Arash Alizadeh, Vasileios Touloupidis, João B. P. Soares
A thermodynamic simulation package is developed for the catalytic polymerization of olefins in autoclave slurry, loop slurry, gas-phase, and autoclave solution reactors. The number of components in the reactors may vary from two to six. The simulator uses the Sanchez–Lacombe theory, one of the major thermodynamic models in the polymer industry. Step-by-step instructions on how to specify the system, derive and solve the resulting nonlinear equations, and estimate the required thermodynamic properties are given. The software is used to describe ethylene/1-hexene copolymerizations with hydrogen in different reactors under industrial conditions. These simulations demonstrate why thermodynamic effects must be included in olefin polymerization models.
{"title":"A Thermodynamic Simulation Package for Catalytic Polyolefin Reactors: Development and Applications","authors":"Arash Alizadeh, Vasileios Touloupidis, João B. P. Soares","doi":"10.1002/mren.202200057","DOIUrl":"10.1002/mren.202200057","url":null,"abstract":"<p>A thermodynamic simulation package is developed for the catalytic polymerization of olefins in autoclave slurry, loop slurry, gas-phase, and autoclave solution reactors. The number of components in the reactors may vary from two to six. The simulator uses the Sanchez–Lacombe theory, one of the major thermodynamic models in the polymer industry. Step-by-step instructions on how to specify the system, derive and solve the resulting nonlinear equations, and estimate the required thermodynamic properties are given. The software is used to describe ethylene/1-hexene copolymerizations with hydrogen in different reactors under industrial conditions. These simulations demonstrate why thermodynamic effects must be included in olefin polymerization models.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 4","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46382948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A polymer distribution is usually represented by its moments. Thus, to calculate transport in a polymer system, a formulation for the transport of moments of the polymer is needed. This is only possible if the moments close or if there is a suitable closing condition. To archive this, two simplifications of the Stefan–Maxwell diffusion are derived, which convert the transport equation of polymeric species to a closed set of transport equations for the polymer moments. The first approach corresponds to an infinitely diluted polymer system, whereas the second one describes a highly concentrated polymer system. Both formulations are compared with the full Stefan-Maxwell model of a ternary mixture of a solvent and two polymer species of different chain length.
{"title":"Modeling of Diffusive Transport of Polymers Moments Using Limiting Cases of the Maxwell–Stefan Model","authors":"Stefan Welzel, Winfried Säckel, Ulrich Nieken","doi":"10.1002/mren.202200045","DOIUrl":"10.1002/mren.202200045","url":null,"abstract":"<p>A polymer distribution is usually represented by its moments. Thus, to calculate transport in a polymer system, a formulation for the transport of moments of the polymer is needed. This is only possible if the moments close or if there is a suitable closing condition. To archive this, two simplifications of the Stefan–Maxwell diffusion are derived, which convert the transport equation of polymeric species to a closed set of transport equations for the polymer moments. The first approach corresponds to an infinitely diluted polymer system, whereas the second one describes a highly concentrated polymer system. Both formulations are compared with the full Stefan-Maxwell model of a ternary mixture of a solvent and two polymer species of different chain length.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mren.202200045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46509185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A systematic study of the impact of gas phase composition on the estimation of the reactivity ratios of a Ziegler–Natta catalyst during the gas phase copolymerization of ethylene with 1-butene and 1-hexene has been carried out. The results of the study show that if one uses a realistic equation of state to estimate the co- and anti-solubility effects of multiple species in the gas phase, one can obtain a unique value of the reactivity ratio pair from any number of experiments. However, it is found that using only binary solubility data and ignoring the impact of chemically inert species on solubility will lead to the estimate of composition-dependent reactivity ratio pairs.
{"title":"Estimation of Reactivity Ratios for Olefin Polymerization Catalysts—On the Importance of Thermodynamics","authors":"Niyi B. Ishola, Timothy F. L. McKenna","doi":"10.1002/mren.202200053","DOIUrl":"10.1002/mren.202200053","url":null,"abstract":"<p>A systematic study of the impact of gas phase composition on the estimation of the reactivity ratios of a Ziegler–Natta catalyst during the gas phase copolymerization of ethylene with 1-butene and 1-hexene has been carried out. The results of the study show that if one uses a realistic equation of state to estimate the co- and anti-solubility effects of multiple species in the gas phase, one can obtain a unique value of the reactivity ratio pair from any number of experiments. However, it is found that using only binary solubility data and ignoring the impact of chemically inert species on solubility will lead to the estimate of composition-dependent reactivity ratio pairs.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 4","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48112031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdulrahman Albeladi, Akhlaq Moman, Timothy F. L. McKenna
The impact of common process catalyst poisons on the performance of a 6th generation Ziegler–Natta catalysts during the gas phase polymerization of propylene are examined using two approaches: introducing propylene without purification, or with one or two sets of purification columns, and by introducing carbon dioxide (CO2), oxygen (O2), water (H2O), methanol (CH3OH), ethyl acetate (C4H8O2) and dimethyl sulfoxide (C2H6SO) during the polymerization. As expected, purification columns increases the catalyst activity significantly, slightly reduce catalyst decay. Injecting TiBA during the reaction leads to an activity increase. The addition of two full sets of columns substantially increased the repeatability of polymerization reactions. The power of deactivation of poisons injected during the polymerization reaction is: O2 > CO2 > CH3OH > C2H6SO > C4H8O2 > H2O. Adding CO2, O2, and CH3OH resulted in a progressive decrease in molecular weight while almost no effect is observed with H2O. However, C4H8O2, and C2H6SO resulted in a mild increase in molecular weight. Additionally, the effects on crystallinity and stereoregularity are similar where CO2, O2, H2O and CH3OH caused a progressive decrease while C4H8O2 and C2H6SO resulted in a mild increase, indicating some isotacticity control by these two poisons.
