Pub Date : 2024-01-01Epub Date: 2024-06-29DOI: 10.1016/bs.mie.2024.06.002
Antonio Del Rio Flores, Rui Zhai, Wenjun Zhang
The isonitrile group is a compact, electron-rich moiety coveted for its commonplace as a building block and bioorthogonal functionality in synthetic chemistry and chemical biology. Hundreds of natural products containing an isonitrile group with intriguing bioactive properties have been isolated from diverse organisms. Our recent discovery of a conserved biosynthetic gene cluster in some Actinobacteria species highlighted a novel enzymatic pathway to isonitrile formation involving a non-heme iron(II) and α-ketoglutarate-dependent dioxygenase. Here, we focus this chapter on recent advances in understanding and probing the biosynthetic machinery for isonitrile synthesis by non-heme iron(II) and α-ketoglutarate-dependent dioxygenases. We will begin by describing how to harness isonitrile enzymatic machinery through heterologous expression, purification, synthetic strategies, and in vitro biochemical/kinetic characterization. We will then describe a generalizable strategy to probe the mechanism for isonitrile formation by combining various spectroscopic methods. The chapter will also cover strategies to study other enzyme homologs by implementing coupled assays using biosynthetic pathway enzymes. We will conclude this chapter by addressing current challenges and future directions in understanding and engineering isonitrile synthesis.
{"title":"Isonitrile biosynthesis by non-heme iron(II)-dependent oxidases/decarboxylases.","authors":"Antonio Del Rio Flores, Rui Zhai, Wenjun Zhang","doi":"10.1016/bs.mie.2024.06.002","DOIUrl":"10.1016/bs.mie.2024.06.002","url":null,"abstract":"<p><p>The isonitrile group is a compact, electron-rich moiety coveted for its commonplace as a building block and bioorthogonal functionality in synthetic chemistry and chemical biology. Hundreds of natural products containing an isonitrile group with intriguing bioactive properties have been isolated from diverse organisms. Our recent discovery of a conserved biosynthetic gene cluster in some Actinobacteria species highlighted a novel enzymatic pathway to isonitrile formation involving a non-heme iron(II) and α-ketoglutarate-dependent dioxygenase. Here, we focus this chapter on recent advances in understanding and probing the biosynthetic machinery for isonitrile synthesis by non-heme iron(II) and α-ketoglutarate-dependent dioxygenases. We will begin by describing how to harness isonitrile enzymatic machinery through heterologous expression, purification, synthetic strategies, and in vitro biochemical/kinetic characterization. We will then describe a generalizable strategy to probe the mechanism for isonitrile formation by combining various spectroscopic methods. The chapter will also cover strategies to study other enzyme homologs by implementing coupled assays using biosynthetic pathway enzymes. We will conclude this chapter by addressing current challenges and future directions in understanding and engineering isonitrile synthesis.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-06-08DOI: 10.1016/bs.mie.2024.05.014
Jai Krishna Mahto, Arpan Kayastha, Pravindra Kumar
Non-heme iron oxygenases constitute a versatile enzyme family that is crucial for incorporating molecular oxygen into diverse biomolecules. Despite their importance, only a limited number of these enzymes have been structurally and functionally characterized. Surprisingly, there remains a significant gap in understanding how these enzymes utilize a typical architecture and reaction mechanism to catalyze a wide range of reactions. Improving our understanding of these catalysts holds promise for advancing both fundamental enzymology and practical applications. This chapter aims to outline methods for heterologous expression, enzyme preparation, in vitro enzyme assays, and crystallization of biphenyl dioxygenase, phthalate dioxygenase and terephthalate dioxygenase. These enzymes catalyze the dihydroxylation of biphenyl, phthalate and terephthalate molecules, serving as a model for functional and structural analysis of other non-heme iron oxygenases.
