Small nucleolar RNAs (snoRNAs) were previously regarded as a class of functionally conserved housekeeping genes, primarily involved in the regulation of ribosome biogenesis by ribosomal RNA (rRNA) modification. However, some of them are involved in several biological processes via complex molecular mechanisms. DNA damage response (DDR) is a conserved mechanism for maintaining genomic stability to prevent the occurrence of various human diseases. It has recently been revealed that snoRNAs are involved in DDR at multiple levels, indicating their relevant theoretical and clinical significance in this field. The present review systematically addresses four main points, including the biosynthesis and classification of snoRNAs, the mechanisms through which snoRNAs regulate target molecules, snoRNAs in the process of DDR, and the significance of snoRNA in disease diagnosis and treatment. It focuses on the potential functions of snoRNAs in DDR to help in the discovery of the roles of snoRNAs in maintaining genome stability and pathological processes.
{"title":"Advances in the mechanism of small nucleolar RNA and its role in DNA damage response.","authors":"Li-Ping Shen, Wen-Cheng Zhang, Jia-Rong Deng, Zhen-Hua Qi, Zhong-Wu Lin, Zhi-Dong Wang","doi":"10.1186/s40779-024-00553-4","DOIUrl":"10.1186/s40779-024-00553-4","url":null,"abstract":"<p><p>Small nucleolar RNAs (snoRNAs) were previously regarded as a class of functionally conserved housekeeping genes, primarily involved in the regulation of ribosome biogenesis by ribosomal RNA (rRNA) modification. However, some of them are involved in several biological processes via complex molecular mechanisms. DNA damage response (DDR) is a conserved mechanism for maintaining genomic stability to prevent the occurrence of various human diseases. It has recently been revealed that snoRNAs are involved in DDR at multiple levels, indicating their relevant theoretical and clinical significance in this field. The present review systematically addresses four main points, including the biosynthesis and classification of snoRNAs, the mechanisms through which snoRNAs regulate target molecules, snoRNAs in the process of DDR, and the significance of snoRNA in disease diagnosis and treatment. It focuses on the potential functions of snoRNAs in DDR to help in the discovery of the roles of snoRNAs in maintaining genome stability and pathological processes.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"11 1","pages":"53"},"PeriodicalIF":16.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308251/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1186/s40779-024-00559-y
Wen Wang, Ying-Hui Jin, Mei Liu, Qiao He, Jia-Yue Xu, Ming-Qi Wang, Guo-Wei Li, Bo Fu, Si-Yu Yan, Kang Zou, Xin Sun
Background: In recent years, there has been a growing trend in the utilization of observational studies that make use of routinely collected healthcare data (RCD). These studies rely on algorithms to identify specific health conditions (e.g. diabetes or sepsis) for statistical analyses. However, there has been substantial variation in the algorithm development and validation, leading to frequently suboptimal performance and posing a significant threat to the validity of study findings. Unfortunately, these issues are often overlooked.
Methods: We systematically developed guidance for the development, validation, and evaluation of algorithms designed to identify health status (DEVELOP-RCD). Our initial efforts involved conducting both a narrative review and a systematic review of published studies on the concepts and methodological issues related to algorithm development, validation, and evaluation. Subsequently, we conducted an empirical study on an algorithm for identifying sepsis. Based on these findings, we formulated specific workflow and recommendations for algorithm development, validation, and evaluation within the guidance. Finally, the guidance underwent independent review by a panel of 20 external experts who then convened a consensus meeting to finalize it.
Results: A standardized workflow for algorithm development, validation, and evaluation was established. Guided by specific health status considerations, the workflow comprises four integrated steps: assessing an existing algorithm's suitability for the target health status; developing a new algorithm using recommended methods; validating the algorithm using prescribed performance measures; and evaluating the impact of the algorithm on study results. Additionally, 13 good practice recommendations were formulated with detailed explanations. Furthermore, a practical study on sepsis identification was included to demonstrate the application of this guidance.
Conclusions: The establishment of guidance is intended to aid researchers and clinicians in the appropriate and accurate development and application of algorithms for identifying health status from RCD. This guidance has the potential to enhance the credibility of findings from observational studies involving RCD.
