首页 > 最新文献

Metal ions in life sciences最新文献

英文 中文
Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution. 碱金属离子配合物与磷酸盐、核苷酸、氨基酸和相关配体的生物学相关性。它们在溶液中的性质。
Pub Date : 2016-01-01 DOI: 10.1007/978-3-319-21756-7_5
F. Crea, C. De Stefano, C. Foti, G. Lando, D. Milea, S. Sammartano
{"title":"Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.","authors":"F. Crea, C. De Stefano, C. Foti, G. Lando, D. Milea, S. Sammartano","doi":"10.1007/978-3-319-21756-7_5","DOIUrl":"https://doi.org/10.1007/978-3-319-21756-7_5","url":null,"abstract":"","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"7 1","pages":"133-66"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74235740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Sodium and Potassium Interactions with Nucleic Acids. 钠和钾与核酸的相互作用。
Pub Date : 2016-01-01 DOI: 10.1007/978-3-319-21756-7_6
P. Auffinger, Luigi D’Ascenzo, E. Ennifar
{"title":"Sodium and Potassium Interactions with Nucleic Acids.","authors":"P. Auffinger, Luigi D’Ascenzo, E. Ennifar","doi":"10.1007/978-3-319-21756-7_6","DOIUrl":"https://doi.org/10.1007/978-3-319-21756-7_6","url":null,"abstract":"","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"7 1","pages":"167-201"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88005247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance. 具有生物相关性的低分子量配体形成的碱金属离子配合物的固态结构。
Pub Date : 2016-01-01 DOI: 10.1007/978-3-319-21756-7_3
K. Aoki, K. Murayama, N. Hu
{"title":"Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance.","authors":"K. Aoki, K. Murayama, N. Hu","doi":"10.1007/978-3-319-21756-7_3","DOIUrl":"https://doi.org/10.1007/978-3-319-21756-7_3","url":null,"abstract":"","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"8 4 1","pages":"27-101"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78356258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Bioinspired Artificial Sodium and Potassium Ion Channels. 仿生人工钠钾离子通道。
Pub Date : 2016-01-01 DOI: 10.1007/978-3-319-21756-7_14
Nuria Rodríguez-Vázquez, A. Fuertes, M. Amorín, J. Granja
{"title":"Bioinspired Artificial Sodium and Potassium Ion Channels.","authors":"Nuria Rodríguez-Vázquez, A. Fuertes, M. Amorín, J. Granja","doi":"10.1007/978-3-319-21756-7_14","DOIUrl":"https://doi.org/10.1007/978-3-319-21756-7_14","url":null,"abstract":"","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"12 1","pages":"485-556"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77007240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Sodium as Coupling Cation in Respiratory Energy Conversion. 钠离子在呼吸能量转换中的偶联作用。
Pub Date : 2016-01-01 DOI: 10.1007/978-3-319-21756-7_11
G. Fritz, J. Steuber
{"title":"Sodium as Coupling Cation in Respiratory Energy Conversion.","authors":"G. Fritz, J. Steuber","doi":"10.1007/978-3-319-21756-7_11","DOIUrl":"https://doi.org/10.1007/978-3-319-21756-7_11","url":null,"abstract":"","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"25 1","pages":"349-90"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89106060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Roles and Transport of Sodium and Potassium in Plants. 钠和钾在植物中的作用和运输。
Pub Date : 2016-01-01 DOI: 10.1007/978-3-319-21756-7_9
M. Nieves‐Cordones, Fouad Razzaq A Al Shiblawi, H. Sentenac
{"title":"Roles and Transport of Sodium and Potassium in Plants.","authors":"M. Nieves‐Cordones, Fouad Razzaq A Al Shiblawi, H. Sentenac","doi":"10.1007/978-3-319-21756-7_9","DOIUrl":"https://doi.org/10.1007/978-3-319-21756-7_9","url":null,"abstract":"","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"1 1","pages":"291-324"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76008490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 95
Bioinorganic Chemistry of the Alkali Metal Ions. 碱金属离子的生物无机化学。
Pub Date : 2016-01-01 DOI: 10.1007/978-3-319-21756-7_1
Youngsam Kim, T. Nguyen, D. Churchill
{"title":"Bioinorganic Chemistry of the Alkali Metal Ions.","authors":"Youngsam Kim, T. Nguyen, D. Churchill","doi":"10.1007/978-3-319-21756-7_1","DOIUrl":"https://doi.org/10.1007/978-3-319-21756-7_1","url":null,"abstract":"","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"7 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80855308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Production of dioxygen in the dark: dismutases of oxyanions. 在黑暗中产生二氧:氧离子的歧化症。
Pub Date : 2015-01-01 DOI: 10.1007/978-3-319-12415-5_3
Jennifer L DuBois, Sunil Ojha

