P. Roelfsema, H. Shibai, H. Kaneda, M. Sauvage, M. Giard, F. Najarro, C. Bradford, Toru Yamada, J. Tauber, M. Audard, P. Dieleman, Y. Doi, D. Elbaz, M. Griffin, F. Helmich, A. Heske, M. Honda, W. Jellema, Shoko Jin, M. Juvela, I. Kamp, F. Kerschbaum, C. Kiss, K. Kohno, O. Krause, G. Lange, B. Larsson, J. Martín-Pintado, H. Matsuhara, T. Nakagawa, T. Nagao, D. Naylor, H. Nomura, H. Ogawa, T. Onaka, J. Rouquet, L. Spinoglio, R. Szczerba, F. V. D. Tak, B. Vandenbussche, Shiang‐Yu Wang, S. Withington
The mid/far infrared hosts a wealth of spectral information that allows direct determination of the physical state of matter in a large variety of astronomical objects, unhindered by foreground obscuration. Accessing this domain is essential for astronomers to much better grasp the fundamental physical processes underlying the evolution of many types of celestial objects, ranging from protoplanetary systems in our own milky way to 10-12 billion year old galaxies at the high noon of galaxy formation in our universe. The joint ESA/JAXA SPICA mission will give such access for the astronomical community at large, by providing an observatory with unprecedented mid- to far-infrared imaging, polarimetric and spectroscopic capabilities.
{"title":"The joint infrared space observatory SPICA: unveiling the obscured universe","authors":"P. Roelfsema, H. Shibai, H. Kaneda, M. Sauvage, M. Giard, F. Najarro, C. Bradford, Toru Yamada, J. Tauber, M. Audard, P. Dieleman, Y. Doi, D. Elbaz, M. Griffin, F. Helmich, A. Heske, M. Honda, W. Jellema, Shoko Jin, M. Juvela, I. Kamp, F. Kerschbaum, C. Kiss, K. Kohno, O. Krause, G. Lange, B. Larsson, J. Martín-Pintado, H. Matsuhara, T. Nakagawa, T. Nagao, D. Naylor, H. Nomura, H. Ogawa, T. Onaka, J. Rouquet, L. Spinoglio, R. Szczerba, F. V. D. Tak, B. Vandenbussche, Shiang‐Yu Wang, S. Withington","doi":"10.1117/12.2562946","DOIUrl":"https://doi.org/10.1117/12.2562946","url":null,"abstract":"The mid/far infrared hosts a wealth of spectral information that allows direct determination of the physical state of matter in a large variety of astronomical objects, unhindered by foreground obscuration. Accessing this domain is essential for astronomers to much better grasp the fundamental physical processes underlying the evolution of many types of celestial objects, ranging from protoplanetary systems in our own milky way to 10-12 billion year old galaxies at the high noon of galaxy formation in our universe. The joint ESA/JAXA SPICA mission will give such access for the astronomical community at large, by providing an observatory with unprecedented mid- to far-infrared imaging, polarimetric and spectroscopic capabilities.","PeriodicalId":185935,"journal":{"name":"Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122616997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Eccleston, R. Drummond, K. Middleton, G. Bishop, A. Caldwell, L. Desjonquères, I. Tosh, N. Cann, M. Crook, M. Hills, C. Pearson, C. Simpson, R. Stamper, G. Tinetti, E. Pascale, M. Swain, W. Holmes, A. Wong, L. Puig, G. Pilbratt, M. Linder, N. Boudin, H. Ertel, L. Gambicorti, J. Halain, E. Pace, F. Vilardell, Jose M. Gomez, J. Colomé, J. Amiaux, C. Cara, M. Berthé, V. Moreau, G. Morgante, G. Malaguti, G. Alonso, J. P. Álvarez, M. Ollivier, A. Philippon, M. Hellin, S. Roose, M. Frericks, M. Krijger, M. Rataj, P. Wawer, K. Skup, M. Sobiecki, N. Jessen, S. Pedersen, P. Hargrave, M. Griffin, R. Ottensamer, T. Hunt, D. Rust, Aymen Saleh, B. Winter, M. Focardi, V. Deppo, P. Zuppella, M. Czupalla
The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey, ARIEL, has been selected to be the next (M4) medium class space mission in the ESA Cosmic Vision programme. From launch in 2028, and during the following 4 years of operation, ARIEL will perform precise spectroscopy of the atmospheres of ~1000 known transiting exoplanets using its metre-class telescope. A three-band photometer and three spectrometers cover the 0.5 µm to 7.8 µm region of the electromagnetic spectrum. This paper gives an overview of the mission payload, including the telescope assembly, the FGS (Fine Guidance System) - which provides both pointing information to the spacecraft and scientific photometry and low-resolution spectrometer data, the ARIEL InfraRed Spectrometer (AIRS), and other payload infrastructure such as the warm electronics, structures and cryogenic cooling systems.