{"title":"Guidance of development, validation, and evaluation of algorithms for populating health status in observational studies of routinely collected data (DEVELOP-RCD).","authors":"Wen Wang, Ying-Hui Jin, Mei Liu, Qiao He, Jia-Yue Xu, Ming-Qi Wang, Guo-Wei Li, Bo Fu, Si-Yu Yan, Kang Zou, Xin Sun","doi":"10.1186/s40779-024-00559-y","DOIUrl":"10.1186/s40779-024-00559-y","url":null,"abstract":"<p><strong>Background: </strong>In recent years, there has been a growing trend in the utilization of observational studies that make use of routinely collected healthcare data (RCD). These studies rely on algorithms to identify specific health conditions (e.g. diabetes or sepsis) for statistical analyses. However, there has been substantial variation in the algorithm development and validation, leading to frequently suboptimal performance and posing a significant threat to the validity of study findings. Unfortunately, these issues are often overlooked.</p><p><strong>Methods: </strong>We systematically developed guidance for the development, validation, and evaluation of algorithms designed to identify health status (DEVELOP-RCD). Our initial efforts involved conducting both a narrative review and a systematic review of published studies on the concepts and methodological issues related to algorithm development, validation, and evaluation. Subsequently, we conducted an empirical study on an algorithm for identifying sepsis. Based on these findings, we formulated specific workflow and recommendations for algorithm development, validation, and evaluation within the guidance. Finally, the guidance underwent independent review by a panel of 20 external experts who then convened a consensus meeting to finalize it.</p><p><strong>Results: </strong>A standardized workflow for algorithm development, validation, and evaluation was established. Guided by specific health status considerations, the workflow comprises four integrated steps: assessing an existing algorithm's suitability for the target health status; developing a new algorithm using recommended methods; validating the algorithm using prescribed performance measures; and evaluating the impact of the algorithm on study results. Additionally, 13 good practice recommendations were formulated with detailed explanations. Furthermore, a practical study on sepsis identification was included to demonstrate the application of this guidance.</p><p><strong>Conclusions: </strong>The establishment of guidance is intended to aid researchers and clinicians in the appropriate and accurate development and application of algorithms for identifying health status from RCD. This guidance has the potential to enhance the credibility of findings from observational studies involving RCD.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"11 1","pages":"52"},"PeriodicalIF":16.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1186/s40779-024-00557-0
Murray J Andrews, David H Salat, William P Milberg, Regina E McGlinchey, Catherine B Fortier
Background: Poor sleep quality has been associated with changes in brain volume among veterans, particularly those who have experienced mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD). This study sought to investigate (1) whether poor sleep quality is associated with decreased cortical thickness in Iraq and Afghanistan war veterans, and (2) whether these associations differ topographically depending on the presence or absence of mTBI and PTSD.
Methods: A sample of 440 post-9/11 era U.S. veterans enrolled in the Translational Research Center for Traumatic Brain Injury and Stress Disorders study at VA Boston, MA from 2010 to 2022 was included in the study. We examined the relationship between sleep quality, as measured by the Pittsburgh Sleep Quality Index (PSQI), and cortical thickness in veterans with mTBI (n = 57), PTSD (n = 110), comorbid mTBI and PTSD (n = 129), and neither PTSD nor mTBI (n = 144). To determine the topographical relationship between subjective sleep quality and cortical thickness in each diagnostic group, we employed a General Linear Model (GLM) at each vertex on the cortical mantle. The extent of topographical overlap between the resulting statistical maps was assessed using Dice coefficients.
Results: There were no significant associations between PSQI and cortical thickness in the group without PTSD or mTBI (n = 144) or in the PTSD-only group (n = 110). In the mTBI-only group (n = 57), lower sleep quality was significantly associated with reduced thickness bilaterally in frontal, cingulate, and precuneus regions, as well as in the right parietal and temporal regions (β = -0.0137, P < 0.0005). In the comorbid mTBI and PTSD group (n = 129), significant associations were observed bilaterally in frontal, precentral, and precuneus regions, in the left cingulate and the right parietal regions (β = -0.0094, P < 0.0005). Interaction analysis revealed that there was a stronger relationship between poor sleep quality and decreased cortical thickness in individuals with mTBI (n = 186) compared to those without mTBI (n = 254) specifically in the frontal and cingulate regions (β = -0.0077, P < 0.0005).
