首页 > 最新文献

Methods and applications of analysis最新文献

英文 中文
An entropic optimal transport numerical approach to the reflector problem 反射器问题的熵最优输运数值方法
IF 0.3 Pub Date : 2020-01-01 DOI: 10.4310/maa.2020.v27.n4.a1
J. Benamou, W. IJzerman, G. Rukhaia
The point source far field reflector design problem is one of the main classic optimal transport problems with a non-euclidean displacement cost [Wang, 2004] [Glimm and Oliker, 2003]. This work describes the use of Entropic Optimal Transport and the associated Sinkhorn algorithm [Cuturi, 2013] to solve it numerically. As the reflector modelling is based on the Kantorovich potentials , several questions arise. First, on the convergence of the discrete entropic approximation and here we follow the recent work of [Berman, 2017] and in particular the imposed discretization requirements therein. Secondly, the correction of the Entropic bias induced by the Entropic OT, as discussed in particular in [Ramdas et al., 2017] [Genevay et al., 2018] [Feydy et al., 2018], is another important tool to achieve reasonable results. The paper reviews the necessary mathematical and numerical tools needed to produce and discuss the obtained numerical results. We find that Sinkhorn algorithm may be adapted, at least in simple academic cases, to the resolution of the far field reflector problem. Sinkhorn canonical extension to continuous potentials is needed to generate continuous reflector approximations. The use of Sinkhorn divergences [Feydy et al., 2018] is useful to mitigate the entropic bias.
点源远场反射器设计问题是非欧氏位移代价的经典最优输运问题之一[Wang, 2004] [Glimm and Oliker, 2003]。这项工作描述了使用熵最优传输和相关的Sinkhorn算法[Cuturi, 2013]来数值解决它。由于反射器建模是基于坎托罗维奇势,因此产生了几个问题。首先,关于离散熵近似的收敛性,这里我们遵循[Berman, 2017]最近的工作,特别是其中施加的离散化要求。其次,对Entropic OT引起的熵偏的校正,如[Ramdas et al., 2017] [Genevay et al., 2018] [Feydy et al., 2018]中所讨论的,是获得合理结果的另一个重要工具。本文回顾了产生所获得的数值结果所需的必要的数学和数值工具,并对其进行了讨论。我们发现,至少在简单的学术案例中,Sinkhorn算法可以适用于解决远场反射器问题。为了得到连续反射器近似,需要对连续势进行Sinkhorn正则扩展。使用Sinkhorn散度[Feydy等人,2018]有助于减轻熵偏差。
{"title":"An entropic optimal transport numerical approach to the reflector problem","authors":"J. Benamou, W. IJzerman, G. Rukhaia","doi":"10.4310/maa.2020.v27.n4.a1","DOIUrl":"https://doi.org/10.4310/maa.2020.v27.n4.a1","url":null,"abstract":"The point source far field reflector design problem is one of the main classic optimal transport problems with a non-euclidean displacement cost [Wang, 2004] [Glimm and Oliker, 2003]. This work describes the use of Entropic Optimal Transport and the associated Sinkhorn algorithm [Cuturi, 2013] to solve it numerically. As the reflector modelling is based on the Kantorovich potentials , several questions arise. First, on the convergence of the discrete entropic approximation and here we follow the recent work of [Berman, 