein spikes on these virus-like particles have been stabilized in a conformation that is recognized by broadly neutralizing antibodies. These virus-like particles allow the study of the envelope glycoprotein conformation, its modification by sugars, and its ability to elicit desired neutralizing antibodies.
{"title":"Inducible cell lines producing replication-defective human immunodeficiency virus particles containing envelope glycoproteins stabilized in a pretriggered conformation.","authors":"Haitao Ding, Hanh T Nguyen, Wenwei Li, Ashlesha Deshpande, Shijian Zhang, Fan Jiang, Zhiqing Zhang, Saumya Anang, Walther Mothes, Joseph Sodroski, John C Kappes","doi":"10.1128/jvi.01720-24","DOIUrl":"https://doi.org/10.1128/jvi.01720-24","url":null,"abstract":"<p><p>During the process by which human immunodeficiency virus (HIV-1) enters cells, the envelope glycoprotein (Env) trimer on the virion surface engages host cell receptors. Binding to the receptor CD4 induces Env to undergo transitions from a pretriggered, \"closed\" (State-1) conformation to more \"open\" (State 2/3) conformations. Most broadly neutralizing antibodies (bNAbs), which are difficult to elicit, recognize the pretriggered (State-1) conformation. More open Env conformations are recognized by poorly neutralizing antibodies (pNAbs), which are readily elicited during natural infection and vaccination with current Env immunogens. Env heterogeneity likely contributes to HIV-1 persistence by skewing antibody responses away from the pretriggered conformation. The conformationally flexible gp160 Env precursor on the infected cell or virion surface potentially presents multiple pNAb epitopes to the host immune system. Although proteolytic cleavage to produce the functional, mature Env trimer [(gp120/gp41)<sub>3</sub>] stabilizes State-1, many primary HIV-1 Envs spontaneously sample more open conformations. Here, we establish inducible cell lines that produce replication-defective HIV-1 particles with Env trimers stabilized in a pretriggered conformation. The mature Env is enriched on virus-like particles (VLPs). Using complementary approaches, we estimate an average of 25-50 Env trimers on each VLP. The stabilizing changes in Env limit the natural conformational heterogeneity of the VLP Env trimers, allowing recognition by bNAbs but not pNAbs. These defective VLPs provide a more homogeneous source of pretriggered Env trimers in a native membrane environment. Thus, these VLPs may facilitate the characterization of this functionally important Env conformation and its interaction with the immune system.IMPORTANCEA major impediment to the development of an effective HIV/AIDS vaccine is the inefficiency with which human immunodeficiency virus (HIV-1) envelope glycoproteins elicit antibodies that neutralize multiple virus strains. Neutralizing antibodies recognize a particular shape of the envelope glycoproteins that resides on the viral membrane before the virus engages the host cell. Here, we report the creation of stable cell lines that inducibly produce non-infectious HIV-like particles. The normally flexible envelope glycoprotein spikes on these virus-like particles have been stabilized in a conformation that is recognized by broadly neutralizing antibodies. These virus-like particles allow the study of the envelope glycoprotein conformation, its modification by sugars, and its ability to elicit desired neutralizing antibodies.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0172024"},"PeriodicalIF":4.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hadley E Neal, Chelsea T Barrett, Kearstin Edmonds, Carole L Moncman, Rebecca Ellis Dutch
The respiratory syncytial virus (RSV) fusion protein (F) facilitates virus-cell membrane fusion, which is critical for viral entry, and cell-cell fusion. In contrast to many type I fusion proteins, RSV F must be proteolytically cleaved at two distinct sites to be fusogenic. Cleavage at both sites results in the release of a 27 amino-acid fragment, termed Pep27. We examined proteolytic processing and the role of Pep27 for RSV F from both RSV A2 and RSV B9320 laboratory-adapted strains, allowing important comparisons between A and B clade F proteins. F from both clades was cleaved at both sites, and pulse-chase analysis indicated that cleavage at both sites occurs early after synthesis, most likely within the secretory pathway. Mutation of either site to alter the furin recognition motif blocked cell-cell fusion activity. To assess the role of Pep27 in F processing and expression, we deleted the Pep27 fragment, but preserved the cleavage sites. Deletion of Pep27 reduced F surface expression and cell-cell fusion. Two conserved N-linked glycosylation sites within Pep 27 are present in both the RSV A2 and RSV B9320 F. Randomization of the Pep27 sequence, while conserving the two N-liked glycosylation sites, did not significantly change surface expression, and only modestly reduced cell-cell fusion. However, the disruption of either Pep27 glycosylation site reduced cell-cell fusion. This work clarifies the timing of RSV F proteolytic cleavage and offers insight into the crucial role the N-linked glycosylation sites within Pep27 play in the biological function of F.
