首页 > 最新文献

ERN: Portfolio Optimization (Topic)最新文献

英文 中文
The Merit of High-Frequency Data in Portfolio Allocation 高频数据在投资组合配置中的价值
Pub Date : 2011-09-12 DOI: 10.2139/ssrn.1926098
N. Hautsch, Lada M. Kyj, P. Malec
This paper addresses the open debate about the usefulness of high-frequency (HF) data in large-scale portfolio allocation. Daily covariances are estimated based on HF data of the S&P 500 universe employing a blocked realized kernel estimator. We propose forecasting covariance matrices using a multi-scale spectral decomposition where volatilities, correlation eigenvalues and eigenvectors evolve on different frequencies. In an extensive out-of-sample forecasting study, we show that the proposed approach yields less risky and more diversified portfolio allocations as prevailing methods employing daily data. These performance gains hold over longer horizons than previous studies have shown.
本文讨论了关于高频数据在大规模投资组合配置中的有用性的公开辩论。每日协方差的估计是基于高频数据的标准普尔500宇宙采用阻塞实现核估计。我们提出使用多尺度谱分解预测协方差矩阵,其中波动性、相关特征值和特征向量在不同频率上演化。在一项广泛的样本外预测研究中,我们表明,与采用日常数据的流行方法相比,所提出的方法产生的风险更小,投资组合配置更多样化。与之前的研究结果相比,这些绩效提升的持续时间更长。
{"title":"The Merit of High-Frequency Data in Portfolio Allocation","authors":"N. Hautsch, Lada M. Kyj, P. Malec","doi":"10.2139/ssrn.1926098","DOIUrl":"https://doi.org/10.2139/ssrn.1926098","url":null,"abstract":"This paper addresses the open debate about the usefulness of high-frequency (HF) data in large-scale portfolio allocation. Daily covariances are estimated based on HF data of the S&P 500 universe employing a blocked realized kernel estimator. We propose forecasting covariance matrices using a multi-scale spectral decomposition where volatilities, correlation eigenvalues and eigenvectors evolve on different frequencies. In an extensive out-of-sample forecasting study, we show that the proposed approach yields less risky and more diversified portfolio allocations as prevailing methods employing daily data. These performance gains hold over longer horizons than previous studies have shown.","PeriodicalId":178382,"journal":{"name":"ERN: Portfolio Optimization (Topic)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129260252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
Return Prediction and Portfolio Selection: A Distributional Approach 收益预测与投资组合选择:一种分布方法
Pub Date : 2011-07-01 DOI: 10.2139/ssrn.1964030
Min Zhu
The inquiries to return predictability are traditionally limited to the first two moments, mean and volatility. Analogously, literature on portfolio selection also stems from a moment-based analysis with up to the fourth moment being considered. This paper develops a distribution-based framework for both return prediction and portfolio selection. More specifically, a time-varying return distribution is modeled through quantile regression and copulas, using the quantile approach to extract information in marginal distributions and copulas to capture dependence structure. A nonlinear utility function is proposed for portfolio selection which utilizes the full underlying return distribution. An empirical application to US data highlights not only the predictability of the stock and bond return distributions, but also the additional information provided by the distributional approach which cannot be captured by the traditional moment-based methods.
传统上,对可预测性的查询仅限于前两个时刻,即均值和波动性。类似地,关于投资组合选择的文献也源于基于时刻的分析,最多考虑到第四个时刻。本文开发了一个基于分布的收益预测和投资组合选择框架。更具体地说,通过分位数回归和copula对时变收益分布进行建模,使用分位数方法提取边缘分布和copula中的信息来捕获依赖结构。提出了一种非线性效用函数用于投资组合选择,该函数利用了全部潜在收益分布。对美国数据的经验应用不仅突出了股票和债券回报分布的可预测性,而且还突出了分布方法提供的传统基于矩的方法无法捕获的附加信息。
{"title":"Return Prediction and Portfolio Selection: A Distributional Approach","authors":"Min Zhu","doi":"10.2139/ssrn.1964030","DOIUrl":"https://doi.org/10.2139/ssrn.1964030","url":null,"abstract":"The inquiries to return predictability are traditionally limited to the first two moments, mean and volatility. Analogously, literature on portfolio selection also stems from a moment-based analysis with up to the fourth moment being considered. This paper develops a distribution-based framework for both return prediction and portfolio selection. More specifically, a time-varying return distribution is modeled through quantile regression and copulas, using the quantile approach to extract information in marginal distributions and copulas to capture dependence structure. A nonlinear utility function is proposed for portfolio selection which utilizes the full underlying return distribution. An empirical application to US data highlights not only the predictability of the stock and bond return distributions, but also the additional information provided by the distributional approach which cannot be captured by the traditional moment-based methods.","PeriodicalId":178382,"journal":{"name":"ERN: Portfolio Optimization (Topic)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115347748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ERN: Portfolio Optimization (Topic)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1