{"title":"Expression, purification, kinetics, and crystallization of non-heme mononuclear iron enzymes: Biphenyl, Phthalate, and Terephthalate dioxygenases.","authors":"Jai Krishna Mahto, Arpan Kayastha, Pravindra Kumar","doi":"10.1016/bs.mie.2024.05.014","DOIUrl":"https://doi.org/10.1016/bs.mie.2024.05.014","url":null,"abstract":"<p><p>Non-heme iron oxygenases constitute a versatile enzyme family that is crucial for incorporating molecular oxygen into diverse biomolecules. Despite their importance, only a limited number of these enzymes have been structurally and functionally characterized. Surprisingly, there remains a significant gap in understanding how these enzymes utilize a typical architecture and reaction mechanism to catalyze a wide range of reactions. Improving our understanding of these catalysts holds promise for advancing both fundamental enzymology and practical applications. This chapter aims to outline methods for heterologous expression, enzyme preparation, in vitro enzyme assays, and crystallization of biphenyl dioxygenase, phthalate dioxygenase and terephthalate dioxygenase. These enzymes catalyze the dihydroxylation of biphenyl, phthalate and terephthalate molecules, serving as a model for functional and structural analysis of other non-heme iron oxygenases.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-06-08DOI: 10.1016/bs.mie.2024.05.006
Daan Ren, Yu-Hsuan Lee, Hung-Wen Liu
Oxazinomycin is a C-nucleoside natural product characterized by a 1,3-oxazine ring linked to ribose via a C-C glycosidic bond. Construction of the 1,3-oxazine ring depends on the activity of OzmD, which is a mononuclear non-heme iron-dependent enzyme from a family of enzymes that contain a domain of unknown function (DUF) 4243. OzmD catalyzes an unusual oxidative ring rearrangement of a pyridine derivative that releases cyanide as a by-product in the final stage of oxazinomycin biosynthesis. The intrinsic sensitivity of the OzmD substrate to oxygen along with the oxygen dependency of catalysis presents significant challenges in conducting in vitro enzymatic assays. This chapter describes the detailed procedures that have been used to characterize OzmD, including protein preparation, activity assays, and reaction by-product identification.
{"title":"Expression, purification and characterization of non-heme iron-dependent mono-oxygenase OzmD in oxazinomycin biosynthesis.","authors":"Daan Ren, Yu-Hsuan Lee, Hung-Wen Liu","doi":"10.1016/bs.mie.2024.05.006","DOIUrl":"https://doi.org/10.1016/bs.mie.2024.05.006","url":null,"abstract":"<p><p>Oxazinomycin is a C-nucleoside natural product characterized by a 1,3-oxazine ring linked to ribose via a C-C glycosidic bond. Construction of the 1,3-oxazine ring depends on the activity of OzmD, which is a mononuclear non-heme iron-dependent enzyme from a family of enzymes that contain a domain of unknown function (DUF) 4243. OzmD catalyzes an unusual oxidative ring rearrangement of a pyridine derivative that releases cyanide as a by-product in the final stage of oxazinomycin biosynthesis. The intrinsic sensitivity of the OzmD substrate to oxygen along with the oxygen dependency of catalysis presents significant challenges in conducting in vitro enzymatic assays. This chapter describes the detailed procedures that have been used to characterize OzmD, including protein preparation, activity assays, and reaction by-product identification.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-27DOI: 10.1016/bs.mie.2024.08.001
Christopher A Belica, Patricia C Hernandez, Michael A Carpenter, Yanjun Chen, William L Brown, Reuben S Harris, Hideki Aihara
In recent years, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become ever more apparent. This growing awareness and lack of inhibitory drugs has created a distinct need for biochemical tools that can be used to identify and characterize potential inhibitors of this family of enzymes. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination (RADD) assay. The RADD assay provides a rapid, real-time fluorescence readout of APOBEC3 DNA deamination and serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit. This method improves upon contemporary DNA deamination assays by offering a more rapid and quantifiable readout as well as providing a platform that is readily adaptable to a high-throughput format for inhibitor discovery. In this chapter we provide a detailed guide for the usage of the RADD assay for the characterization of APOBEC3 enzymes and potential inhibitors.
