Epilepsy is a brain disorder characterized by recurrent seizures, which are brief episodes of abnormal electrical activity in the brain and involuntary movement that can lead to physical injury and loss of consciousness. Seizures are canonically accompanied by increased inflammatory cytokine production that promotes neuroinflammation, brain pathology, and seizure propagation. Understanding the source of pro-inflammatory cytokines which promote seizure pathogenesis could be a gateway to precision epilepsy drug design. This review discusses the inflammasome in epilepsy including its role in seizure propagation and negative impacts on brain health. The inflammasome is a multiprotein complex that coordinates IL-1β and IL-18 production in response to tissue damage, cellular stress, and infection. Clinical evidence for inflammasome signaling in epileptogenesis is reviewed followed by a discussion of emerging strategies to modulate inflammasome activity in epilepsy.
{"title":"Role of inflammasomes and neuroinflammation in epilepsy","authors":"Ava Hollis, John R. Lukens","doi":"10.1111/imr.13421","DOIUrl":"10.1111/imr.13421","url":null,"abstract":"<p>Epilepsy is a brain disorder characterized by recurrent seizures, which are brief episodes of abnormal electrical activity in the brain and involuntary movement that can lead to physical injury and loss of consciousness. Seizures are canonically accompanied by increased inflammatory cytokine production that promotes neuroinflammation, brain pathology, and seizure propagation. Understanding the source of pro-inflammatory cytokines which promote seizure pathogenesis could be a gateway to precision epilepsy drug design. This review discusses the inflammasome in epilepsy including its role in seizure propagation and negative impacts on brain health. The inflammasome is a multiprotein complex that coordinates IL-1β and IL-18 production in response to tissue damage, cellular stress, and infection. Clinical evidence for inflammasome signaling in epileptogenesis is reviewed followed by a discussion of emerging strategies to modulate inflammasome activity in epilepsy.</p>","PeriodicalId":178,"journal":{"name":"Immunological Reviews","volume":"329 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environmental insults during early development heavily affect brain trajectories. Among these, maternal infections, high-fat diet regimens, and sleep disturbances pose a significant risk for neurodevelopmental derangements in the offspring. Notably, scattered evidence is starting to emerge that also paternal lifestyle habits may impact the offspring development. Given their key role in controlling neurogenesis, synaptogenesis and shaping neuronal circuits, microglia represent the most likely suspects of mediating the detrimental effects of prenatal insults. For some of these environmental triggers, like maternal infections, ample literature evidence demonstrates the central role of microglia, also delineating the specific transcriptomic and proteomic profiles induced by these insults. In other contexts, the analysis of microglia is still in its infancy. Fostering these studies is needed to define microglia as potential therapeutic target in the frame of disorders consequent to maternal immune activation.
{"title":"Prenatal drivers of microglia vulnerability in the adult","authors":"Erica Tagliatti, Matteo Bizzotto, Raffaella Morini, Fabia Filipello, Marco Rasile, Michela Matteoli","doi":"10.1111/imr.13418","DOIUrl":"10.1111/imr.13418","url":null,"abstract":"<p>Environmental insults during early development heavily affect brain trajectories. Among these, maternal infections, high-fat diet regimens, and sleep disturbances pose a significant risk for neurodevelopmental derangements in the offspring. Notably, scattered evidence is starting to emerge that also paternal lifestyle habits may impact the offspring development. Given their key role in controlling neurogenesis, synaptogenesis and shaping neuronal circuits, microglia represent the most likely suspects of mediating the detrimental effects of prenatal insults. For some of these environmental triggers, like maternal infections, ample literature evidence demonstrates the central role of microglia, also delineating the specific transcriptomic and proteomic profiles induced by these insults. In other contexts, the analysis of microglia is still in its infancy. Fostering these studies is needed to define microglia as potential therapeutic target in the frame of disorders consequent to maternal immune activation.</p>","PeriodicalId":178,"journal":{"name":"Immunological Reviews","volume":"327 1","pages":"100-110"},"PeriodicalIF":7.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imr.13418","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jacob M. Stillman, Tsuyoshi Kiniwa, Dorothy P. Schafer
Nucleic acids are a critical trigger for the innate immune response to infection, wherein pathogen-derived RNA and DNA are sensed by nucleic acid sensing receptors. This subsequently drives the production of type I interferon and other inflammatory cytokines to combat infection. While the system is designed such that these receptors should specifically recognize pathogen-derived nucleic acids, it is now clear that self-derived RNA and DNA can also stimulate these receptors to cause aberrant inflammation and autoimmune disease. Intriguingly, similar pathways are now emerging in the central nervous system in neurons and glial cells. As in the periphery, these signaling pathways are active in neurons and glia to present the spread of pathogens in the CNS. They further appear to be active even under steady conditions to regulate neuronal development and function, and they can become activated aberrantly during disease to propagate neuroinflammation and neurodegeneration. Here, we review the emerging new roles for nucleic acid sensing mechanisms in the CNS and raise open questions that we are poised to explore in the future.
