In this work, the double Sumudu–Elzaki transform was used for solving fractional-partial differential equations (FPDEs) with starting and boundary conditions. We will use the fractional-order derivative (Caputo’s derivatives) idea. Theorems and facts that are crucial to the newly introduced transform are also discussed and illustrated. By using this newly designed integral transform and its properties, FPDEs can be reduced into algebraic equations. This strategy has the precise answer since it does not need any discrimination, transformation, or limited assumptions. Five further instances were given to support our conclusions. The results showed that the recommended strategy is superb, reliable, and efficient. It is also a simple method for solving specific problems in a number of applied scientific and technical fields.
{"title":"Solving Partial Differential Equations of Fractional Order by Using a Novel Double Integral Transform","authors":"Shams A. Ahmed, Tarig M. Elzaki, Anis Mohamed","doi":"10.1155/2023/9971083","DOIUrl":"https://doi.org/10.1155/2023/9971083","url":null,"abstract":"In this work, the double Sumudu–Elzaki transform was used for solving fractional-partial differential equations (FPDEs) with starting and boundary conditions. We will use the fractional-order derivative (Caputo’s derivatives) idea. Theorems and facts that are crucial to the newly introduced transform are also discussed and illustrated. By using this newly designed integral transform and its properties, FPDEs can be reduced into algebraic equations. This strategy has the precise answer since it does not need any discrimination, transformation, or limited assumptions. Five further instances were given to support our conclusions. The results showed that the recommended strategy is superb, reliable, and efficient. It is also a simple method for solving specific problems in a number of applied scientific and technical fields.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138509962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Optimization of Plane Image Color Enhancement Processing Based on Computer Vision Virtual Reality","authors":"Mathematical Problems in Engineering","doi":"10.1155/2023/9757931","DOIUrl":"https://doi.org/10.1155/2023/9757931","url":null,"abstract":"<jats:p />","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"45 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138596294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Research and Implementation of Association Analysis of Agricultural Insurance Based on Data Mining Algorithm","authors":"Mathematical Problems in Engineering","doi":"10.1155/2023/9843130","DOIUrl":"https://doi.org/10.1155/2023/9843130","url":null,"abstract":"<jats:p />","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"4 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138595400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Design of Regression Model for MultiParameter Evaluation of English Pronunciation Quality","authors":"Mathematical Problems in Engineering","doi":"10.1155/2023/9832149","DOIUrl":"https://doi.org/10.1155/2023/9832149","url":null,"abstract":"<jats:p />","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"9 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138594389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Application of Multimedia Tilt Photogrammetry Technology Based on Unmanned Aerial Vehicle in Geological Survey","authors":"Mathematical Problems in Engineering","doi":"10.1155/2023/9816709","DOIUrl":"https://doi.org/10.1155/2023/9816709","url":null,"abstract":"<jats:p />","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"43 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138595331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Research on the Financial Support Performance Evaluation of Big Data Industry Development","authors":"Mathematical Problems in Engineering","doi":"10.1155/2023/9785276","DOIUrl":"https://doi.org/10.1155/2023/9785276","url":null,"abstract":"<jats:p />","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"39 26","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138597836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DSS has low machinability characteristics due to its high strength, machining is complicated, and careful attention is required when selecting machining parameters. The main criteria discussed in this paper concern the turning optimization parameters and machining time reduction of DSS 2205 as the work material. The input parameters are cutting velocity, feeds, cutting depth, and tooltip nose radius of the cutting tool. The design of experiments methodology is employed to design the experiments using Design-Expert V12 software. The second-order mathematical model was developed, and analysis of variance was performed to analyze the performance characteristics to recognize the critical variables influencing the output parameter. An artificial neural network (ANN) backpropagation algorithm using MATLAB software was used to develop the mathematical model and optimize the output. The model was developed, and the results were optimized using MATLAB software’s ANN back propagation method to find the best possible solutions. The generated models were significant based on the analysis of variance and the R-squared value, and these results indicate that the cutting velocity is the most critical factor. For a low machining time, the cutting velocity should be between 100 and 140 m/min, and the tooltip nose radius should be 2.8 mm. The optimal parameter settings are validated by performing a lower is better confirmation test using gray relational analysis (GRA). The GRA exposed the lower machining time at a cutting velocity of 140 m/min, rate of feed of 0.5 mm/rev, cutting depth of 0.5 mm, and tooltip nose radius of 2.4 mm. The predicted values were close to the experimental values, and the result indicates the optimal level of the highest GRA grade of the machining variable.