2017] and in particular the imposed discretization requirements therein. Secondly, the correction of the Entropic bias induced by the Entropic OT, as discussed in particular in [Ramdas et al., 2017] [Genevay et al., 2018] [Feydy et al., 2018], is another important tool to achieve reasonable results. The paper reviews the necessary mathematical and numerical tools needed to produce and discuss the obtained numerical results. We find that Sinkhorn algorithm may be adapted, at least in simple academic cases, to the resolution of the far field reflector problem. Sinkhorn canonical extension to continuous potentials is needed to generate continuous reflector approximations. The use of Sinkhorn divergences [Feydy et al., 2018] is useful to mitigate the entropic bias.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70489472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
On Fano threefolds with semi-free $mathbb{C}^{ast}$-actions, I 关于Fano三倍半自由$mathbb{C}^{ast}$-actions, I
IF 0.3 Pub Date : 2020-01-01 DOI: 10.4310/maa.2020.v27.n3.a3
Qilin Yang, D. Zaffran
{"title":"On Fano threefolds with semi-free $mathbb{C}^{ast}$-actions, I","authors":"Qilin Yang, D. Zaffran","doi":"10.4310/maa.2020.v27.n3.a3","DOIUrl":"https://doi.org/10.4310/maa.2020.v27.n3.a3","url":null,"abstract":"","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70489402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On approximation of a hyper-singular transport operator and existence of solutions 超奇异输运算子的逼近及其解的存在性
IF 0.3 Pub Date : 2020-01-01 DOI: 10.4310/maa.2020.v27.n2.a2
J. Tervo, M. Herty
{"title":"On approximation of a hyper-singular transport operator and existence of solutions","authors":"J. Tervo, M. Herty","doi":"10.4310/maa.2020.v27.n2.a2","DOIUrl":"https://doi.org/10.4310/maa.2020.v27.n2.a2","url":null,"abstract":"","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70489060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Two computations concerning the isovectors of the backward heat equation with quadratic potential 二次势逆热方程等矢量的两种计算
IF 0.3 Pub Date : 2020-01-01 DOI: 10.4310/maa.2020.v27.n1.a2
Mohamad Houda, P. Lescot
We determine the isovectors of the backward heat equation with quadratic potential term in the space variable. This generalize the calculations of Lescot-Zambrini (cf.[4]). These results first appeared in the first author’s PhD thesis (Rouen, 2013). 