近年来,APOBEC3胞嘧啶脱氨酶与癌症诱变之间的联系变得越来越明显。由于人们对这一问题的认识不断提高,同时又缺乏抑制性药物,因此,人们对可用于识别和鉴定该酶家族潜在抑制剂的生化工具有了明显的需求。为了应对这一挑战,我们开发了一种实时 APOBEC3 介导的 DNA 脱氨(RADD)检测方法。RADD 检测法提供了 APOBEC3 DNA 脱氨基的快速、实时荧光读数,是对现有 APOBEC3 生化和细胞工具包的重要补充。该方法改进了现有的 DNA 脱氨基检测方法,提供了更快速、更可量化的读数,并提供了一个可随时适应高通量抑制剂发现的平台。在本章中,我们将详细介绍如何使用 RADD 检测法鉴定 APOBEC3 酶和潜在抑制剂。
{"title":"RADD: A real-time FRET-based biochemical assay for DNA deaminase studies.","authors":"Christopher A Belica, Patricia C Hernandez, Michael A Carpenter, Yanjun Chen, William L Brown, Reuben S Harris, Hideki Aihara","doi":"10.1016/bs.mie.2024.08.001","DOIUrl":"10.1016/bs.mie.2024.08.001","url":null,"abstract":"<p><p>In recent years, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become ever more apparent. This growing awareness and lack of inhibitory drugs has created a distinct need for biochemical tools that can be used to identify and characterize potential inhibitors of this family of enzymes. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination (RADD) assay. The RADD assay provides a rapid, real-time fluorescence readout of APOBEC3 DNA deamination and serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit. This method improves upon contemporary DNA deamination assays by offering a more rapid and quantifiable readout as well as providing a platform that is readily adaptable to a high-throughput format for inhibitor discovery. In this chapter we provide a detailed guide for the usage of the RADD assay for the characterization of APOBEC3 enzymes and potential inhibitors.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-22DOI: 10.1016/bs.mie.2024.07.033
Hope I Needs, Youmian Yan, Natalie M Niemi, Ian Collinson
The NanoLuc split luciferase assay has proven to be a powerful tool for the analysis of protein translocation. Its flexibility has enabled in vivo, ex vivo, and in vitro studies-including systems reconstituting protein transport from pure components. The assay has been particularly useful in the characterization of bacterial secretion and mitochondrial protein import. In the latter case, MitoLuc has been developed for the investigation of the TIM23-pathway via import into the matrix of isolated yeast mitochondria. Subsequent analysis identified three distinct phases of import, rather than in a single continuous step. The assay has also been developed to monitor import into the mitochondrial matrix of intact cultured cells. This latter innovation has laid the foundations for further analysis of the import process in humans, including the consequences of interactions with cytosolic factors and neighboring organelles. The versatility of the MitoLuc assay is conducive for its adaptation to also monitor import into the inter-membrane space (MIA-pathway), and into the inner-membrane via the TIM22- and TIM23-complexes. Here, we present detailed protocols for the application of MitoLuc to mitochondria isolated from yeast and to those within cultured human cells.
{"title":"The MitoLuc assay for the analysis of the mechanism of mitochondrial protein import.","authors":"Hope I Needs, Youmian Yan, Natalie M Niemi, Ian Collinson","doi":"10.1016/bs.mie.2024.07.033","DOIUrl":"10.1016/bs.mie.2024.07.033","url":null,"abstract":"<p><p>The NanoLuc split luciferase assay has proven to be a powerful tool for the analysis of protein translocation. Its flexibility has enabled in vivo, ex vivo, and in vitro studies-including systems reconstituting protein transport from pure components. The assay has been particularly useful in the characterization of bacterial secretion and mitochondrial protein import. In the latter case, MitoLuc has been developed for the investigation of the TIM23-pathway via import into the matrix of isolated yeast mitochondria. Subsequent analysis identified three distinct phases of import, rather than in a single continuous step. The assay has also been developed to monitor import into the mitochondrial matrix of intact cultured cells. This latter innovation has laid the foundations for further analysis of the import process in humans, including the consequences of interactions with cytosolic factors and neighboring organelles. The versatility of the MitoLuc assay is conducive for its adaptation to also monitor import into the inter-membrane space (MIA-pathway), and into the inner-membrane via the TIM22- and TIM23-complexes. Here, we present detailed protocols for the application of MitoLuc to mitochondria isolated from yeast and to those within cultured human cells.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-20DOI: 10.1016/bs.mie.2024.07.048
Wolfgang Voos, Anne Wilkening, Robin Ostermann, Michael Bruderek, Witold Jaworek, Laura Ruland
Deficits of mitochondrial functions have been identified in many human pathologies, in particular in age-related human neurodegenerative diseases. Hence, the molecular causes for mitochondrial dysfunction and potential protection mechanisms have become a major topic in modern cell biology. Apart from defects in their structural integrity, problems in mitochondrial protein biogenesis, including polypeptide transport, folding and assembly to active enzymes, all may result in some degree of functional defects of the organelle. An accumulation of misfolded polypeptides inside mitochondria, confounded by the dual source of mitochondrial polypeptides, will result in the formation of protein aggregates. Such aggregate accumulation bears a cell-toxic potential, resulting in mitochondrial and correlated cellular damages, summarized in the term "aggregate proteotoxicity". Here, we discuss methods to analyze protein aggregation in the mitochondrial matrix compartment. We also address techniques to characterize the biochemical mechanisms that reduce aggregate proteotoxicity, the disaggregation or resolubilization of aggregated polypeptides and the sequestration and neutralization of mitochondrial aggregates at specific sites inside a cell.