Conclusions: This study demonstrates a significant relationship between poor sleep quality and lower cortical thickness primarily within frontal regions among individuals with both isolated mTBI or comorbid diagnoses of mTBI and PTSD. Thus, if directionality is established in longitudinal and interventional studies, it may be crucial to consider addressing sleep in the treatment of veterans who have sustained mTBI.
{"title":"Poor sleep and decreased cortical thickness in veterans with mild traumatic brain injury and post-traumatic stress disorder.","authors":"Murray J Andrews, David H Salat, William P Milberg, Regina E McGlinchey, Catherine B Fortier","doi":"10.1186/s40779-024-00557-0","DOIUrl":"10.1186/s40779-024-00557-0","url":null,"abstract":"<p><strong>Background: </strong>Poor sleep quality has been associated with changes in brain volume among veterans, particularly those who have experienced mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD). This study sought to investigate (1) whether poor sleep quality is associated with decreased cortical thickness in Iraq and Afghanistan war veterans, and (2) whether these associations differ topographically depending on the presence or absence of mTBI and PTSD.</p><p><strong>Methods: </strong>A sample of 440 post-9/11 era U.S. veterans enrolled in the Translational Research Center for Traumatic Brain Injury and Stress Disorders study at VA Boston, MA from 2010 to 2022 was included in the study. We examined the relationship between sleep quality, as measured by the Pittsburgh Sleep Quality Index (PSQI), and cortical thickness in veterans with mTBI (n = 57), PTSD (n = 110), comorbid mTBI and PTSD (n = 129), and neither PTSD nor mTBI (n = 144). To determine the topographical relationship between subjective sleep quality and cortical thickness in each diagnostic group, we employed a General Linear Model (GLM) at each vertex on the cortical mantle. The extent of topographical overlap between the resulting statistical maps was assessed using Dice coefficients.</p><p><strong>Results: </strong>There were no significant associations between PSQI and cortical thickness in the group without PTSD or mTBI (n = 144) or in the PTSD-only group (n = 110). In the mTBI-only group (n = 57), lower sleep quality was significantly associated with reduced thickness bilaterally in frontal, cingulate, and precuneus regions, as well as in the right parietal and temporal regions (β = -0.0137, P < 0.0005). In the comorbid mTBI and PTSD group (n = 129), significant associations were observed bilaterally in frontal, precentral, and precuneus regions, in the left cingulate and the right parietal regions (β = -0.0094, P < 0.0005). Interaction analysis revealed that there was a stronger relationship between poor sleep quality and decreased cortical thickness in individuals with mTBI (n = 186) compared to those without mTBI (n = 254) specifically in the frontal and cingulate regions (β = -0.0077, P < 0.0005).</p><p><strong>Conclusions: </strong>This study demonstrates a significant relationship between poor sleep quality and lower cortical thickness primarily within frontal regions among individuals with both isolated mTBI or comorbid diagnoses of mTBI and PTSD. Thus, if directionality is established in longitudinal and interventional studies, it may be crucial to consider addressing sleep in the treatment of veterans who have sustained mTBI.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"11 1","pages":"51"},"PeriodicalIF":16.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1186/s40779-024-00552-5
Vignesh Ramachandran, Efe Kakpovbia, Michelle C Juarez, Neil Jairath, Andjela Nemcevic, Christine C Akoh, Ian M Ahearn, Ian W Tattersall, Nayoung Lee, Jo-Ann M Latkowski, John G Zampella
{"title":"Enhancing adherence for total body skin examination in post-surgical veterans: an interventional study at an urban Veterans Affairs center.","authors":"Vignesh Ramachandran, Efe Kakpovbia, Michelle C Juarez, Neil Jairath, Andjela Nemcevic, Christine C Akoh, Ian M Ahearn, Ian W Tattersall, Nayoung Lee, Jo-Ann M Latkowski, John G Zampella","doi":"10.1186/s40779-024-00552-5","DOIUrl":"10.1186/s40779-024-00552-5","url":null,"abstract":"","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"11 1","pages":"50"},"PeriodicalIF":16.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285472/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1186/s40779-024-00548-1