1. Backward Equation The fundamental equation of Euclidean Quantum Mechanics of Zambrini is the backward heat equation with potential V (t, q):  θ ∂η u ∂t = − θ 2 ∂η u ∂q2 + V (t, q)η V u (C (V ) 1 ) η u (0, q) = u(q) where t represents the time variable, q the space variable, and θ is a real parameter, strictly positive (in physics, θ = √ ~). This equation is not well–posed in general, but existence and uniqueness of a solution are insured whenever the initial condition u belongs to the set of analytic vectors for the operator appearing on the right–hand side of the equation (see e.g. [1], Lemma 4, p. 429). We shall denote by ηu(t, q) = η 0 u(t, q) the solution of the backward heat equation with null potential :  θ 2 ∂ηu ∂t = − θ 2 ∂ηu ∂q2 (C (0) 1 ) ηu(0, q) = η 0 u(0, q) = u(q). The authors wish to thank the referees for constructive comments. 1.1. Generalization of results due to Lescot-Zambrini (cf.[4]). Theorem 1.1. Let a(t), b(t) and c(t) be continuous functions and V (t, q) = a(t)q+ b(t)q + c(t). For all initial conditions u, the solution η u (t, q) of: θ ∂η u ∂t = − 4 2 ∂η u ∂q2 + V (t, q)η u (C (V ) 1 ) such that η u (0, q) = u(q) is given by: η u (t, q) = φ1(t, q) ηu (φ2(t, q), φ3(t, q)) , (1.1) Date: 01 November 2019. 1 2 MOHAMAD HOUDA & PAUL LESCOT where: ηu(t, q) = η 0 u(t, q) and φ1(t, q), φ2(t, q), φ3(t, q) only depend on a(t), b(t) and c(t) (via formulas (1.7), (1.8), (1.9), (1.11), (1.12), (1.13) and (1.14)). Proof. We shall make formula 1.1 explicit with the following initial conditions:  φ1(0, q) = 1 φ2(0, q) = 0 φ3(0, q) = q. In this case : η u (0, q) = ηu(0, q) = u(q). We now differentiate formula 1.1 with respect to t and q; ηu and its derivatives will be taken in (φ2(t, q), φ3(t, q)). ∂η u ∂t = ∂φ1 ∂t ηu + φ1( ∂ηu ∂t ∂φ2 ∂t + ∂ηu ∂q ∂φ3 ∂t ) , ∂η u ∂q = ∂φ1 ∂q ηu + φ1( ∂ηu ∂t ∂φ2 ∂q + ∂ηu ∂q ∂φ3 ∂q ) , ∂η u ∂q2 = ∂φ1 ∂q2 ηu + 2 ∂φ1 ∂q ( ∂ηu ∂t ∂φ2 ∂q + ∂ηu ∂q ∂φ3 ∂q ) + φ1 [ ∂ηu ∂t2 ( ∂φ2 ∂q ) 2 + ∂ηu ∂q2 ( ∂φ3 ∂q ) 2 + 2 ∂ηu ∂t∂q ∂φ2 ∂q ∂φ3 ∂q + ∂ηu ∂t ∂φ2 ∂q2 + ∂ηu ∂q ∂φ3 ∂q2 ] and V (t, q)η u = a(t)q 2 φ1 ηu + b(t)q φ1 ηu + c(t) φ1 ηu. So, it’s enough to have: θφ1 ∂φ2 ∂t − θφ1( ∂φ3 ∂q ) 2 + θ 2 (2 ∂φ1 ∂q ∂φ2 ∂q + ∂φ2 ∂q2 ) = 0 (1.2) θ 2 φ1( ∂φ2 ∂q ) 2 = 0 (1.3) θφ1 ∂φ3 ∂t + θ 2 (2 ∂φ1 ∂q ∂φ3 ∂q + φ1 ∂φ3 ∂q2 ) = 0 (1.4) θ ∂φ2 ∂q ∂φ3 ∂q = 0 (1.5) θ ∂φ1 ∂t + θ 2 ∂φ1 ∂q2 − φ1 ( a(t)q + b(t)q + c(t) ) = 0 . (1.6) Two calculates concerned the isovectors of backward heat equation with potential term 3 As φ1(0, q) = 1, the equation (1.3) gives us: (2 ∂q ) 2 = 0, then φ2 = φ2(t) and (1.5) is then automatically satisfied. So, the equation (1.2) implies: φ1(t, q)( ∂φ2 ∂t − (3 ∂q )) = 0, then for all (t, q) : ∂φ2 ∂t = ( ∂φ3 ∂q ) 2
我们确定了空间变量中具有二次势项的后向热方程的等向量。这概括了Lescot-Zambrini(参见b[4])的计算。这些结果首次出现在第一作者的博士论文中(Rouen, 2013)。1. 欧几里得量子力学的基本方程是具有势V (t, q)的逆向热方程:θ∂η u∂t =−θ 2∂η u∂q2 + V (t, q)η V u(C (V) 1)η u(0, q) = u(q)其中t表示时间变量,q表示空间变量,θ是实参数,严格正(在物理学中,θ =√~)。一般情况下,这个方程不是适定的,但当初始条件u属于出现在方程右侧的算子的解析向量集时,解的存在唯一性就得到保证(例如,[1],引理4,第429页)。我们将用ηu(t, q) = η 0 u(t, q)表示零势的反向热方程的解:θ 2∂ηu∂t =−θ 2∂ηu∂q2 (C (0) 1) ηu(0, q) = η 0 u(0, q) = u(q)。作者希望感谢审稿人提出的建设性意见。1.1. 由于Lescot-Zambrini(参见[4])结果的概化。