核酸是先天性免疫对感染做出反应的关键触发器,核酸感应受体会感应到病原体衍生的 RNA 和 DNA。随后,I 型干扰素和其他炎症细胞因子就会产生,以对抗感染。虽然该系统的设计使这些受体能专门识别病原体衍生的核酸,但现在很清楚,自身衍生的 RNA 和 DNA 也能刺激这些受体,导致异常炎症和自身免疫性疾病。有趣的是,在中枢神经系统的神经元和神经胶质细胞中也出现了类似的途径。与外周系统一样,这些信号通路在神经元和神经胶质细胞中也很活跃,从而导致病原体在中枢神经系统中扩散。即使在稳定状态下,它们似乎也会进一步活跃起来,以调节神经元的发育和功能,而且在疾病期间,它们会异常激活,以传播神经炎症和神经退行性变。在此,我们回顾了核酸传感机制在中枢神经系统中新出现的作用,并提出了我们准备在未来探索的开放性问题。
{"title":"Nucleic acid sensing in the central nervous system: Implications for neural circuit development, function, and degeneration","authors":"Jacob M. Stillman, Tsuyoshi Kiniwa, Dorothy P. Schafer","doi":"10.1111/imr.13420","DOIUrl":"10.1111/imr.13420","url":null,"abstract":"<div>\u0000 \u0000 <p>Nucleic acids are a critical trigger for the innate immune response to infection, wherein pathogen-derived RNA and DNA are sensed by nucleic acid sensing receptors. This subsequently drives the production of type I interferon and other inflammatory cytokines to combat infection. While the system is designed such that these receptors should specifically recognize pathogen-derived nucleic acids, it is now clear that self-derived RNA and DNA can also stimulate these receptors to cause aberrant inflammation and autoimmune disease. Intriguingly, similar pathways are now emerging in the central nervous system in neurons and glial cells. As in the periphery, these signaling pathways are active in neurons and glia to present the spread of pathogens in the CNS. They further appear to be active even under steady conditions to regulate neuronal development and function, and they can become activated aberrantly during disease to propagate neuroinflammation and neurodegeneration. Here, we review the emerging new roles for nucleic acid sensing mechanisms in the CNS and raise open questions that we are poised to explore in the future.</p>\u0000 </div>","PeriodicalId":178,"journal":{"name":"Immunological Reviews","volume":"327 1","pages":"71-82"},"PeriodicalIF":7.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It was at the turn of the 20th century, that immune serum was found both to save children dying from toxins of deadly pathogens, and to kill a dog within minutes following an injection of harmless doses of sea anemone toxins. This means that, before being formally identified in immune serum, antibodies were already known to be both protective and pathogenic. For this provocative finding, Charles Richet was awarded the 1913 Nobel Prize in Physiology or Medicine. Because, as its name said, anaphylaxis was understood as “the contrary of protection,” unique mechanisms were found to explain it. Because, as its name did not initially say but finally said, allergy was understood as a reaction “other” than immunity, its symptoms were explained by mechanisms similar to those that explained anaphylaxis. We examined here the intricate relationships between anaphylaxis, allergy and immunity. Progressively anaphylaxis became one among other pathological effects of an immune response, and allergy an inflammatory disease among others. Looking at antibodies back in the past enables us not only to learn where they come from, but also to follow trends that contributed to shape immunology, some of which may persist in today's immunological thinking and say something about the future.