Hai-Lou Zhang, Yan Sun, Zhang-Jie Wu, Ying Yin, Rui-Yi Liu, Ji-Chun Zhang, Zhang-Jin Zhang, Suk-Yu Yau, Hao-Xin Wu, Ti-Fei Yuan, Li Zhang, Miroslav Adzic, Gang Chen
<p><strong>Background: </strong>The development of ketamine-like rapid antidepressants holds promise for enhancing the therapeutic efficacy of depression, but the underlying cellular and molecular mechanisms remain unclear. Implicated in depression regulation, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is investigated here to examine its role in mediating the rapid antidepressant response.</p><p><strong>Methods: </strong>The onset of antidepressant response was assessed through depression-related behavioral paradigms. The signaling mechanism of PACAP in the hippocampal dentate gyrus (DG) was evaluated by utilizing site-directed gene knockdown, pharmacological interventions, or optogenetic manipulations. Overall, 446 mice were used for behavioral and molecular signaling testing. Mice were divided into control or experimental groups randomly in each experiment, and the experimental manipulations included: chronic paroxetine treatments (4, 9, 14 d) or a single treatment of ketamine; social defeat or lipopolysaccharides-injection induced depression models; different doses of PACAP (0.4, 2, 4 ng/site; microinjected into the hippocampal DG); pharmacological intra-DG interventions (CALM and PACAP6-38); intra-DG viral-mediated PACAP RNAi; and opotogenetics using channelrhodopsins 2 (ChR2) or endoplasmic natronomonas halorhodopsine 3.0 (eNpHR3.0). Behavioral paradigms included novelty suppressed feeding test, tail suspension test, forced swimming test, and sucrose preference test. Western blotting, ELISA, or quantitative real-time PCR (RT-PCR) analysis were used to detect the expressions of proteins/peptides or genes in the hippocampus.</p><p><strong>Results: </strong>Chronic administration of the slow-onset antidepressant paroxetine resulted in an increase in hippocampal PACAP expression, and intra-DG blockade of PACAP attenuated the onset of the antidepressant response. The levels of hippocampal PACAP expression were reduced in both two distinct depression animal models and intra-DG knockdown of PACAP induced depression-like behaviors. Conversely, a single infusion of PACAP into the DG region produced a rapid and sustained antidepressant response in both normal and chronically stressed mice. Optogenetic intra-DG excitation of PACAP-expressing neurons instantly elicited antidepressant responses, while optogenetic inhibition induced depression-like behaviors. The longer optogenetic excitation/inhibition elicited the more sustained antidepressant/depression-like responses. Intra-DG PACAP infusion immediately facilitated the signaling for rapid antidepressant response by inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII)-eukaryotic elongation factor 2 (eEF2) and activating the mammalian target of rapamycin (mTOR). Pre-activation of CaMKII signaling within the DG blunted PACAP-induced rapid antidepressant response as well as eEF2-mTOR-brain-derived neurotrophic factor (BDNF) signaling. Finally, acute ketamine
{"title":"Hippocampal PACAP signaling activation triggers a rapid antidepressant response.","authors":"Hai-Lou Zhang, Yan Sun, Zhang-Jie Wu, Ying Yin, Rui-Yi Liu, Ji-Chun Zhang, Zhang-Jin Zhang, Suk-Yu Yau, Hao-Xin Wu, Ti-Fei Yuan, Li Zhang, Miroslav Adzic, Gang Chen","doi":"10.1186/s40779-024-00548-1","DOIUrl":"10.1186/s40779-024-00548-1","url":null,"abstract":"<p><strong>Background: </strong>The development of ketamine-like rapid antidepressants holds promise for enhancing the therapeutic efficacy of depression, but the underlying cellular and molecular mechanisms remain unclear. Implicated in depression regulation, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is investigated here to examine its role in mediating the rapid antidepressant response.