定理1.1。设a(t), b(t), c(t)为连续函数,V (t, q) = a(t)q+ b(t)q + c(t)。对于所有初始条件u,解ηu (t, q)为:θ∂η u∂t = - 4 2∂η u∂q2 + V (t, q)η u(C (V) 1),使得ηu (0, q) = u(q)由:ηu (t, q) = φ1(t, q)η u(φ2(t, q), φ3(t, q)), (1.1)1 2穆罕默德HOUDA和保罗LESCOT:ηu (t, q =η0 (t, q)和φ1 (t, q),φ2 (t, q),φ3 (t, q)只取决于(t), b (t)和c (t)(通过公式(1.7)、(1.8)、(1.9),(1.11),(1.12),(1.13)和(1.14))。证明。将公式1.1显式化,初始条件如下:φ1(0, q) = 1 φ2(0, q) = 0 φ3(0, q) = q,则ηu(0, q) = ηu(0, q) = u(q)。现在我们对公式1.1对t和q求导;ηu和它的导数用(φ2(t, q), φ3(t, q))表示。∂uη∂t =∂φ1 tη∂u +φ1(∂ηu∂t∂φ2∂t +∂uη∂问∂φ3∂t),∂ηu∂q =∂φ1 qη∂u +φ1(∂ηu∂t∂φ2∂q +∂uη∂问∂φ3∂q),∂uη∂q2 =∂φ1∂q2η2∂u +φ1∂q(∂ηu∂t∂φ2∂q +∂uη∂问∂φ3∂q) +φ1[∂uη∂t2(∂φ2∂q) 2 +∂uη∂q2(∂φ3∂q) 2 + 2∂ηu∂t∂问∂φ2∂问∂φ3∂q +∂ηu∂t∂φ2∂q2 +∂uη∂问∂φ3∂q2)和V (t, q)ηu = (t)问2φ1ηu + b (t)问φ1ηu + c (t)φ1ηu。它是足够的有:θφ1∂φ2∂t−θφ1(∂φ3∂q) 2 + 2θ(2∂φ1∂q∂φ2∂q +∂φ2∂q2) = 0(1.2)θ2φ1(∂φ2∂q) 2 = 0(1.3)θφ1∂φ3∂t +θ2(2∂φ1∂q∂φ3∂q +φ1∂φ3∂q2) = 0(1.4)θ∂φ2∂问∂φ3∂q = 0(1.5)θ∂φ1∂t +θ2∂φ1∂q2−φ1 ((t) q + b (t) q + c (t)) = 0。(1.6)两个计算涉及势项为3的逆向热方程的等矢量,当φ1(0, q) = 1时,由式(1.3)得到:(2∂q) 2 = 0,则φ2 = φ2(t),则(1.5)自动满足。因此,方程(1.2)暗示:φ1 (t, q)(∂φ2∂t−(3∂q) = 0,然后对所有(t, q):∂φ2∂t =(∂φ3∂q) 2
{"title":"Two computations concerning the isovectors of the backward heat equation with quadratic potential","authors":"Mohamad Houda, P. Lescot","doi":"10.4310/maa.2020.v27.n1.a2","DOIUrl":"https://doi.org/10.4310/maa.2020.v27.n1.a2","url":null,"abstract":"We determine the isovectors of the backward heat equation with quadratic potential term in the space variable. This generalize the calculations of Lescot-Zambrini (cf.[4]). These results first appeared in the first author’s PhD thesis (Rouen, 2013). 1. Backward Equation The fundamental equation of Euclidean Quantum Mechanics of Zambrini is the backward heat equation with potential V (t, q):  θ ∂η u ∂t = − θ 2 ∂η u ∂q2 + V (t, q)η V u (C (V ) 1 ) η u (0, q) = u(q) where t represents the time variable, q the space variable, and θ is a real parameter, strictly positive (in physics, θ = √ ~). This equation is not well–posed in general, but existence and uniqueness of a solution are insured whenever the initial condition u belongs to the set of analytic vectors for the operator appearing on the right–hand side of the equation (see e.g. [1], Lemma 4, p. 429). We shall denote by ηu(t, q) = η 0 u(t, q) the solution of the backward heat equation with null potential :  θ 2 ∂ηu ∂t = − θ 2 ∂ηu ∂q2 (C (0) 1 ) ηu(0, q) = η 0 u(0, q) = u(q). The authors wish to thank the referees for constructive comments. 1.1. Generalization of results due to Lescot-Zambrini (cf.[4]). Theorem 1.1. Let a(t), b(t) and c(t) be continuous functions and V (t, q) = a(t)q+ b(t)q + c(t). For all initial conditions u, the solution η u (t, q) of: θ ∂η u ∂t = − 4 2 ∂η u ∂q2 + V (t, q)η u (C (V ) 1 ) such that η u (0, q) = u(q) is given by: η u (t, q) = φ1(t, q) ηu (φ2(t, q), φ3(t, q)) , (1.1) Date: 01 November 2019. 