{"title":"Life-threatening antibodies: The discovery of anaphylaxis","authors":"Marc Daëron, Birgitta Heyman, Anne Marie Moulin","doi":"10.1111/imr.13415","DOIUrl":"10.1111/imr.13415","url":null,"abstract":"<div>\u0000 \u0000 <p>It was at the turn of the 20th century, that immune serum was found both to save children dying from toxins of deadly pathogens, and to kill a dog within minutes following an injection of harmless doses of sea anemone toxins. This means that, before being formally identified in immune serum, antibodies were already known to be both protective and pathogenic. For this provocative finding, Charles Richet was awarded the 1913 Nobel Prize in Physiology or Medicine. Because, as its name said, anaphylaxis was understood as “the contrary of protection,” unique mechanisms were found to explain it. Because, as its name did not initially say but finally said, allergy was understood as a reaction “other” than immunity, its symptoms were explained by mechanisms similar to those that explained anaphylaxis. We examined here the intricate relationships between anaphylaxis, allergy and immunity. Progressively anaphylaxis became one among other pathological effects of an immune response, and allergy an inflammatory disease among others. Looking at antibodies back in the past enables us not only to learn where they come from, but also to follow trends that contributed to shape immunology, some of which may persist in today's immunological thinking and say something about the future.</p>\u0000 </div>","PeriodicalId":178,"journal":{"name":"Immunological Reviews","volume":"328 1","pages":"24-38"},"PeriodicalIF":7.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Myelin is the membrane surrounding neuronal axons in the central nervous system (CNS), produced by oligodendrocytes to provide insulation for electrical impulse conduction and trophic/metabolic support. CNS dysfunction occurs following poor development of myelin in infancy, myelin damage in neurological diseases, and impaired regeneration of myelin with disease progression in aging. The lack of approved therapies aimed at supporting myelin health highlights the critical need to identify the cellular and molecular influences on oligodendrocytes. CNS macrophages have been shown to influence the development, maintenance, damage and regeneration of myelin, revealing critical interactions with oligodendrocyte lineage cells. CNS macrophages are comprised of distinct populations, including CNS-resident microglia and cells associated with CNS border regions (the meninges, vasculature, and choroid plexus), in addition to macrophages derived from monocytes infiltrating from the blood. Importantly, the distinct contribution of these macrophage populations to oligodendrocyte lineage responses and myelin health are only just beginning to be uncovered, with the advent of new tools to specifically identify, track, and target macrophage subsets. Here, we summarize the current state of knowledge on the roles of CNS macrophages in myelin health, and recent developments in distinguishing the roles of macrophage populations in development, homeostasis, and disease.
{"title":"CNS macrophage contributions to myelin health","authors":"Alana Hoffmann, Veronique E. Miron","doi":"10.1111/imr.13416","DOIUrl":"10.1111/imr.13416","url":null,"abstract":"<p>Myelin is the membrane surrounding neuronal axons in the central nervous system (CNS), produced by oligodendrocytes to provide insulation for electrical impulse conduction and trophic/metabolic support. CNS dysfunction occurs following poor development of myelin in infancy, myelin damage in neurological diseases, and impaired regeneration of myelin with disease progression in aging. The lack of approved therapies aimed at supporting myelin health highlights the critical need to identify the cellular and molecular influences on oligodendrocytes. CNS macrophages have been shown to influence the development, maintenance, damage and regeneration of myelin, revealing critical interactions with oligodendrocyte lineage cells. CNS macrophages are comprised of distinct populations, including CNS-resident microglia and cells associated with CNS border regions (the meninges, vasculature, and choroid plexus), in addition to macrophages derived from monocytes infiltrating from the blood. Importantly, the distinct contribution of these macrophage populations to oligodendrocyte lineage responses and myelin health are only just beginning to be uncovered, with the advent of new tools to specifically identify, track, and target macrophage subsets. Here, we summarize the current state of knowledge on the roles of CNS macrophages in myelin health, and recent developments in distinguishing the roles of macrophage populations in development, homeostasis, and disease.</p>","PeriodicalId":178,"journal":{"name":"Immunological Reviews","volume":"327 1","pages":"53-70"},"PeriodicalIF":7.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imr.13416","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Markus J. Hofer, Nicholson Modesti, Nicole G. Coufal, Qingde Wang, Sunetra Sase, Jonathan J. Miner, Adeline Vanderver, Mariko L. Bennett
Aicardi-Goutières syndrome (AGS) is a progressive genetic encephalopathy caused by pathogenic mutations in genes controlling cellular anti-viral responses and nucleic acid metabolism. The mutations initiate autoinflammatory processes in the brain and systemically that are triggered by chronic overproduction of type I interferon (IFN), including IFN-alpha. Emerging disease-directed therapies aim to dampen autoinflammation and block cellular responses to IFN production, creating an urgent and unmet need to understand better which cells, compartments, and mechanisms underlying disease pathogenesis. In this review, we highlight existing pre-clinical models of AGS and our current understanding of how causative genetic mutations promote disease in AGS, to promote new model development and a continued focus on improving and directing future therapies.