{"title":"Analysis of mitochondrial protein aggregation and disaggregation.","authors":"Wolfgang Voos, Anne Wilkening, Robin Ostermann, Michael Bruderek, Witold Jaworek, Laura Ruland","doi":"10.1016/bs.mie.2024.07.048","DOIUrl":"https://doi.org/10.1016/bs.mie.2024.07.048","url":null,"abstract":"<p><p>Deficits of mitochondrial functions have been identified in many human pathologies, in particular in age-related human neurodegenerative diseases. Hence, the molecular causes for mitochondrial dysfunction and potential protection mechanisms have become a major topic in modern cell biology. Apart from defects in their structural integrity, problems in mitochondrial protein biogenesis, including polypeptide transport, folding and assembly to active enzymes, all may result in some degree of functional defects of the organelle. An accumulation of misfolded polypeptides inside mitochondria, confounded by the dual source of mitochondrial polypeptides, will result in the formation of protein aggregates. Such aggregate accumulation bears a cell-toxic potential, resulting in mitochondrial and correlated cellular damages, summarized in the term \"aggregate proteotoxicity\". Here, we discuss methods to analyze protein aggregation in the mitochondrial matrix compartment. We also address techniques to characterize the biochemical mechanisms that reduce aggregate proteotoxicity, the disaggregation or resolubilization of aggregated polypeptides and the sequestration and neutralization of mitochondrial aggregates at specific sites inside a cell.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-31DOI: 10.1016/bs.mie.2024.07.057
Laura F Fielden, Jakob D Busch, Caroline Lindau, Jian Qiu, Nils Wiedemann
Protein translocation is a highly dynamic process and, in addition, mitochondrial protein import is especially complicated as the majority of nuclear encoded precursor proteins must engage with multiple translocases before they are assembled in the correct mitochondrial subcompartment. In this chapter, we describe assays for engineered disulfide bond formation and cysteine specific crosslinking to analyze the rearrangement of translocase subunits or to probe protein-protein interactions between precursor proteins and translocase subunits. Such assays were used to characterize the translocase of the outer membrane, the presequence translocase of the inner membrane and the sorting and assembly machinery for the biogenesis of β-Barrel proteins. Moreover, these approaches were also employed to determine the translocation path of precursor proteins (identification of import receptors and specific domains required for translocation) as well as the analysis, location and translocase subunit dependence for the formation of β-Barrel proteins. Here we describe how engineered disulfide bond formation and cysteine specific crosslinking assays are planned and performed and discuss important aspects for its application to study mitochondrial protein translocation.