1 2 MOHAMAD HOUDA & PAUL LESCOT where: ηu(t, q) = η 0 u(t, q) and φ1(t, q), φ2(t, q), φ3(t, q) only depend on a(t), b(t) and c(t) (via formulas (1.7), (1.8), (1.9), (1.11), (1.12), (1.13) and (1.14)). Proof. We shall make formula 1.1 explicit with the following initial conditions:  φ1(0, q) = 1 φ2(0, q) = 0 φ3(0, q) = q. In this case : η u (0, q) = ηu(0, q) = u(q). We now differentiate formula 1.1 with respect to t and q; ηu and its derivatives will be taken in (φ2(t, q), φ3(t, q)). ∂η u ∂t = ∂φ1 ∂t ηu + φ1( ∂ηu ∂t ∂φ2 ∂t + ∂ηu ∂q ∂φ3 ∂t ) , ∂η u ∂q = ∂φ1 ∂q ηu + φ1( ∂ηu ∂t ∂φ2 ∂q + ∂ηu ∂q ∂φ3 ∂q ) , ∂η u ∂q2 = ∂φ1 ∂q2 ηu + 2 ∂φ1 ∂q ( ∂ηu ∂t ∂φ2 ∂q + ∂ηu ∂q ∂φ3 ∂q ) + φ1 [ ∂ηu ∂t2 ( ∂φ2 ∂q ) 2 + ∂ηu ∂q2 ( ∂φ3 ∂q ) 2 + 2 ∂ηu ∂t∂q ∂φ2 ∂q ∂φ3 ∂q + ∂ηu ∂t ∂φ2 ∂q2 + ∂ηu ∂q ∂φ3 ∂q2 ] and V (t, q)η u = a(t)q 2 φ1 ηu + b(t)q φ1 ηu + c(t) φ1 ηu. So, it’s enough to have: θφ1 ∂φ2 ∂t − θφ1( ∂φ3 ∂q ) 2 + θ 2 (2 ∂φ1 ∂q ∂φ2 ∂q + ∂φ2 ∂q2 ) = 0 (1.2) θ 2 φ1( ∂φ2 ∂q ) 2 = 0 (1.3) θφ1 ∂φ3 ∂t + θ 2 (2 ∂φ1 ∂q ∂φ3 ∂q + φ1 ∂φ3 ∂q2 ) = 0 (1.4) θ ∂φ2 ∂q ∂φ3 ∂q = 0 (1.5) θ ∂φ1 ∂t + θ 2 ∂φ1 ∂q2 − φ1 ( a(t)q + b(t)q + c(t) ) = 0 . (1.6) Two calculates concerned the isovectors of backward heat equation with potential term 3 As φ1(0, q) = 1, the equation (1.3) gives us: (2 ∂q ) 2 = 0, then φ2 = φ2(t) and (1.5) is then automatically satisfied. So, the equation (1.2) implies: φ1(t, q)( ∂φ2 ∂t − (3 ∂q )) = 0, then for all (t, q) : ∂φ2 ∂t = ( ∂φ3 ∂q ) 2","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70488984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed boundary value problems of the system for steady flow of heat-conducting incompressible viscous fluids with dissipative heating 具有耗散加热的导热不可压缩粘性流体定常流动系统的混合边值问题
IF 0.3 Pub Date : 2020-01-01 DOI: 10.4310/maa.2020.v27.n2.a1
Tujin Kim, D. Cao
{"title":"Mixed boundary value problems of the system for steady flow of heat-conducting incompressible viscous fluids with dissipative heating","authors":"Tujin Kim, D. Cao","doi":"10.4310/maa.2020.v27.n2.a1","DOIUrl":"https://doi.org/10.4310/maa.2020.v27.n2.a1","url":null,"abstract":"","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70489047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A note on nodal sets on manifolds with lower Ricci bound 下里奇界流形上节点集的一个注记
IF 0.3 Pub Date : 2020-01-01 DOI: 10.4310/maa.2020.v27.n4.a3
Jianchun Chu, Wenshuai Jiang
. In this note, we study nodal sets of harmonic functions on Riemannian manifolds with lower Ricci curvature bound and the noncollapsing lower volume bound. Both upper and lower bound measure estimates of nodal sets are established.
. 本文研究了具有下Ricci曲率界和非坍缩下体积界的黎曼流形上调和函数的节点集。建立了节点集的上界和下界测度估计。