艾卡迪-古蒂耶尔综合征(AGS)是一种进行性遗传性脑病,由控制细胞抗病毒反应和核酸代谢的基因发生致病性突变引起。基因突变会引发大脑和全身的自身炎症过程,而这种过程是由 I 型干扰素(IFN)(包括 IFN-α)的慢性过量产生所引发的。新出现的疾病导向疗法旨在抑制自体炎症和阻断细胞对 IFN 产生的反应,这就迫切需要更好地了解哪些细胞、区段和疾病发病机制。在这篇综述中,我们将重点介绍现有的 AGS 临床前模型,以及我们目前对致病基因突变如何促进 AGS 疾病的理解,以促进新模型的开发,并继续关注未来疗法的改进和指导。
{"title":"The prototypical interferonopathy: Aicardi-Goutières syndrome from bedside to bench","authors":"Markus J. Hofer, Nicholson Modesti, Nicole G. Coufal, Qingde Wang, Sunetra Sase, Jonathan J. Miner, Adeline Vanderver, Mariko L. Bennett","doi":"10.1111/imr.13413","DOIUrl":"10.1111/imr.13413","url":null,"abstract":"<p>Aicardi-Goutières syndrome (AGS) is a progressive genetic encephalopathy caused by pathogenic mutations in genes controlling cellular anti-viral responses and nucleic acid metabolism. The mutations initiate autoinflammatory processes in the brain and systemically that are triggered by chronic overproduction of type I interferon (IFN), including IFN-alpha. Emerging disease-directed therapies aim to dampen autoinflammation and block cellular responses to IFN production, creating an urgent and unmet need to understand better which cells, compartments, and mechanisms underlying disease pathogenesis. In this review, we highlight existing pre-clinical models of AGS and our current understanding of how causative genetic mutations promote disease in AGS, to promote new model development and a continued focus on improving and directing future therapies.</p>","PeriodicalId":178,"journal":{"name":"Immunological Reviews","volume":"327 1","pages":"83-99"},"PeriodicalIF":7.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imr.13413","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neuroinflammation, characterized by a complex interplay among innate and adaptive immune responses within the central nervous system (CNS), is crucial in responding to infections, injuries, and disease pathologies. However, the dysregulation of the neuroinflammatory response could significantly affect neurons in terms of function and structure, leading to profound health implications. Although tremendous progress has been made in understanding the relationship between neuroinflammatory processes and alterations in neuronal integrity, the specific implications concerning both structure and function have not been extensively covered, with the exception of perspectives on glial activation and neurodegeneration. Thus, this review aims to provide a comprehensive overview of the multifaceted interactions among neurons and key inflammatory players, exploring mechanisms through which inflammation influences neuronal functionality and structural integrity in the CNS. Further, it will discuss how these inflammatory mechanisms lead to impairment in neuronal functions and architecture and highlight the consequences caused by dysregulated neuronal functions, such as cognitive dysfunction and mood disorders. By integrating insights from recent research findings, this review will enhance our understanding of the neuroinflammatory landscape and set the stage for future interventions that could transform current approaches to preserve neuronal integrity and function in CNS-related inflammatory conditions.