</p><p><strong>Methods: </strong>The onset of antidepressant response was assessed through depression-related behavioral paradigms. The signaling mechanism of PACAP in the hippocampal dentate gyrus (DG) was evaluated by utilizing site-directed gene knockdown, pharmacological interventions, or optogenetic manipulations. Overall, 446 mice were used for behavioral and molecular signaling testing. Mice were divided into control or experimental groups randomly in each experiment, and the experimental manipulations included: chronic paroxetine treatments (4, 9, 14 d) or a single treatment of ketamine; social defeat or lipopolysaccharides-injection induced depression models; different doses of PACAP (0.4, 2, 4 ng/site; microinjected into the hippocampal DG); pharmacological intra-DG interventions (CALM and PACAP6-38); intra-DG viral-mediated PACAP RNAi; and opotogenetics using channelrhodopsins 2 (ChR2) or endoplasmic natronomonas halorhodopsine 3.0 (eNpHR3.0). Behavioral paradigms included novelty suppressed feeding test, tail suspension test, forced swimming test, and sucrose preference test. Western blotting, ELISA, or quantitative real-time PCR (RT-PCR) analysis were used to detect the expressions of proteins/peptides or genes in the hippocampus.</p><p><strong>Results: </strong>Chronic administration of the slow-onset antidepressant paroxetine resulted in an increase in hippocampal PACAP expression, and intra-DG blockade of PACAP attenuated the onset of the antidepressant response. The levels of hippocampal PACAP expression were reduced in both two distinct depression animal models and intra-DG knockdown of PACAP induced depression-like behaviors. Conversely, a single infusion of PACAP into the DG region produced a rapid and sustained antidepressant response in both normal and chronically stressed mice. Optogenetic intra-DG excitation of PACAP-expressing neurons instantly elicited antidepressant responses, while optogenetic inhibition induced depression-like behaviors. The longer optogenetic excitation/inhibition elicited the more sustained antidepressant/depression-like responses. Intra-DG PACAP infusion immediately facilitated the signaling for rapid antidepressant response by inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII)-eukaryotic elongation factor 2 (eEF2) and activating the mammalian target of rapamycin (mTOR). Pre-activation of CaMKII signaling within the DG blunted PACAP-induced rapid antidepressant response as well as eEF2-mTOR-brain-derived neurotrophic factor (BDNF) signaling. Finally, acute ketamine ","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"11 1","pages":"49"},"PeriodicalIF":16.7,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1186/s40779-024-00550-7
Yi Zhuo, Wen-Shui Li, Wen Lu, Xuan Li, Li-Te Ge, Yan Huang, Qing-Tao Gao, Yu-Jia Deng, Xin-Chen Jiang, Zi-Wei Lan, Que Deng, Yong-Heng Chen, Yi Xiao, Shuo Lu, Feng Jiang, Zuo Liu, Li Hu, Yu Liu, Yu Ding, Zheng-Wen He, De-An Tan, Da Duan, Ming Lu
Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra (SN). Activation of the neuroinflammatory response has a pivotal role in PD. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for various nerve injuries, but there are limited reports on their use in PD and the underlying mechanisms remain unclear.
Methods: We investigated the effects of clinical-grade hypoxia-preconditioned olfactory mucosa (hOM)-MSCs on neural functional recovery in both PD models and patients, as well as the preventive effects on mouse models of PD. To assess improvement in neuroinflammatory response and neural functional recovery induced by hOM-MSCs exposure, we employed single-cell RNA sequencing (scRNA-seq), assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq) combined with full-length transcriptome isoform-sequencing (ISO-seq), and functional assay. Furthermore, we present the findings from an initial cohort of patients enrolled in a phase I first-in-human clinical trial evaluating the safety and efficacy of intraspinal transplantation of hOM-MSC transplantation into severe PD patients.