{"title":"A note on nodal sets on manifolds with lower Ricci bound","authors":"Jianchun Chu, Wenshuai Jiang","doi":"10.4310/maa.2020.v27.n4.a3","DOIUrl":"https://doi.org/10.4310/maa.2020.v27.n4.a3","url":null,"abstract":". In this note, we study nodal sets of harmonic functions on Riemannian manifolds with lower Ricci curvature bound and the noncollapsing lower volume bound. Both upper and lower bound measure estimates of nodal sets are established.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70489487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinitely many synchronized solutions to a nonlinearly coupled Schrödinger equations with non-symmetric potentials 具有非对称势的非线性耦合Schrödinger方程的无限多同步解
IF 0.3 Pub Date : 2020-01-01 DOI: 10.4310/maa.2020.v27.n3.a2
Chunhua Wang, Jing Zhou
. We study a nonlinearly coupled Schr¨odinger equations in R N (2 ≤ N < 6) . Assume that the potentials in the system are continuous functions satisfying some suitable decay assumptions but without any symmetric properties, and the parameters in the system satisfy some restrictions. Applying the Liapunov-Schmidt reduction methods twice and combining localized energy method, we prove that the problem has infinitely many positive synchronized solutions.
。研究了R N(2≤N < 6)中的非线性耦合Schr¨odinger方程。假设系统中的势是连续函数,满足一定的衰减假设,但不具有任何对称性质,系统中的参数满足一定的限制条件。利用两次Liapunov-Schmidt约简方法,结合局域能量法,证明了该问题具有无穷多个正同步解。
{"title":"Infinitely many synchronized solutions to a nonlinearly coupled Schrödinger equations with non-symmetric potentials","authors":"Chunhua Wang, Jing Zhou","doi":"10.4310/maa.2020.v27.n3.a2","DOIUrl":"https://doi.org/10.4310/maa.2020.v27.n3.a2","url":null,"abstract":". We study a nonlinearly coupled Schr¨odinger equations in R N (2 ≤ N < 6) . Assume that the potentials in the system are continuous functions satisfying some suitable decay assumptions but without any symmetric properties, and the parameters in the system satisfy some restrictions. Applying the Liapunov-Schmidt reduction methods twice and combining localized energy method, we prove that the problem has infinitely many positive synchronized solutions.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70488693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Euler to the semi-geostrophic system: convergence under uniform convexity 从欧拉到半地转系统:均匀凸性下的收敛
IF 0.3 Pub Date : 2020-01-01 DOI: 10.4310/maa.2020.v27.n4.a4
M. Cullen, M. Feldman, A. Tudorascu
We prove that if the initial data is well prepared, then certain solutions to the Euler system converge to a solution of the Semi-Geostrophic system with constant Coriolis force. The main assumptions on the strong solution are the boundedness of the velocity field as well as the uniform convexity of the Legendre-Fenchel transform of the modified pressure.