{"title":"The impact of neuroinflammation on neuronal integrity","authors":"Bora Tastan, Michael T. Heneka","doi":"10.1111/imr.13419","DOIUrl":"10.1111/imr.13419","url":null,"abstract":"<div>\u0000 \u0000 <p>Neuroinflammation, characterized by a complex interplay among innate and adaptive immune responses within the central nervous system (CNS), is crucial in responding to infections, injuries, and disease pathologies. However, the dysregulation of the neuroinflammatory response could significantly affect neurons in terms of function and structure, leading to profound health implications. Although tremendous progress has been made in understanding the relationship between neuroinflammatory processes and alterations in neuronal integrity, the specific implications concerning both structure and function have not been extensively covered, with the exception of perspectives on glial activation and neurodegeneration. Thus, this review aims to provide a comprehensive overview of the multifaceted interactions among neurons and key inflammatory players, exploring mechanisms through which inflammation influences neuronal functionality and structural integrity in the CNS. Further, it will discuss how these inflammatory mechanisms lead to impairment in neuronal functions and architecture and highlight the consequences caused by dysregulated neuronal functions, such as cognitive dysfunction and mood disorders. By integrating insights from recent research findings, this review will enhance our understanding of the neuroinflammatory landscape and set the stage for future interventions that could transform current approaches to preserve neuronal integrity and function in CNS-related inflammatory conditions.</p>\u0000 </div>","PeriodicalId":178,"journal":{"name":"Immunological Reviews","volume":"327 1","pages":"8-32"},"PeriodicalIF":7.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alzheimer's disease (AD) is a progressive neurological disorder and the most common cause of dementia. Genetic analyses identified apolipoprotein E (APOE) as the strongest genetic risk for late-onset AD. Studies have shown that ApoE modulates AD pathogenesis in part by influencing amyloid-β (Aβ) deposition. However, ApoE also appears to regulate elements of AD via regulation of innate immune response, especially through microglial and astrocyte activation. In model systems, it also regulates changes in T-cells. This review focuses on the key findings that have advanced our understanding of the role of ApoE in the pathogenesis of AD and the current view of innate immune response regulated by ApoE in AD, while discussing open questions and areas for future research.
阿尔茨海默病(AD)是一种进行性神经系统疾病,也是最常见的痴呆症病因。基因分析发现,载脂蛋白 E(APOE)是晚发阿氏痴呆症的最强遗传风险。研究表明,载脂蛋白 E 部分通过影响淀粉样蛋白-β(Aβ)沉积来调节注意力缺失症的发病机制。然而,载脂蛋白E似乎还能通过调节先天性免疫反应,特别是通过小胶质细胞和星形胶质细胞的活化来调节AD的发病因素。在模型系统中,它还能调节 T 细胞的变化。这篇综述将重点讨论推进我们对载脂蛋白E在AD发病机制中作用的理解的主要发现,以及目前对AD中载脂蛋白E调控的先天性免疫反应的看法,同时讨论有待解决的问题和未来研究的领域。
{"title":"Current insights into apolipoprotein E and the immune response in Alzheimer's disease","authors":"Peter Bor-Chian Lin, David M. Holtzman","doi":"10.1111/imr.13414","DOIUrl":"10.1111/imr.13414","url":null,"abstract":"<div>\u0000 \u0000 <p>Alzheimer's disease (AD) is a progressive neurological disorder and the most common cause of dementia. Genetic analyses identified apolipoprotein E (<i>APOE</i>) as the strongest genetic risk for late-onset AD. Studies have shown that ApoE modulates AD pathogenesis in part by influencing amyloid-β (Aβ) deposition. However, ApoE also appears to regulate elements of AD via regulation of innate immune response, especially through microglial and astrocyte activation. In model systems, it also regulates changes in T-cells. This review focuses on the key findings that have advanced our understanding of the role of ApoE in the pathogenesis of AD and the current view of innate immune response regulated by ApoE in AD, while discussing open questions and areas for future research.</p>\u0000 </div>","PeriodicalId":178,"journal":{"name":"Immunological Reviews","volume":"327 1","pages":"43-52"},"PeriodicalIF":7.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alzheimer's disease (AD) is the most common neurodegenerative disorder and cause of dementia. Despite the prevalence of AD, there is a lack of effective disease modifying therapies. Recent evidence indicates that the gut microbiome (GMB) may play a role in AD through its regulation of innate and adaptive immunity. Gut microbes regulate physiology through their production of metabolites and byproducts. Microbial metabolites may be beneficial or detrimental to the pathogenesis and progression of inflammatory diseases. A better understanding of the role GMB-derived metabolites play in AD may lead to the development of therapeutic strategies for AD. In this review, we summarize the function of bioactive GMB-derived metabolites and byproducts and their roles in AD models. We also call for more focus on this area in the gut–brain axis field in order to create effective therapies for AD.