Results: A functional assay identified that transforming growth factor-β1 (TGF-β1), secreted from hOM-MSCs, played a critical role in modulating mitochondrial function recovery in dopaminergic neurons. This effect was achieved through improving microglia immune regulation and autophagy homeostasis in the SN, which are closely associated with neuroinflammatory responses. Mechanistically, exposure to hOM-MSCs led to an improvement in neuroinflammation and neural function recovery partially mediated by TGF-β1 via activation of the anaplastic lymphoma kinase/phosphatidylinositol-3-kinase/protein kinase B (ALK/PI3K/Akt) signaling pathway in microglia located in the SN of PD patients. Furthermore, intraspinal transplantation of hOM-MSCs improved the recovery of neurologic function and regulated the neuroinflammatory response without any adverse reactions observed in patients with PD.
Conclusions: These findings provide compelling evidence for the involvement of TGF-β1 in mediating the beneficial effects of hOM-MSCs on neural functional recovery in PD. Treatment and prevention of hOM-MSCs could be a promising and effective neuroprotective strategy for PD. Additionally, TGF-β1 may be used alone or combined with hOM-MSCs therapy for treating PD.
{"title":"TGF-β1 mediates hypoxia-preconditioned olfactory mucosa mesenchymal stem cells improved neural functional recovery in Parkinson's disease models and patients.","authors":"Yi Zhuo, Wen-Shui Li, Wen Lu, Xuan Li, Li-Te Ge, Yan Huang, Qing-Tao Gao, Yu-Jia Deng, Xin-Chen Jiang, Zi-Wei Lan, Que Deng, Yong-Heng Chen, Yi Xiao, Shuo Lu, Feng Jiang, Zuo Liu, Li Hu, Yu Liu, Yu Ding, Zheng-Wen He, De-An Tan, Da Duan, Ming Lu","doi":"10.1186/s40779-024-00550-7","DOIUrl":"10.1186/s40779-024-00550-7","url":null,"abstract":"<p><strong>Background: </strong>Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra (SN). Activation of the neuroinflammatory response has a pivotal role in PD. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for various nerve injuries, but there are limited reports on their use in PD and the underlying mechanisms remain unclear.</p><p><strong>Methods: </strong>We investigated the effects of clinical-grade hypoxia-preconditioned olfactory mucosa (hOM)-MSCs on neural functional recovery in both PD models and patients, as well as the preventive effects on mouse models of PD. To assess improvement in neuroinflammatory response and neural functional recovery induced by hOM-MSCs exposure, we employed single-cell RNA sequencing (scRNA-seq), assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq) combined with full-length transcriptome isoform-sequencing (ISO-seq), and functional assay. Furthermore, we present the findings from an initial cohort of patients enrolled in a phase I first-in-human clinical trial evaluating the safety and efficacy of intraspinal transplantation of hOM-MSC transplantation into severe PD patients.</p><p><strong>Results: </strong>A functional assay identified that transforming growth factor-β1 (TGF-β1), secreted from hOM-MSCs, played a critical role in modulating mitochondrial function recovery in dopaminergic neurons. This effect was achieved through improving microglia immune regulation and autophagy homeostasis in the SN, which are closely associated with neuroinflammatory responses. Mechanistically, exposure to hOM-MSCs led to an improvement in neuroinflammation and neural function recovery partially mediated by TGF-β1 via activation of the anaplastic lymphoma kinase/phosphatidylinositol-3-kinase/protein kinase B (ALK/PI3K/Akt) signaling pathway in microglia located in the SN of PD patients. Furthermore, intraspinal transplantation of hOM-MSCs improved the recovery of neurologic function and regulated the neuroinflammatory response without any adverse reactions observed in patients with PD.</p><p><strong>Conclusions: </strong>These findings provide compelling evidence for the involvement of TGF-β1 in mediating the beneficial effects of hOM-MSCs on neural functional recovery in PD. Treatment and prevention of hOM-MSCs could be a promising and effective neuroprotective strategy for PD. Additionally, TGF-β1 may be used alone or combined with hOM-MSCs therapy for treating PD.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"11 1","pages":"48"},"PeriodicalIF":16.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-11DOI: 10.1186/s40779-024-00551-6
