首页 > 最新文献

New & Renewable Energy最新文献

英文 中文
CNN-LSTM based Wind Power Prediction System to Improve Accuracy 基于CNN-LSTM的风电预测系统提高预测精度
Pub Date : 1900-01-01 DOI: 10.7849/ksnre.2022.0001
Rae-Jin Park, Sungwoo Kang, Jaehyeong Lee, Seungmin Jung
In this study, we propose a wind power generation prediction system that applies machine learning and data mining to predict wind power generation. This system increases the utilization rate of new and renewable energy sources. For time-series data, the data set was established by measuring wind speed, wind generation, and environmental factors influencing the wind speed. The data set was pre-processed so that it could be applied appropriately to the model. The prediction system applied the CNN (Convolutional Neural Network) to the data mining process and then used the LSTM (Long Short-Term Memory) to learn and make predictions. The preciseness of the proposed system is verified by comparing the prediction data with the actual data, according to the presence or absence of data mining in the model of the prediction system.
在这项研究中,我们提出了一个风力发电预测系统,该系统应用机器学习和数据挖掘来预测风力发电。该系统提高了新能源和可再生能源的利用率。对于时间序列数据,通过测量风速、风力和影响风速的环境因素建立数据集。对数据集进行预处理,以便可以适当地应用于模型。该预测系统将CNN(卷积神经网络)应用于数据挖掘过程,然后使用LSTM(长短期记忆)进行学习和预测。根据预测系统模型中是否存在数据挖掘,将预测数据与实际数据进行对比,验证了所提系统的准确性。
{"title":"CNN-LSTM based Wind Power Prediction System to Improve Accuracy","authors":"Rae-Jin Park, Sungwoo Kang, Jaehyeong Lee, Seungmin Jung","doi":"10.7849/ksnre.2022.0001","DOIUrl":"https://doi.org/10.7849/ksnre.2022.0001","url":null,"abstract":"In this study, we propose a wind power generation prediction system that applies machine learning and data mining to predict wind power generation. This system increases the utilization rate of new and renewable energy sources. For time-series data, the data set was established by measuring wind speed, wind generation, and environmental factors influencing the wind speed. The data set was pre-processed so that it could be applied appropriately to the model. The prediction system applied the CNN (Convolutional Neural Network) to the data mining process and then used the LSTM (Long Short-Term Memory) to learn and make predictions. The preciseness of the proposed system is verified by comparing the prediction data with the actual data, according to the presence or absence of data mining in the model of the prediction system.","PeriodicalId":178528,"journal":{"name":"New & Renewable Energy","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129552467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mid- and Long-term Forecast of Forest Biomass Energy in South Korea, and Analysis of the Alternative Effects of Fossil Fuel 韩国森林生物质能源中长期预测及化石燃料替代效应分析
Pub Date : 1900-01-01 DOI: 10.7849/ksnre.2022.0021
Seung-Rok Lee, Hee Han, Yoon-Seong Chang, Hanseob Jeong, Soo Min Lee, Gyu-Seong Han
{"title":"Mid- and Long-term Forecast of Forest Biomass Energy in South Korea, and Analysis of the Alternative Effects of Fossil Fuel","authors":"Seung-Rok Lee, Hee Han, Yoon-Seong Chang, Hanseob Jeong, Soo Min Lee, Gyu-Seong Han","doi":"10.7849/ksnre.2022.0021","DOIUrl":"https://doi.org/10.7849/ksnre.2022.0021","url":null,"abstract":"","PeriodicalId":178528,"journal":{"name":"New & Renewable Energy","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123899050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Electrical Energy Production Using Biomass 利用生物质生产电能
Pub Date : 1900-01-01 DOI: 10.7849/ksnre.2023.0003
Jongseo Lee, Sang-Soo Han, Doyeun Kim, JuHyun Kim, Sang-Bong Park
{"title":"Electrical Energy Production Using Biomass","authors":"Jongseo Lee, Sang-Soo Han, Doyeun Kim, JuHyun Kim, Sang-Bong Park","doi":"10.7849/ksnre.2023.0003","DOIUrl":"https://doi.org/10.7849/ksnre.2023.0003","url":null,"abstract":"","PeriodicalId":178528,"journal":{"name":"New & Renewable Energy","volume":"104 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132948915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Factors Driving the Participation of Small Scale Renewable Power Providers in the Power Brokerage Market 小型可再生能源供应商参与电力经纪市场的驱动因素分析
Pub Date : 1900-01-01 DOI: 10.7849/ksnre.2022.0016
L. Dmitriy, J. Bae
{"title":"Analysis of Factors Driving the Participation of Small Scale Renewable Power Providers in the Power Brokerage Market","authors":"L. Dmitriy, J. Bae","doi":"10.7849/ksnre.2022.0016","DOIUrl":"https://doi.org/10.7849/ksnre.2022.0016","url":null,"abstract":"","PeriodicalId":178528,"journal":{"name":"New & Renewable Energy","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130640132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Characteristics of Landfill Gas Generation by Separate Landfill of Construction Waste and Mixed Landfill with Household Waste 建筑垃圾分类填埋与生活垃圾混合填埋产气特性研究
Pub Date : 1900-01-01 DOI: 10.7849/ksnre.2022.0029
Jong-Keun Park, Seung-Kyu Chun
{"title":"Characteristics of Landfill Gas Generation by Separate Landfill of Construction Waste and Mixed Landfill with Household Waste","authors":"Jong-Keun Park, Seung-Kyu Chun","doi":"10.7849/ksnre.2022.0029","DOIUrl":"https://doi.org/10.7849/ksnre.2022.0029","url":null,"abstract":"","PeriodicalId":178528,"journal":{"name":"New & Renewable Energy","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121833240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
S. Korea’s Approach Strategy through Policy Analysis of Major Countries to Promote the Use of Forest Biomass as Renewable Energy 从主要国家的政策分析看韩国促进森林生物质可再生能源利用的方法策略
Pub Date : 1900-01-01 DOI: 10.7849/ksnre.2022.0020
Seung-Rok Lee, Sehun Park, Moon-Hyun Koh, Gyu-Seong Han
{"title":"S. Korea’s Approach Strategy through Policy Analysis of Major Countries to Promote the Use of Forest Biomass as Renewable Energy","authors":"Seung-Rok Lee, Sehun Park, Moon-Hyun Koh, Gyu-Seong Han","doi":"10.7849/ksnre.2022.0020","DOIUrl":"https://doi.org/10.7849/ksnre.2022.0020","url":null,"abstract":"","PeriodicalId":178528,"journal":{"name":"New & Renewable Energy","volume":"134 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134066619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
New & Renewable Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1