呼吸道合胞病毒(RSV)融合蛋白(F)可促进病毒-细胞膜融合(这对病毒进入和细胞-细胞融合至关重要)。与许多 I 型融合蛋白不同的是,RSV F 必须在两个不同的位点上进行蛋白水解才能产生融合。这两个位点的裂解都会释放出一个 27 个氨基酸的片段,称为 Pep27。我们研究了 RSV A2 和 RSV B9320 实验室适应株的 RSV F 的蛋白水解过程和 Pep27 的作用,从而对 A 支系和 B 支系的 F 蛋白进行了重要比较。两个支系的 F 蛋白都在两个位点被裂解,脉冲追逐分析表明,两个位点的裂解都发生在合成后的早期,很可能是在分泌途径中。突变任何一个位点以改变呋喃识别基序,都会阻止细胞-细胞融合活性。为了评估 Pep27 在 F 加工和表达中的作用,我们删除了 Pep27 片段,但保留了裂解位点。Pep27的缺失降低了F的表面表达和细胞融合。Pep27 中的两个保守的 N-连接糖基化位点存在于 RSV A2 和 RSV B9320 F 中。随机化 Pep27 序列虽然保留了两个 N-连接糖基化位点,但并没有显著改变 F 的表面表达,仅适度降低了细胞融合。然而,破坏任何一个 Pep27 糖基化位点都会降低细胞融合。这项工作明确了 RSV F 蛋白质解裂的时间,并深入揭示了 Pep27 中的 N-连接糖基化位点在 F 的生物功能中发挥的关键作用。
{"title":"Examination of respiratory syncytial virus fusion protein proteolytic processing and roles of the P27 domain.","authors":"Hadley E Neal, Chelsea T Barrett, Kearstin Edmonds, Carole L Moncman, Rebecca Ellis Dutch","doi":"10.1128/jvi.01639-24","DOIUrl":"https://doi.org/10.1128/jvi.01639-24","url":null,"abstract":"<p><p>The respiratory syncytial virus (RSV) fusion protein (F) facilitates virus-cell membrane fusion, which is critical for viral entry, and cell-cell fusion. In contrast to many type I fusion proteins, RSV F must be proteolytically cleaved at two distinct sites to be fusogenic. Cleavage at both sites results in the release of a 27 amino-acid fragment, termed Pep27. We examined proteolytic processing and the role of Pep27 for RSV F from both RSV A2 and RSV B9320 laboratory-adapted strains, allowing important comparisons between A and B clade F proteins. F from both clades was cleaved at both sites, and pulse-chase analysis indicated that cleavage at both sites occurs early after synthesis, most likely within the secretory pathway. Mutation of either site to alter the furin recognition motif blocked cell-cell fusion activity. To assess the role of Pep27 in F processing and expression, we deleted the Pep27 fragment, but preserved the cleavage sites. Deletion of Pep27 reduced F surface expression and cell-cell fusion. Two conserved N-linked glycosylation sites within Pep 27 are present in both the RSV A2 and RSV B9320 F. Randomization of the Pep27 sequence, while conserving the two N-liked glycosylation sites, did not significantly change surface expression, and only modestly reduced cell-cell fusion. However, the disruption of either Pep27 glycosylation site reduced cell-cell fusion. This work clarifies the timing of RSV F proteolytic cleavage and offers insight into the crucial role the N-linked glycosylation sites within Pep27 play in the biological function of F.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0163924"},"PeriodicalIF":4.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections, with no currently available small-molecule drugs that are both safe and effective. A major obstacle in antiviral drug development is the rapid emergence of drug-resistant viral strains. Targeting multiple viral compounds may help mitigate the development of resistance. Herein, we conducted a drug screening using the Antiviral Traditional Chinese Medicine Active Compound Library, aiming to identify compounds that simultaneously target the RSV fusion (F) protein, glycoprotein (G), and the host heparan sulfate proteoglycans (HSPGs). From this screening, 10 candidate compounds were identified for their ability to interact with all three targets. Among these 10 candidates, chebulagic acid (CHLA) and punicalagin (PUG) demonstrated the most potent inhibition of RSV replication. In vitro dose-response assays confirmed the antiviral efficacy of CHLA (IC50: 0.07864 µM) and PUG (IC50: 0.08065 µM). Further experiments revealed both CHLA and PUG disrupt RSV attachment and membrane fusion by targeting the RSV-F and G