O₂-generating reactions are exceedingly rare in biology and difficult to mimic synthetically. Perchlorate-respiring bacteria enzymatically detoxify chlorite (ClO₂(-) ), the end product of the perchlorate (ClO(4)(-) ) respiratory pathway, by rapidly converting it to dioxygen (O₂) and chloride (Cl(-)). This reaction is catalyzed by a heme-containing protein, called chlorite dismutase (Cld), which bears no structural or sequence relationships with known peroxidases or other heme proteins and is part of a large family of proteins with more than one biochemical function. The original assumptions from the 1990s that perchlorate is not a natural product and that perchlorate respiration might be confined to a taxonomically narrow group of species have been called into question, as have the roles of perchlorate respiration and Cld-mediated reactions in the global biogeochemical cycle of chlorine. In this chapter, the chemistry and biochemistry of Cld-mediated O₂generation, as well as the biological and geochemical context of this extraordinary reaction, are described.

生成O₂的反应在生物学中极为罕见,而且很难人工模拟。高氯酸盐呼吸细菌通过将高氯酸盐(ClO(4)(-))呼吸途径的最终产物亚氯酸盐(ClO 2(-))迅速转化为二氧(O 2)和氯化物(Cl(-))来解毒。这个反应是由一种叫做绿泥石歧化酶(Cld)的含血红素蛋白催化的,它与已知的过氧化物酶或其他血红素蛋白没有结构或序列关系,是一个具有多种生化功能的蛋白质大家族的一部分。从20世纪90年代开始的最初假设,即高氯酸盐不是天然产物,高氯酸盐呼吸作用可能仅限于分类上狭窄的物种群,以及高氯酸盐呼吸作用和氯化镉介导的反应在全球氯生物地球化学循环中的作用,都受到了质疑。在本章中,描述了cld介导的O₂生成的化学和生物化学,以及这一非凡反应的生物和地球化学背景。
{"title":"Production of dioxygen in the dark: dismutases of oxyanions.","authors":"Jennifer L DuBois, Sunil Ojha","doi":"10.1007/978-3-319-12415-5_3","DOIUrl":"10.1007/978-3-319-12415-5_3","url":null,"abstract":"<p><p>O₂-generating reactions are exceedingly rare in biology and difficult to mimic synthetically. Perchlorate-respiring bacteria enzymatically detoxify chlorite (ClO₂(-) ), the end product of the perchlorate (ClO(4)(-) ) respiratory pathway, by rapidly converting it to dioxygen (O₂) and chloride (Cl(-)). This reaction is catalyzed by a heme-containing protein, called chlorite dismutase (Cld), which bears no structural or sequence relationships with known peroxidases or other heme proteins and is part of a large family of proteins with more than one biochemical function. The original assumptions from the 1990s that perchlorate is not a natural product and that perchlorate respiration might be confined to a taxonomically narrow group of species have been called into question, as have the roles of perchlorate respiration and Cld-mediated reactions in the global biogeochemical cycle of chlorine. In this chapter, the chemistry and biochemistry of Cld-mediated O₂generation, as well as the biological and geochemical context of this extraordinary reaction, are described.</p>","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"15 ","pages":"45-87"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-12415-5_3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33076955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Metal enzymes in "impossible" microorganisms catalyzing the anaerobic oxidation of ammonium and methane. “不可能”微生物中的金属酶催化氨和甲烷的厌氧氧化。
Pub Date : 2015-01-01 DOI: 10.1007/978-3-319-12415-5_7
Joachim Reimann, Mike S M Jetten, Jan T Keltjens