{"title":"Analysis of mitochondrial protein translocation by disulfide bond formation and cysteine specific crosslinking.","authors":"Laura F Fielden, Jakob D Busch, Caroline Lindau, Jian Qiu, Nils Wiedemann","doi":"10.1016/bs.mie.2024.07.057","DOIUrl":"https://doi.org/10.1016/bs.mie.2024.07.057","url":null,"abstract":"<p><p>Protein translocation is a highly dynamic process and, in addition, mitochondrial protein import is especially complicated as the majority of nuclear encoded precursor proteins must engage with multiple translocases before they are assembled in the correct mitochondrial subcompartment. In this chapter, we describe assays for engineered disulfide bond formation and cysteine specific crosslinking to analyze the rearrangement of translocase subunits or to probe protein-protein interactions between precursor proteins and translocase subunits. Such assays were used to characterize the translocase of the outer membrane, the presequence translocase of the inner membrane and the sorting and assembly machinery for the biogenesis of β-Barrel proteins. Moreover, these approaches were also employed to determine the translocation path of precursor proteins (identification of import receptors and specific domains required for translocation) as well as the analysis, location and translocase subunit dependence for the formation of β-Barrel proteins. Here we describe how engineered disulfide bond formation and cysteine specific crosslinking assays are planned and performed and discuss important aspects for its application to study mitochondrial protein translocation.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-10DOI: 10.1016/bs.mie.2024.07.013
Jun Yuan, Chen Wang, Xiaomei He, Yinsheng Wang
Human genomes are susceptible to damage by a variety of endogenous and exogenous agents. If not repaired, the resulting DNA lesions can potentially lead to mutations, genome instability, and cell death. While existing in vitro experiments allow for characterizing replication outcomes from the use of purified translesion synthesis (TLS) DNA polymerases, such studies often lack the sophistication and dynamic nature of cellular contexts. Here, we present a strand-specific PCR-based Competitive Replication and Adduct Bypass (ssPCR-CRAB) assay designed to investigate quantitatively the impact of DNA lesions on replication efficiency and fidelity in mammalian cells. Combined with genetic manipulation, this approach facilitates the revelation of diverse functions of TLS polymerases in replication across DNA lesions.
人类基因组容易受到各种内源性和外源性因子的损伤。如果不进行修复,由此产生的 DNA 损伤有可能导致突变、基因组不稳定和细胞死亡。虽然现有的体外实验可以利用纯化的转座子合成(TLS)DNA 聚合酶鉴定复制结果,但这类研究往往缺乏细胞环境的复杂性和动态性。在这里,我们提出了一种基于链特异性 PCR 的竞争性复制和加合物旁路(ssPCR-CRAB)检测方法,旨在定量研究哺乳动物细胞中 DNA 病变对复制效率和保真度的影响。结合基因操作,这种方法有助于揭示 TLS 聚合酶在跨 DNA 病变复制中的各种功能。
{"title":"Strand-specific PCR-competitive replication and adduct bypass assay for assessing how DNA adducts perturb DNA replication in mammalian cells.","authors":"Jun Yuan, Chen Wang, Xiaomei He, Yinsheng Wang","doi":"10.1016/bs.mie.2024.07.013","DOIUrl":"https://doi.org/10.1016/bs.mie.2024.07.013","url":null,"abstract":"<p><p>Human genomes are susceptible to damage by a variety of endogenous and exogenous agents. If not repaired, the resulting DNA lesions can potentially lead to mutations, genome instability, and cell death. While existing in vitro experiments allow for characterizing replication outcomes from the use of purified translesion synthesis (TLS) DNA polymerases, such studies often lack the sophistication and dynamic nature of cellular contexts. Here, we present a strand-specific PCR-based Competitive Replication and Adduct Bypass (ssPCR-CRAB) assay designed to investigate quantitatively the impact of DNA lesions on replication efficiency and fidelity in mammalian cells. Combined with genetic manipulation, this approach facilitates the revelation of diverse functions of TLS polymerases in replication across DNA lesions.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-09-10DOI: 10.1016/bs.mie.2024.07.018
Cansu Kücükköse, F-Nora Vögtle, Annette Flotho
The maturation of mitochondrial presequence precursor proteins after their import into the organelle is a complex process that requires the interaction of several mitochondrial proteases. Precursor processing by the mitochondrial presequence proteases is directly coupled to the proteolytic turnover of the cleaved targeting signal by mitochondrial presequence peptidases. Dysfunction of these enzymes is associated with a variety of human diseases, including neurological disorders, cardiomyopathies and renal diseases. In this chapter, we describe experimental approaches to study the activity of the major mitochondrial presequence protease (MPP) and of the presequence peptidases. In vitro assays and soluble mitochondrial extracts allow the assessment and experimental manipulation of peptidase and protease activity using immunoblotting, fluorescence measurements and autoradiography as readouts. In particular, the assays allow manipulation at multiple levels including in vivo, in organello or in soluble extracts/in vitro. Purification of the yeast heterodimeric MPP allows in vitro reconstitution of the initial presequence processing step using radiolabeled precursors as substrates. Application of soluble mitochondrial extracts enables direct assessment of MPP processing and presequence peptide turnover which can be easily manipulated and is uncoupled from protein translocation across the mitochondrial membranes. The techniques presented in this chapter allow in-depth analysis of precursor processing and presequence turnover as well as direct assessment of the impact of patient mutations on the activity of the presequence processing machinery.