proteins, rather than HSPG. Notably, CHLA and PUG were found to bind to the CX3C motif of the RSV-G protein, with docking assays predicting their binding sites at cysteines 176 and 182. Additionally, CHLA enhanced the conformational stability of the RSV-F protein before fusion. In an in vivo study, both CHLA and PUG were shown to alleviate RSV-induced pulmonary pathology by reducing viral titers, mitigating lung injury, and suppressing the inflammatory responses in the lungs. Our findings suggest that CHLA and PUG hold potential as therapeutic agents for RSV infection.IMPORTANCEA significant challenge in developing anti-respiratory syncytial virus (RSV) agents is the rapid emergence of resistant viral strains. Designing drugs that target multiple viral components can effectively reduce the likelihood of developing resistant strains. In this study, we screened compounds from the Antiviral Traditional Chinese Medicine Active Compound Library, aiming to simultaneously targe the RSV fusion (F) protein, glycoprotein (G), and host heparan sulfate proteoglycans (HSPGs). Our findings revealed that chebulagic acid (CHLA) and punicalagin (PUG) significantly inhibited RSV replication both in vitro and in vivo and interacted with all three targets. Both CHLA and PUG were able to disrupt RSV attachment and membrane fusion. Mechanistically, CHLA and PUG were found to bind to the CX3C motif of the RSV-G protein, with CHLA also enhancing the conformational stability of the RSV-F protein before fusion. In conclusion, our study suggests that CHLA and PUG hold promise as therapeutic agents against RSV infection.
{"title":"Both chebulagic acid and punicalagin inhibit respiratory syncytial virus entry via multi-targeting glycoprotein and fusion protein.","authors":"Yingcai Xiong, Keyu Tao, Tao Li, Yinghui Zhou, Zhaowei Zhang, Weiying Ou, Zhao Wang, Shouchuan Wang, Yayi Hou, Peng Cao, Jianjian Ji","doi":"10.1128/jvi.01536-24","DOIUrl":"https://doi.org/10.1128/jvi.01536-24","url":null,"abstract":"<p><p>Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections, with no currently available small-molecule drugs that are both safe and effective. A major obstacle in antiviral drug development is the rapid emergence of drug-resistant viral strains. Targeting multiple viral compounds may help mitigate the development of resistance. Herein, we conducted a drug screening using the Antiviral Traditional Chinese Medicine Active Compound Library, aiming to identify compounds that simultaneously target the RSV fusion (F) protein, glycoprotein (G), and the host heparan sulfate proteoglycans (HSPGs). From this screening, 10 candidate compounds were identified for their ability to interact with all three targets. Among these 10 candidates, chebulagic acid (CHLA) and punicalagin (PUG) demonstrated the most potent inhibition of RSV replication. <i>In vitro</i> dose-response assays confirmed the antiviral efficacy of CHLA (IC50: 0.07864 µM) and PUG (IC50: 0.08065 µM). Further experiments revealed both CHLA and PUG disrupt RSV attachment and membrane fusion by targeting the RSV-F and G proteins, rather than HSPG. Notably, CHLA and PUG were found to bind to the CX3C motif of the RSV-G protein, with docking assays predicting their binding sites at cysteines 176 and 182. Additionally, CHLA enhanced the conformational stability of the RSV-F protein before fusion. In an <i>in vivo</i> study, both CHLA and PUG were shown to alleviate RSV-induced pulmonary pathology by reducing viral titers, mitigating lung injury, and suppressing the inflammatory responses in the lungs. Our findings suggest that CHLA and PUG hold potential as therapeutic