Bin Lv, Jin-Xin Lan, Yan-Fang Si, Yi-Fan Ren, Ming-Yu Li, Fang-Fang Guo, Ge Tang, Yang Bian, Xiao-Hui Wang, Rong-Ju Zhang, Zhi-Hua Du, Xin-Feng Liu, Sheng-Yuan Yu, Cheng-Lin Tian, Xiang-Yu Cao, Jun Wang
Subarachnoid hemorrhage (SAH) is a subtype of hemorrhagic stroke characterized by high mortality and low rates of full recovery. This study aimed to investigate the epidemiological characteristics of SAH between 1990 and 2021. Data on SAH incidence, mortality, and disability-adjusted life-years (DALYs) from 1990 to 2021 were obtained from the Global Burden of Disease Study (GBD) 2021. Estimated annual percentage changes (EAPCs) were calculated to evaluate changes in the age-standardized rate (ASR) of incidence and mortality, as well as trends in SAH burden. The relationship between disease burden and sociodemographic index (SDI) was also analyzed. In 2021, the incidence of SAH was found to be 37.09% higher than that in 1990; however, the age-standardized incidence rates (ASIRs) showed a decreased [EAPC: -1.52; 95% uncertainty interval (UI) -1.66 to -1.37]. Furthermore, both the number and rates of deaths and DALYs decreased over time. It was observed that females had lower rates compared to males. Among all regions, the high-income Asia Pacific region exhibited the highest ASIR (14.09/100,000; 95% UI 12.30/100,000 − 16.39/100,000) in 2021, with an EPAC for ASIR < 0 indicating decreasing trend over time for SAH ASIR. Oceania recorded the highest age-standardized mortality rates (ASMRs) and age-standardized DALYs rates among all regions in 2021 at values of respectively 8.61 (95% UI 6.03 − 11.95) and 285.62 (95% UI 209.42 − 379.65). The burden associated with SAH primarily affected individuals aged between 50 − 69 years old. Metabolic risks particularly elevated systolic blood pressure were identified as the main risk factors contributing towards increased disease burden associated with SAH when compared against environmental or occupational behavioral risks evaluated within the GBD framework. The burden of SAH varies by gender, age group, and geographical region. Although the ASRs have shown a decline over time, the burden of SAH remains significant, especially in regions with middle and low-middle SDI levels. High systolic blood pressure stands out as a key risk factor for SAH. More specific supportive measures are necessary to alleviate the global burden of SAH.
{"title":"Epidemiological trends of subarachnoid hemorrhage at global, regional, and national level: a trend analysis study from 1990 to 2021","authors":"Bin Lv, Jin-Xin Lan, Yan-Fang Si, Yi-Fan Ren, Ming-Yu Li, Fang-Fang Guo, Ge Tang, Yang Bian, Xiao-Hui Wang, Rong-Ju Zhang, Zhi-Hua Du, Xin-Feng Liu, Sheng-Yuan Yu, Cheng-Lin Tian, Xiang-Yu Cao, Jun Wang","doi":"10.1186/s40779-024-00551-6","DOIUrl":"https://doi.org/10.1186/s40779-024-00551-6","url":null,"abstract":"Subarachnoid hemorrhage (SAH) is a subtype of hemorrhagic stroke characterized by high mortality and low rates of full recovery. This study aimed to investigate the epidemiological characteristics of SAH between 1990 and 2021. Data on SAH incidence, mortality, and disability-adjusted life-years (DALYs) from 1990 to 2021 were obtained from the Global Burden of Disease Study (GBD) 2021. Estimated annual percentage changes (EAPCs) were calculated to evaluate changes in the age-standardized rate (ASR) of incidence and mortality, as well as trends in SAH burden. The relationship between disease burden and sociodemographic index (SDI) was also analyzed. In 2021, the incidence of SAH was found to be 37.09% higher than that in 1990; however, the age-standardized incidence rates (ASIRs) showed a decreased [EAPC: -1.52; 95% uncertainty interval (UI) -1.66 to -1.37]. Furthermore, both the number and rates of deaths and DALYs decreased over time. It was observed that females had lower rates compared to males. Among all regions, the high-income Asia Pacific region exhibited the highest ASIR (14.09/100,000; 95% UI 12.30/100,000 − 16.39/100,000) in 2021, with an EPAC for ASIR < 0 indicating decreasing trend over time for SAH ASIR. Oceania recorded the highest age-standardized mortality rates (ASMRs) and