{"title":"Impact of Process Poisons on the Performance of Post-Phthalate Supported Ziegler–Natta Catalysts in Gas Phase Propylene Polymerization","authors":"Abdulrahman Albeladi, Akhlaq Moman, Timothy F. L. McKenna","doi":"10.1002/mren.202200049","DOIUrl":"10.1002/mren.202200049","url":null,"abstract":"<p>The impact of common process catalyst poisons on the performance of a 6th generation Ziegler–Natta catalysts during the gas phase polymerization of propylene are examined using two approaches: introducing propylene without purification, or with one or two sets of purification columns, and by introducing carbon dioxide (CO<sub>2</sub>), oxygen (O<sub>2</sub>), water (H<sub>2</sub>O), methanol (CH<sub>3</sub>OH), ethyl acetate (C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>) and dimethyl sulfoxide (C<sub>2</sub>H<sub>6</sub>SO) during the polymerization. As expected, purification columns increases the catalyst activity significantly, slightly reduce catalyst decay. Injecting TiBA during the reaction leads to an activity increase. The addition of two full sets of columns substantially increased the repeatability of polymerization reactions. The power of deactivation of poisons injected during the polymerization reaction is: O<sub>2</sub> > CO<sub>2</sub> > CH<sub>3</sub>OH > C<sub>2</sub>H<sub>6</sub>SO > C<sub>4</sub>H<sub>8</sub>O<sub>2</sub> > H<sub>2</sub>O. Adding CO<sub>2</sub>, O<sub>2</sub>, and CH<sub>3</sub>OH resulted in a progressive decrease in molecular weight while almost no effect is observed with H<sub>2</sub>O. However, C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>, and C<sub>2</sub>H<sub>6</sub>SO resulted in a mild increase in molecular weight. Additionally, the effects on crystallinity and stereoregularity are similar where CO<sub>2</sub>, O<sub>2</sub>, H<sub>2</sub>O and CH<sub>3</sub>OH caused a progressive decrease while C<sub>4</sub>H<sub>8</sub>O<sub>2</sub> and C<sub>2</sub>H<sub>6</sub>SO resulted in a mild increase, indicating some isotacticity control by these two poisons.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 4","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43344524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marília Caroline C. de Sá, Teresa Córdova, Príamo Albuquerque Melo Jr., Ramón Díaz de León, José Carlos Pinto
The present work presents phenomenological models to describe the coordination polymerization of β-myrcene using the Ziegler–Natta catalyst system composed by neodymium versatate (NdV3), diisobutylaluminum hydride (DIBAH), and dimethyldichlorosilane. The kinetic parameters required to simulate the reactions are estimated, and the amount of DIBAH used as a chain transfer agent (CTA) is obtained by a data reconciliation strategy since it can participate in side reactions. Several experiments are performed at different conditions to evaluate the impact of key operation variables on the control of monomer conversion and average molar masses. It is shown that the initial NdV3, β-myrcene, and DIBAH concentrations exert strong influences on the course of the polymerization. The kinetic mechanism of Coordinative Chain Transfer Polymerization (CCTP) fits well with the data of final average molar masses and monomer conversion, while the dynamic trajectories of these variables are fitted better by kinetic mechanisms of more conventional coordination polymerizations, considering site deactivation and termination by chain transfer. In all cases, the proposed models are able to predict the experimental data well after successful parameter estimation and reconciliation of CTA concentrations, indicating that the kinetic mechanism can be characterized by different kinetic regimes.
{"title":"β-Myrcene Coordination Polymerization: Experimental and Kinetic Modeling Study","authors":"Marília Caroline C. de Sá, Teresa Córdova, Príamo Albuquerque Melo Jr., Ramón Díaz de León, José Carlos Pinto","doi":"10.1002/mren.202200041","DOIUrl":"10.1002/mren.202200041","url":null,"abstract":"<p>The present work presents phenomenological models to describe the coordination polymerization of β-myrcene using the Ziegler–Natta catalyst system composed by neodymium versatate (NdV<sub>3</sub>), diisobutylaluminum hydride (DIBAH), and dimethyldichlorosilane. The kinetic parameters required to simulate the reactions are estimated, and the amount of DIBAH used as a chain transfer agent (CTA) is obtained by a data reconciliation strategy since it can participate in side reactions. Several experiments are performed at different conditions to evaluate the impact of key operation variables on the control of monomer conversion and average molar masses. It is shown that the initial NdV<sub>3</sub>, β-myrcene, and DIBAH concentrations exert strong influences on the course of the polymerization. The kinetic mechanism of Coordinative Chain Transfer Polymerization (CCTP) fits well with the data of final average molar masses and monomer conversion, while the dynamic trajectories of these variables are fitted better by kinetic mechanisms of more conventional coordination polymerizations, considering site deactivation and termination by chain transfer. In all cases, the proposed models are able to predict the experimental data well after successful parameter estimation and reconciliation of CTA concentrations, indicating that the kinetic mechanism can be characterized by different kinetic regimes.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42193924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Front Cover: In article number 2200038, Miguel Rosales-Guzmán and co-workers investigate the effect of reaction temperature and carbon dioxide pressure on the simultaneous copolymerization of 1-octene and glycidyl methacrylate (GMA) in the absence of solvents or stabilizers. Emphasis is given to the molar composition of the obtained copolymers although other features are investigated such as the morphology and the post-polymerization hydrolysis of the epoxy moiety in GMA.