agents for RSV infection.IMPORTANCEA significant challenge in developing anti-respiratory syncytial virus (RSV) agents is the rapid emergence of resistant viral strains. Designing drugs that target multiple viral components can effectively reduce the likelihood of developing resistant strains. In this study, we screened compounds from the Antiviral Traditional Chinese Medicine Active Compound Library, aiming to simultaneously targe the RSV fusion (F) protein, glycoprotein (G), and host heparan sulfate proteoglycans (HSPGs). Our findings revealed that chebulagic acid (CHLA) and punicalagin (PUG) significantly inhibited RSV replication both <i>in vitro</i> and <i>in vivo</i> and interacted with all three targets. Both CHLA and PUG were able to disrupt RSV attachment and membrane fusion. Mechanistically, CHLA and PUG were found to bind to the CX3C motif of the RSV-G protein, with CHLA also enhancing the conformational stability of the RSV-F protein before fusion. In conclusion, our study suggests that CHLA and PUG hold promise as therapeutic agents against RSV infection.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0153624"},"PeriodicalIF":4.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jacob C Steigmann, Xiaofeng Zhou, Lauren N Suttenberg, Irha Salman, Zainab F Rehmathullah, Jason B Weinberg
The immunoproteasome (IP) is a predominantly inducible component of the ubiquitin proteasome system that plays key roles in multiple aspects of immune function, inflammation, and protein homeostasis. We used murine hepatitis virus strain 1 (MHV-1), a mouse coronavirus, to define the role of IP activity during acute coronavirus respiratory infection. Expression of the β5i subunit of the IP and cytokines that induce IP activity, including IFN-γ, TNF-α, and IFN-β, increased in lungs and livers of CH3/HeJ mice following intranasal infection with MHV-1. IP inhibition using ONX-0914 did not affect MHV-1 replication in bone marrow-derived dendritic cells in vitro. IP inhibition in vivo exacerbated virus-induced weight loss and mortality but had no effect on virus replication in lungs or livers. IP inhibition had minimal effect on virus-induced pulmonary inflammation but led to substantially increased liver pathology, including greater upregulation of pro-inflammatory cytokines and histological evidence of inflammation and necrosis. Those findings were associated with evidence of increased endoplasmic reticulum stress although not with accumulation of ubiquitinated protein. Our results indicate that the IP is a protective host factor during acute MHV-1 infection.
Importance: Inflammatory responses triggered by acute infection by respiratory viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drive morbidity and mortality. Infection of mice with murine hepatitis virus strain 1 (MHV-1), a mouse coronavirus, is a useful model to study the pathogenesis of coronavirus respiratory infections. The immunoproteasome is an inducible component of the ubiquitin proteasome system that is poised to contribute to multiple aspects of immune function, inflammation, and protein homeostasis during an infection. We used the MHV-1 model to define the role of the immunoproteasome in coronavirus pathogenesis. We found that immunoproteasome subunit expression increases in the lungs and the liver during acute MHV-1 respiratory infection. Inhibition of immunoproteasome activity did not affect MHV-1 replication but increased MHV-1-induced weight loss, mortality, and inflammation in lungs and livers. Thus, our findings indicate that the immunoproteasome is a critical protective host factor during coronavirus respiratory infection.