我们证明了如果初始数据准备得很好,那么欧拉系统的某些解收敛于具有恒定科里奥利力的半地转系统的解。强解的主要假设是速度场的有界性和修正压力的legende - fenchel变换的均匀凸性。
{"title":"From Euler to the semi-geostrophic system: convergence under uniform convexity","authors":"M. Cullen, M. Feldman, A. Tudorascu","doi":"10.4310/maa.2020.v27.n4.a4","DOIUrl":"https://doi.org/10.4310/maa.2020.v27.n4.a4","url":null,"abstract":"We prove that if the initial data is well prepared, then certain solutions to the Euler system converge to a solution of the Semi-Geostrophic system with constant Coriolis force. The main assumptions on the strong solution are the boundedness of the velocity field as well as the uniform convexity of the Legendre-Fenchel transform of the modified pressure.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70489547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the optimal regularity implied by the assumptions of geometry, I: connections on tangent bundles 基于几何假设隐含的最优正则性,I:切线束上的连接
IF 0.3 Pub Date : 2019-12-30 DOI: 10.4310/maa.2022.v29.n4.a1
Moritz Reintjes, B. Temple
We resolve the problem of optimal regularity and Uhlenbeck compactness for affine connections in General Relativity and Mathematical Physics. First, we prove that any affine connection $Gamma$, with components $Gamma in L^{2p}$ and components of its Riemann curvature ${rm Riem}(Gamma)$ in $L^p$, in some coordinate system, can be smoothed by coordinate transformation to optimal regularity, $Gamma in W^{1,p}$ (one derivative smoother than the curvature), $p>max{n/2,2}$, dimension $ngeq 2$. For Lorentzian metrics in General Relativity this implies that shock wave solutions of the Einstein-Euler equations are non-singular -- geodesic curves, locally inertial coordinates and the Newtonian limit, all exist in a classical sense, and the Einstein equations hold in the strong sense. The proof is based on an $L^p$ existence theory for the Regularity Transformation (RT) equations, a system of elliptic partial differential equations (introduced by the authors) which determine the Jacobians of the regularizing coordinate transformations. Secondly, this existence theory gives the first extension of Uhlenbeck compactness from Riemannian metrics, to general affine connections bounded in $L^infty$, with curvature in $L^{p}$, $p>n$, including semi-Riemannian metrics, and Lorentzian metric connections of relativistic Physics. We interpret this as a ``geometric'' improvement of the generalized Div-Curl Lemma. Our theory shows that Uhlenbeck compactness and optimal regularity are pure logical consequences of the rule which defines how connections transform from one coordinate system to another -- what one could take to be the ``starting assumption of geometry''.