{"title":"The ARIEL payload: A technical overview","authors":"P. Eccleston, R. Drummond, K. Middleton, G. Bishop, A. Caldwell, L. Desjonquères, I. Tosh, N. Cann, M. Crook, M. Hills, C. Pearson, C. Simpson, R. Stamper, G. Tinetti, E. Pascale, M. Swain, W. Holmes, A. Wong, L. Puig, G. Pilbratt, M. Linder, N. Boudin, H. Ertel, L. Gambicorti, J. Halain, E. Pace, F. Vilardell, Jose M. Gomez, J. Colomé, J. Amiaux, C. Cara, M. Berthé, V. Moreau, G. Morgante, G. Malaguti, G. Alonso, J. P. Álvarez, M. Ollivier, A. Philippon, M. Hellin, S. Roose, M. Frericks, M. Krijger, M. Rataj, P. Wawer, K. Skup, M. Sobiecki, N. Jessen, S. Pedersen, P. Hargrave, M. Griffin, R. Ottensamer, T. Hunt, D. Rust, Aymen Saleh, B. Winter, M. Focardi, V. Deppo, P. Zuppella, M. Czupalla","doi":"10.1117/12.2561478","DOIUrl":"https://doi.org/10.1117/12.2561478","url":null,"abstract":"The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey, ARIEL, has been selected to be the next (M4) medium class space mission in the ESA Cosmic Vision programme. From launch in 2028, and during the following 4 years of operation, ARIEL will perform precise spectroscopy of the atmospheres of ~1000 known transiting exoplanets using its metre-class telescope. A three-band photometer and three spectrometers cover the 0.5 µm to 7.8 µm region of the electromagnetic spectrum. \u0000This paper gives an overview of the mission payload, including the telescope assembly, the FGS (Fine Guidance System) - which provides both pointing information to the spacecraft and scientific photometry and low-resolution spectrometer data, the ARIEL InfraRed Spectrometer (AIRS), and other payload infrastructure such as the warm electronics, structures and cryogenic cooling systems.","PeriodicalId":185935,"journal":{"name":"Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127661296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OSS on Origins is designed to decode the cosmic history of nucleosynthesis, star formation, and supermassive black hole growth with wide-area spatial-spectral 3-D surveys in the 30 to 670 micron band. Six wideband grating modules combine to cover the full band at R=300, each couples a long slit with at least 30 beams on the sky. Two high-resolution modes are provided: one incorporates an interferometer in front of the gratings providing R of more than 40,000 at 112 microns, the other adds an etalon for R>300,000 at 112 microns. The full system design is presented, including optics, detector arrays, readouts, and the thermal design.
{"title":"The Origins Survey Spectrometer (OSS) for the Origins Space Telescope","authors":"C. Bradford, Origins Study Team","doi":"10.1117/12.2562949","DOIUrl":"https://doi.org/10.1117/12.2562949","url":null,"abstract":"OSS on Origins is designed to decode the cosmic history of nucleosynthesis, star formation, and supermassive black hole growth with wide-area spatial-spectral 3-D surveys in the 30 to 670 micron band. Six wideband grating modules combine to cover the full band at R=300, each couples a long slit with at least 30 beams on the sky. Two high-resolution modes are provided: one incorporates an interferometer in front of the gratings providing R of more than 40,000 at 112 microns, the other adds an etalon for R>300,000 at 112 microns. The full system design is presented, including optics, detector arrays, readouts, and the thermal design.","PeriodicalId":185935,"journal":{"name":"Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133722904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}