{"title":"Machining Characteristics Investigations of DSS-2205 Using RSM–ANN and Gray Relational Analysis","authors":"Endalkachew Mosisa Gutema, Mahesh Gopal","doi":"10.1155/2023/6124793","DOIUrl":"https://doi.org/10.1155/2023/6124793","url":null,"abstract":"DSS has low machinability characteristics due to its high strength, machining is complicated, and careful attention is required when selecting machining parameters. The main criteria discussed in this paper concern the turning optimization parameters and machining time reduction of DSS 2205 as the work material. The input parameters are cutting velocity, feeds, cutting depth, and tooltip nose radius of the cutting tool. The design of experiments methodology is employed to design the experiments using Design-Expert V12 software. The second-order mathematical model was developed, and analysis of variance was performed to analyze the performance characteristics to recognize the critical variables influencing the output parameter. An artificial neural network (ANN) backpropagation algorithm using MATLAB software was used to develop the mathematical model and optimize the output. The model was developed, and the results were optimized using MATLAB software’s ANN back propagation method to find the best possible solutions. The generated models were significant based on the analysis of variance and the <i>R</i>-squared value, and these results indicate that the cutting velocity is the most critical factor. For a low machining time, the cutting velocity should be between 100 and 140 m/min, and the tooltip nose radius should be 2.8 mm. The optimal parameter settings are validated by performing a lower is better confirmation test using gray relational analysis (GRA). The GRA exposed the lower machining time at a cutting velocity of 140 m/min, rate of feed of 0.5 mm/rev, cutting depth of 0.5 mm, and tooltip nose radius of 2.4 mm. The predicted values were close to the experimental values, and the result indicates the optimal level of the highest GRA grade of the machining variable.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"8 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138509961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinlan Zhao, Ke Tong, Junjie Lei, Xiaoliang Bai, Dongfeng Li, Zhaoxi Shen, Tingting Qu, Xiaolong Li
The tubing used in a gas well rarely collapses and fails during applying annulus pressure. In this study, the failure causes of tubing collapse were analyzed by means of data verification, macroscopic observation, magnetic particle inspection, physical and chemical inspection, optical microscopy, and tubing collapse test. Mechanical analysis of the string and full-scale physical simulation test simulating downhole working conditions. Finally, the verification analysis of the collapse test is carried out by the finite element analysis (FEA). The results showed that (1) the physical dimension, physical and chemical properties, and collapse resistance of this batch of tubing met the requirements of the tubing ordering technical standard. (2) Assuming that the well packer slip was unsealed and could slide freely, the mechanical theoretical analysis of collapsed tubing string and collapse test under simulated working condition load was carried out, which reproduced the load when the tubing collapsed. It can be seen from this that the packer did fail. (3) The FEA calculation results showed that when the external pressure was greater than 30.75 MPa, it would inevitably lead to collapse failure in case of packer unsealed. In conclusion, the root cause for the collapse failure of the 105th underground tubing string was that the packer lost its sealing function, resulting in an abnormal axial load. While under the action of external pressure, the tubing was overloaded and collapsed. It is recommended to carry out verification tests on the material performance of packer slip, the dimensional changes of packer tool outer diameter and inner diameter under actual well conditions, the creep behavior of packer seal, and the performance of shear pin under actual working conditions, especially in the well containing H2S, so as to prevent the pressure leakage of gas well annulus caused by packer unsealing and the reoccurrence of such downhole string collapse accidents. The first collapse test under simulated working condition load is conducted in this paper. Analyzing the collapse failure work and putting forward suggestions to effectively prevent similar failures from happening again are of great significance to the oilfield.
{"title":"Failure Analysis of Tubing Collapse in a Gas Well","authors":"Jinlan Zhao, Ke Tong, Junjie Lei, Xiaoliang Bai, Dongfeng Li, Zhaoxi Shen, Tingting Qu, Xiaolong Li","doi":"10.1155/2023/8702719","DOIUrl":"https://doi.org/10.1155/2023/8702719","url":null,"abstract":"The tubing used in a gas well rarely collapses and fails during applying annulus pressure. In this study, the failure causes of tubing collapse were analyzed by means of data verification, macroscopic observation, magnetic particle inspection, physical and chemical inspection, optical microscopy, and tubing collapse test. Mechanical analysis of the string and full-scale physical simulation test simulating downhole working conditions. Finally, the verification analysis of the collapse test is carried out by the finite element analysis (FEA). The results showed that (1) the physical dimension, physical and chemical properties, and collapse resistance of this batch of tubing met the requirements of the tubing ordering technical standard. (2) Assuming that the well packer slip was unsealed and could slide freely, the mechanical theoretical analysis of collapsed tubing string and collapse test under simulated working condition load was carried out, which reproduced the load when the tubing collapsed. It can be seen from this that the packer did fail. (3) The FEA calculation results showed that when the external pressure was greater than 30.75 MPa, it would inevitably lead to collapse failure in case of packer unsealed. In conclusion, the root cause for the collapse failure of the 105th underground tubing string was that the packer lost its sealing function, resulting in an abnormal axial load. While under the action of external pressure, the tubing was overloaded and collapsed. It is recommended to carry out verification tests on the material performance of packer slip, the dimensional changes of packer tool outer diameter and inner diameter under actual well conditions, the creep behavior of packer seal, and the performance of shear pin under actual working conditions, especially in the well containing H<sub>2</sub>S, so as to prevent the pressure leakage of gas well annulus caused by packer unsealing and the reoccurrence of such downhole string collapse accidents. The first collapse test under simulated working condition load is conducted in this paper. Analyzing the collapse failure work and putting forward suggestions to effectively prevent similar failures from happening again are of great significance to the oilfield.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"12 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138509945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trong Nghia Le, Hoang Minh Vu Nguyen, Thai An Nguyen, Trieu Tan Phung, Thi Thu Hien Huynh, Quang Tien Nguyen
This paper proposes a load shedding model for the island microgrid based on the ranking of loads and the power stability index (PSI). Loads are ranked based on the improved analytic hierarchy process (AHP) algorithm. Real-time measurement systems have the function of collecting data for very important, important, and less-important loads at each bus load. From this data, the improved AHP method is applied to rank the loads. The advantage of this method is that the subjectivity is eliminated and not depending on the expertise of the system operator when implementing the traditional AHP method. Besides, the minimum amount of load shedding power is calculated, taking into account both primary and secondary control methods. The objective is to minimize the impact on power consumers and ensure that the frequency returns to an acceptable range. In addition, when implementing load shedding, voltage quality, and stability are considered. The PSI serves as a crucial parameter for assessing the voltage stability of microgrid buses. This index is combined with load ranking weights to obtain combined weights for the load shedding plan. Consequently, the proposed load shedding plan prioritizes minimizing damage to customers, improving voltage quality and stability, and ensuring frequency is within permissible limits. The 16-bus microgrid system is applied to compare with traditional methods and to prove the efficiency of the suggested technique.