我们解决了广义相对论和数学物理中仿射连接的最优正则性和Uhlenbeck紧性问题。首先,我们证明了在某些坐标系中,任何仿射连接$Gamma$,其L^{2p}$中的分量$Gamma和其黎曼曲率${rm-Riem}(Gamma)$在$L^p$中的组件,都可以通过坐标变换平滑到最优正则性,W^{1,p}$(比曲率更光滑的一个导数)中的$Gamma$p>max{n/2,2}$,维数$ngeq2$。对于广义相对论中的洛伦兹度量,这意味着爱因斯坦-欧拉方程的冲击波解是非奇异的——测地曲线、局部惯性坐标和牛顿极限,都存在于经典意义上,爱因斯坦方程在强意义上成立。该证明基于正则变换(RT)方程的$L^p$存在性理论,正则变换是一个椭圆偏微分方程组(由作者介绍),它确定了正则化坐标变换的雅可比矩阵。其次,该存在论给出了Uhlenbeck紧性从黎曼度量到一般仿射连接的第一个推广,一般仿射连接以$L^infty$为界,曲率在$L^{p}$,$p>n$,包括半黎曼度量和相对论物理的洛伦兹度量连接。我们将其解释为广义Div-Coll引理的“几何”改进。我们的理论表明,乌伦贝克紧性和最优正则性是该规则的纯逻辑结果,该规则定义了连接如何从一个坐标系转换到另一个坐标系统——可以将其视为“几何的起始假设”。
{"title":"On the optimal regularity implied by the assumptions of geometry, I: connections on tangent bundles","authors":"Moritz Reintjes, B. Temple","doi":"10.4310/maa.2022.v29.n4.a1","DOIUrl":"https://doi.org/10.4310/maa.2022.v29.n4.a1","url":null,"abstract":"We resolve the problem of optimal regularity and Uhlenbeck compactness for affine connections in General Relativity and Mathematical Physics. First, we prove that any affine connection $Gamma$, with components $Gamma in L^{2p}$ and components of its Riemann curvature ${rm Riem}(Gamma)$ in $L^p$, in some coordinate system, can be smoothed by coordinate transformation to optimal regularity, $Gamma in W^{1,p}$ (one derivative smoother than the curvature), $p>max{n/2,2}$, dimension $ngeq 2$. For Lorentzian metrics in General Relativity this implies that shock wave solutions of the Einstein-Euler equations are non-singular -- geodesic curves, locally inertial coordinates and the Newtonian limit, all exist in a classical sense, and the Einstein equations hold in the strong sense. The proof is based on an $L^p$ existence theory for the Regularity Transformation (RT) equations, a system of elliptic partial differential equations (introduced by the authors) which determine the Jacobians of the regularizing coordinate transformations. Secondly, this existence theory gives the first extension of Uhlenbeck compactness from Riemannian metrics, to general affine connections bounded in $L^infty$, with curvature in $L^{p}$, $p>n$, including semi-Riemannian metrics, and Lorentzian metric connections of relativistic Physics. We interpret this as a ``geometric'' improvement of the generalized Div-Curl Lemma. Our theory shows that Uhlenbeck compactness and optimal regularity are pure logical consequences of the rule which defines how connections transform from one coordinate system to another -- what one could take to be the ``starting assumption of geometry''.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42464386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
On a class of degenerate and singular Monge–Ampère equations 一类退化奇异的monge - ampatire方程
IF 0.3 Pub Date : 2019-08-18 DOI: 10.4310/maa.2021.v28.n3.a8
H. Jian, You Li, Xushan Tu
In this paper we shall prove the existence, uniqueness and global H$ddot{o}$lder continuity for the Dirichlet problem of a class of Monge-Ampere type equations which may be degenerate and singular on the boundary of convex domains. We will establish a relation of the H$ddot{o}$lder exponent for the solutions with the convexity for the domains.
本文证明了一类在凸域边界上可退化奇异的Monge-Ampere型方程的Dirichlet问题的存在唯一性和全局H$ddot{o}$老连续性。我们将建立解的H$ddot{o}$老指数与定域的凸性之间的关系。
{"title":"On a class of degenerate and singular Monge–Ampère equations","authors":"H. Jian, You Li, Xushan Tu","doi":"10.4310/maa.2021.v28.n3.a8","DOIUrl":"https://doi.org/10.4310/maa.2021.v28.n3.a8","url":null,"abstract":"In this paper we shall prove the existence, uniqueness and global H$ddot{o}$lder continuity for the Dirichlet problem of a class of Monge-Ampere type equations which may be degenerate and singular on the boundary of convex domains. \u0000We will establish a relation of the H$ddot{o}$lder exponent for the solutions with the convexity for the domains.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42725118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Methods and applications of analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1