阿尔茨海默病(AD)是最常见的神经退行性疾病,也是痴呆症的病因。尽管阿尔茨海默病的发病率很高,但却缺乏有效的疾病调节疗法。最近的证据表明,肠道微生物组(GMB)可能通过调节先天性免疫和适应性免疫在痴呆症中发挥作用。肠道微生物通过产生代谢物和副产品来调节生理机能。微生物代谢产物可能对炎症性疾病的发病机制和进展有利或有害。更好地了解 GMB 衍生代谢物在 AD 中的作用可能有助于开发 AD 的治疗策略。在这篇综述中,我们总结了生物活性 GMB 衍生代谢物和副产品的功能及其在 AD 模型中的作用。我们还呼吁在肠脑轴领域更多地关注这一领域,以便开发出治疗AD的有效疗法。
{"title":"Gut microbiome-derived metabolites in Alzheimer's disease: Regulation of immunity and potential for therapeutics","authors":"Sidhanth Chandra, Robert J. Vassar","doi":"10.1111/imr.13412","DOIUrl":"10.1111/imr.13412","url":null,"abstract":"<p>Alzheimer's disease (AD) is the most common neurodegenerative disorder and cause of dementia. Despite the prevalence of AD, there is a lack of effective disease modifying therapies. Recent evidence indicates that the gut microbiome (GMB) may play a role in AD through its regulation of innate and adaptive immunity. Gut microbes regulate physiology through their production of metabolites and byproducts. Microbial metabolites may be beneficial or detrimental to the pathogenesis and progression of inflammatory diseases. A better understanding of the role GMB-derived metabolites play in AD may lead to the development of therapeutic strategies for AD. In this review, we summarize the function of bioactive GMB-derived metabolites and byproducts and their roles in AD models. We also call for more focus on this area in the gut–brain axis field in order to create effective therapies for AD.</p>","PeriodicalId":178,"journal":{"name":"Immunological Reviews","volume":"327 1","pages":"33-42"},"PeriodicalIF":7.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imr.13412","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This manuscript sheds light on the impact of maternal breast milk antibodies on infant health. Milk antibodies prepare and protect the newborn against environmental exposure, guide and regulate the offspring's immune system, and promote transgenerational adaptation of the immune system to its environment. While the transfer of IgG across the placenta ceases at birth, milk antibodies are continuously replenished by the maternal immune system. They reflect the mother's real-time adaptation to the environment to which the infant is exposed. They cover the infant's upper respiratory and digestive mucosa and are perfectly positioned to control responses to environmental antigens and might also reach their circulation. Maternal antibodies in breast milk play a key role in the immune defense of the developing child, with a major impact on infectious disease susceptibility in both HIC and LMIC. They also influence the development of another major health burden in children—allergies. Finally, emerging evidence shows that milk antibodies also actively shape immune development. Much of this is likely to be mediated by their effect on the seeding, composition and function of the microbiota, but not only. Further understanding of the bridge that maternal antibodies provide between the child and its environment should enable the best interventions to promote healthy development.
{"title":"Antibodies in breast milk: Pro-bodies designed for healthy newborn development","authors":"Valerie Verhasselt, Julie Tellier, Rita Carsetti, Burcu Tepekule","doi":"10.1111/imr.13411","DOIUrl":"10.1111/imr.13411","url":null,"abstract":"<p>This manuscript sheds light on the impact of maternal breast milk antibodies on infant health. Milk antibodies prepare and protect the newborn against environmental exposure, guide and regulate the offspring's immune system, and promote transgenerational adaptation of the immune system to its environment. While the transfer of IgG across the placenta ceases at birth, milk antibodies are continuously replenished by the maternal immune system. They reflect the mother's real-time adaptation to the environment to which the infant is exposed. They cover the infant's upper respiratory and digestive mucosa and are perfectly positioned to control responses to environmental antigens and might also reach their circulation. Maternal antibodies in breast milk play a key role in the immune defense of the developing child, with a major impact on infectious disease susceptibility in both HIC and LMIC. They also influence the development of another major health burden in children—allergies. Finally, emerging evidence shows that milk antibodies also actively shape immune development. Much of this is likely to be mediated by their effect on the seeding, composition and function of the microbiota, but not only. Further understanding of the bridge that maternal antibodies provide between the child and its environment should enable the best interventions to promote healthy development.</p>","PeriodicalId":178,"journal":{"name":"Immunological Reviews","volume":"328 1","pages":"192-204"},"PeriodicalIF":7.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imr.13411","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}