免疫蛋白酶体(IP)是泛素蛋白酶体系统的主要诱导成分,在免疫功能、炎症和蛋白质稳态等多个方面发挥着关键作用。我们利用小鼠肝炎病毒 1 株(MHV-1)(一种小鼠冠状病毒)来确定 IP 在冠状病毒急性呼吸道感染期间的作用。鼻内感染 MHV-1 后,CH3/HeJ 小鼠肺部和肝脏中 IP 的 β5i 亚基和诱导 IP 活性的细胞因子(包括 IFN-γ、TNF-α 和 IFN-β)的表达量增加。使用 ONX-0914 抑制 IP 不会影响骨髓树突状细胞中 MHV-1 的体外复制。体内的 IP 抑制会加剧病毒引起的体重下降和死亡率,但对肺部或肝脏中的病毒复制没有影响。IP 抑制对病毒诱导的肺部炎症影响极小,但会导致肝脏病理变化显著增加,包括促炎细胞因子的更高上调以及炎症和坏死的组织学证据。这些发现与内质网应激增加的证据有关,但与泛素化蛋白质的积累无关。我们的研究结果表明,在 MHV-1 急性感染期间,IP 是一种保护性宿主因子:重要意义:呼吸道病毒(如严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2))急性感染引发的炎症反应会导致发病和死亡。用小鼠冠状病毒 1 型肝炎病毒(MHV-1)感染小鼠是研究冠状病毒呼吸道感染发病机制的有用模型。免疫蛋白酶体是泛素蛋白酶体系统的一个可诱导成分,在感染期间可对免疫功能、炎症和蛋白质稳态等多个方面做出贡献。我们利用 MHV-1 模型来确定免疫蛋白酶体在冠状病毒发病机制中的作用。我们发现,在急性 MHV-1 呼吸道感染期间,免疫蛋白酶体亚基在肺部和肝脏中的表达增加。抑制免疫蛋白酶体的活性不会影响 MHV-1 的复制,但会增加 MHV-1 引起的体重下降、死亡率以及肺和肝脏的炎症。因此,我们的研究结果表明,在冠状病毒呼吸道感染期间,免疫蛋白酶体是一种关键的宿主保护因子。
{"title":"Effects of immunoproteasome inhibition on acute respiratory infection with murine hepatitis virus strain 1.","authors":"Jacob C Steigmann, Xiaofeng Zhou, Lauren N Suttenberg, Irha Salman, Zainab F Rehmathullah, Jason B Weinberg","doi":"10.1128/jvi.01238-24","DOIUrl":"https://doi.org/10.1128/jvi.01238-24","url":null,"abstract":"<p><p>The immunoproteasome (IP) is a predominantly inducible component of the ubiquitin proteasome system that plays key roles in multiple aspects of immune function, inflammation, and protein homeostasis. We used murine hepatitis virus strain 1 (MHV-1), a mouse coronavirus, to define the role of IP activity during acute coronavirus respiratory infection. Expression of the β5i subunit of the IP and cytokines that induce IP activity, including IFN-γ, TNF-α, and IFN-β, increased in lungs and livers of CH3/HeJ mice following intranasal infection with MHV-1. IP inhibition using ONX-0914 did not affect MHV-1 replication in bone marrow-derived dendritic cells <i>in vitro</i>. IP inhibition <i>in vivo</i> exacerbated virus-induced weight loss and mortality but had no effect on virus replication in lungs or livers. IP inhibition had minimal effect on virus-induced pulmonary inflammation but led to substantially increased liver pathology, including greater upregulation of pro-inflammatory cytokines and histological evidence of inflammation and necrosis. Those findings were associated with evidence of increased endoplasmic reticulum stress although not with accumulation of ubiquitinated protein. Our results indicate that the IP is a protective host factor during acute MHV-1 infection.</p><p><strong>Importance: </strong>Inflammatory responses triggered by acute infection by respiratory viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drive morbidity and mortality. Infection of mice with murine hepatitis virus strain 1 (MHV-1), a mouse coronavirus, is a useful model to study the pathogenesis of coronavirus respiratory infections. The immunoproteasome is an inducible component of the ubiquitin proteasome system that is poised to contribute to multiple aspects of immune function, inflammation, and protein homeostasis during an infection. We used the MHV-1 model to define the role of the immunoproteasome in coronavirus pathogenesis. We found that immunoproteasome subunit expression increases in the lungs and the liver during acute MHV-1 respiratory infection. Inhibition of immunoproteasome activity did not affect MHV-1 replication but increased MHV-1-induced weight loss, mortality, and inflammation in lungs and livers. Thus, our findings indicate that the immunoproteasome is a critical protective host factor during coronavirus respiratory infection.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0123824"},"PeriodicalIF":4.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}