age-standardized DALYs rates among all regions in 2021 at values of respectively 8.61 (95% UI 6.03 − 11.95) and 285.62 (95% UI 209.42 − 379.65). The burden associated with SAH primarily affected individuals aged between 50 − 69 years old. Metabolic risks particularly elevated systolic blood pressure were identified as the main risk factors contributing towards increased disease burden associated with SAH when compared against environmental or occupational behavioral risks evaluated within the GBD framework. The burden of SAH varies by gender, age group, and geographical region. Although the ASRs have shown a decline over time, the burden of SAH remains significant, especially in regions with middle and low-middle SDI levels. High systolic blood pressure stands out as a key risk factor for SAH. More specific supportive measures are necessary to alleviate the global burden of SAH.","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"53 1","pages":""},"PeriodicalIF":21.1,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1186/s40779-024-00547-2
Claudia A Collier, Aelita Salikhova, Sufiyan Sabir, Steven Foncerrada, Shreya A Raghavan
Gulf War Illness (GWI) is characterized by a wide range of symptoms that manifests largely as gastrointestinal symptoms. Among these gastrointestinal symptoms, motility disorders are highly prevalent, presenting as chronic constipation, stomach pain, indigestion, diarrhea, and other conditions that severely impact the quality of life of GWI veterans. However, despite a high prevalence of gastrointestinal impairments among these veterans, most research attention has focused on neurological disturbances. This perspective provides a comprehensive overview of current in vivo research advancements elucidating the underlying mechanisms contributing to gastrointestinal disorders in GWI. Generally, these in vivo and in vitro models propose that neuroinflammation alters gut motility and drives the gastrointestinal symptoms reported in GWI. Additionally, this perspective highlights the potential and challenges of in vitro bioengineering models, which could be a crucial contributor to understanding and treating the pathology of gastrointestinal related-GWI.
{"title":"Crisis in the gut: navigating gastrointestinal challenges in Gulf War Illness with bioengineering.","authors":"Claudia A Collier, Aelita Salikhova, Sufiyan Sabir, Steven Foncerrada, Shreya A Raghavan","doi":"10.1186/s40779-024-00547-2","DOIUrl":"10.1186/s40779-024-00547-2","url":null,"abstract":"<p><p>Gulf War Illness (GWI) is characterized by a wide range of symptoms that manifests largely as gastrointestinal symptoms. Among these gastrointestinal symptoms, motility disorders are highly prevalent, presenting as chronic constipation, stomach pain, indigestion, diarrhea, and other conditions that severely impact the quality of life of GWI veterans. However, despite a high prevalence of gastrointestinal impairments among these veterans, most research attention has focused on neurological disturbances. This perspective provides a comprehensive overview of current in vivo research advancements elucidating the underlying mechanisms contributing to gastrointestinal disorders in GWI. Generally, these in vivo and in vitro models propose that neuroinflammation alters gut motility and drives the gastrointestinal symptoms reported in GWI. Additionally, this perspective highlights the potential and challenges of in vitro bioengineering models, which could be a crucial contributor to understanding and treating the pathology of gastrointestinal related-GWI.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"11 1","pages":"45"},"PeriodicalIF":16.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.1186/s40779-024-00549-0
Mabel L Cummins, Skylar Wechsler, Grace Delmonte, Joseph J Schlesinger
{"title":"The emerging role of Panx1 as a potential therapeutic target for chronic pain.","authors":"Mabel L Cummins, Skylar Wechsler, Grace Delmonte, Joseph J Schlesinger","doi":"10.1186/s40779-024-00549-0","DOIUrl":"10.1186/s40779-024-00549-0","url":null,"abstract":"","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"11 1","pages":"44"},"PeriodicalIF":16.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229491/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}