{"title":"Optimize Ranking and Load Shedding in Microgrid Considering Improved Analytic Hierarchy Process Algorithm and Power Stability Index","authors":"Trong Nghia Le, Hoang Minh Vu Nguyen, Thai An Nguyen, Trieu Tan Phung, Thi Thu Hien Huynh, Quang Tien Nguyen","doi":"10.1155/2023/6074287","DOIUrl":"https://doi.org/10.1155/2023/6074287","url":null,"abstract":"This paper proposes a load shedding model for the island microgrid based on the ranking of loads and the power stability index (PSI). Loads are ranked based on the improved analytic hierarchy process (AHP) algorithm. Real-time measurement systems have the function of collecting data for very important, important, and less-important loads at each bus load. From this data, the improved AHP method is applied to rank the loads. The advantage of this method is that the subjectivity is eliminated and not depending on the expertise of the system operator when implementing the traditional AHP method. Besides, the minimum amount of load shedding power is calculated, taking into account both primary and secondary control methods. The objective is to minimize the impact on power consumers and ensure that the frequency returns to an acceptable range. In addition, when implementing load shedding, voltage quality, and stability are considered. The PSI serves as a crucial parameter for assessing the voltage stability of microgrid buses. This index is combined with load ranking weights to obtain combined weights for the load shedding plan. Consequently, the proposed load shedding plan prioritizes minimizing damage to customers, improving voltage quality and stability, and ensuring frequency is within permissible limits. The 16-bus microgrid system is applied to compare with traditional methods and to prove the efficiency of the suggested technique.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"17 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138509938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, we examine the dynamics of a discrete-time predator–prey system with prey refuge. We discuss the stability prerequisite for effective fixed points. The existence criteria for period-doubling (PD) bifurcation and Neimark–Sacker (N–S) bifurcation are derived from the center manifold theorem and bifurcation theory. Examples of numerical simulations that demonstrate the validity of theoretical analysis, as well as complex dynamical behaviors and biological processes, include bifurcation diagrams, maximal Lyapunov exponents, fractal dimensions (FDs), and phase portraits, respectively. From a biological perspective, this suggests that the system can be stabilized into a locally stable coexistence by the tiny integral step size. However, the system might become unstable because of the large integral step size, resulting in richer and more complex dynamics. It has been discovered that the parameter values have a substantial impact on the dynamic behavior of the discrete prey–predator model. Finally, to control the chaotic trajectories that arise in the system, we employ a feedback control technique.
{"title":"Dynamics and Control of a Discrete Predator–Prey Model with Prey Refuge: Holling Type I Functional Response","authors":"Sarker Md. Sohel Rana, Md. Jasim Uddin","doi":"10.1155/2023/5537632","DOIUrl":"https://doi.org/10.1155/2023/5537632","url":null,"abstract":"In this study, we examine the dynamics of a discrete-time predator–prey system with prey refuge. We discuss the stability prerequisite for effective fixed points. The existence criteria for period-doubling (PD) bifurcation and Neimark–Sacker (N–S) bifurcation are derived from the center manifold theorem and bifurcation theory. Examples of numerical simulations that demonstrate the validity of theoretical analysis, as well as complex dynamical behaviors and biological processes, include bifurcation diagrams, maximal Lyapunov exponents, fractal dimensions (FDs), and phase portraits, respectively. From a biological perspective, this suggests that the system can be stabilized into a locally stable coexistence by the tiny integral step size. However, the system might become unstable because of the large integral step size, resulting in richer and more complex dynamics. It has been discovered that the parameter values have a substantial impact on the dynamic behavior of the discrete prey–predator model. Finally, to control the chaotic trajectories that arise in the system, we employ a feedback control technique.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"13 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138509944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}