{"title":"Monitoring mitochondrial precursor processing and presequence peptide degradation.","authors":"Cansu Kücükköse, F-Nora Vögtle, Annette Flotho","doi":"10.1016/bs.mie.2024.07.018","DOIUrl":"https://doi.org/10.1016/bs.mie.2024.07.018","url":null,"abstract":"<p><p>The maturation of mitochondrial presequence precursor proteins after their import into the organelle is a complex process that requires the interaction of several mitochondrial proteases. Precursor processing by the mitochondrial presequence proteases is directly coupled to the proteolytic turnover of the cleaved targeting signal by mitochondrial presequence peptidases. Dysfunction of these enzymes is associated with a variety of human diseases, including neurological disorders, cardiomyopathies and renal diseases. In this chapter, we describe experimental approaches to study the activity of the major mitochondrial presequence protease (MPP) and of the presequence peptidases. In vitro assays and soluble mitochondrial extracts allow the assessment and experimental manipulation of peptidase and protease activity using immunoblotting, fluorescence measurements and autoradiography as readouts. In particular, the assays allow manipulation at multiple levels including in vivo, in organello or in soluble extracts/in vitro. Purification of the yeast heterodimeric MPP allows in vitro reconstitution of the initial presequence processing step using radiolabeled precursors as substrates. Application of soluble mitochondrial extracts enables direct assessment of MPP processing and presequence peptide turnover which can be easily manipulated and is uncoupled from protein translocation across the mitochondrial membranes. The techniques presented in this chapter allow in-depth analysis of precursor processing and presequence turnover as well as direct assessment of the impact of patient mutations on the activity of the presequence processing machinery.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-23DOI: 10.1016/bs.mie.2024.07.044
Roya Yousefi, Sven Dennerlein
Mitochondria contain their own gene expression machinery, which synthesizes core subunits of the oxidative phosphorylation system. Monitoring mitochondrial translation within spatial compartments of cells is difficult. Here we describe a method to visualize mitochondrial translation within defined parts of cells, using a click chemistry approach. This method can be applied to different cell types such as neurons and allows detection of newly synthesized mitochondrial proteins in spatial resolution using microscopy techniques. Furthermore, using click chemistry, mitochondrial translation can also be monitored by standard SDS-PAGE. The described method avenues the analysis of newly synthesized mitochondrial encoded proteins in the cellular context, by avoiding the usage of radioactive components.
{"title":"Analysis of mitochondrial translation using click chemistry.","authors":"Roya Yousefi, Sven Dennerlein","doi":"10.1016/bs.mie.2024.07.044","DOIUrl":"https://doi.org/10.1016/bs.mie.2024.07.044","url":null,"abstract":"<p><p>Mitochondria contain their own gene expression machinery, which synthesizes core subunits of the oxidative phosphorylation system. Monitoring mitochondrial translation within spatial compartments of cells is difficult. Here we describe a method to visualize mitochondrial translation within defined parts of cells, using a click chemistry approach. This method can be applied to different cell types such as neurons and allows detection of newly synthesized mitochondrial proteins in spatial resolution using microscopy techniques. Furthermore, using click chemistry, mitochondrial translation can also be monitored by standard SDS-PAGE. The described method avenues the analysis of newly synthesized mitochondrial encoded proteins in the cellular context, by avoiding the usage of radioactive components.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}