Ammonium and methane are inert molecules and dedicated enzymes are required to break up the N-H and C-H bonds. Until recently, only aerobic microorganisms were known to grow by the oxidation of ammonium or methane. Apart from respiration, oxygen was specifically utilized to activate the inert substrates. The presumed obligatory need for oxygen may have resisted the search for microorganisms that are capable of the anaerobic oxidation of ammonium and of methane. However extremely slowly growing, these "impossible" organisms exist and they found other means to tackle ammonium and methane. Anaerobic ammonium-oxidizing (anammox) bacteria use the oxidative power of nitric oxide (NO) by forging this molecule to ammonium, thereby making hydrazine (N2H4). Nitrite-dependent anaerobic methane oxidizers (N-DAMO) again take advantage of NO, but now apparently disproportionating the compound into dinitrogen and dioxygen gas. This intracellularly produced dioxygen enables N-DAMO bacteria to adopt an aerobic mechanism for methane oxidation.Although our understanding is only emerging how hydrazine synthase and the NO dismutase act, it seems clear that reactions fully rely on metal-based catalyses known from other enzymes. Metal-dependent conversions not only hold for these key enzymes, but for most other reactions in the central catabolic pathways, again supported by well-studied enzymes from model organisms, but adapted to own specific needs. Remarkably, those accessory catabolic enzymes are not unique for anammox bacteria and N-DAMO. Close homologs are found in protein databases where those homologs derive from (partly) known, but in most cases unknown species that together comprise an only poorly comprehended microbial world.

铵和甲烷是惰性分子,需要专门的酶来分解N-H和C-H键。直到最近,人们才知道只有需氧微生物是通过氨或甲烷的氧化来生长的。除呼吸作用外,还专门利用氧气来激活惰性底物。假定的对氧的必然需要可能阻碍了对能够厌氧氧化氨和甲烷的微生物的研究。尽管生长极其缓慢,但这些“不可能”的生物确实存在,它们找到了其他方法来处理铵和甲烷。厌氧氨氧化(anammox)细菌利用一氧化氮(NO)的氧化能力将其分子锻造成铵,从而生成肼(N2H4)。依赖亚硝酸盐的厌氧甲烷氧化剂(N-DAMO)再次利用NO,但现在显然歧化成二氮和二氧气体。这种细胞内产生的二氧使N-DAMO细菌采用好氧机制进行甲烷氧化。虽然我们对肼合酶和一氧化氮歧化酶的作用机制还不太了解,但很明显,这些反应完全依赖于已知的其他酶的金属催化剂。金属依赖性转化不仅适用于这些关键酶,而且适用于大多数其他中枢分解代谢途径的反应,同样得到了模式生物中经过充分研究的酶的支持,但适应于自己的特定需要。值得注意的是,这些辅助分解代谢酶并不是厌氧氨氧化细菌和N-DAMO所特有的。在蛋白质数据库中发现同源物,这些同源物来自(部分)已知的,但在大多数情况下未知的物种,这些物种共同构成了一个知之甚少的微生物世界。
{"title":"Metal enzymes in \"impossible\" microorganisms catalyzing the anaerobic oxidation of ammonium and methane.","authors":"Joachim Reimann,&nbsp;Mike S M Jetten,&nbsp;Jan T Keltjens","doi":"10.1007/978-3-319-12415-5_7","DOIUrl":"https://doi.org/10.1007/978-3-319-12415-5_7","url":null,"abstract":"<p><p>Ammonium and methane are inert molecules and dedicated enzymes are required to break up the N-H and C-H bonds. Until recently, only aerobic microorganisms were known to grow by the oxidation of ammonium or methane. Apart from respiration, oxygen was specifically utilized to activate the inert substrates. The presumed obligatory need for oxygen may have resisted the search for microorganisms that are capable of the anaerobic oxidation of ammonium and of methane. However extremely slowly growing, these \"impossible\" organisms exist and they found other means to tackle ammonium and methane. Anaerobic ammonium-oxidizing (anammox) bacteria use the oxidative power of nitric oxide (NO) by forging this molecule to ammonium, thereby making hydrazine (N2H4). Nitrite-dependent anaerobic methane oxidizers (N-DAMO) again take advantage of NO, but now apparently disproportionating the compound into dinitrogen and dioxygen gas. This intracellularly produced dioxygen enables N-DAMO bacteria to adopt an aerobic mechanism for methane oxidation.Although our understanding is only emerging how hydrazine synthase and the NO dismutase act, it seems clear that reactions fully rely on metal-based catalyses known from other enzymes. Metal-dependent conversions not only hold for these key enzymes, but for most other reactions in the central catabolic pathways, again supported by well-studied enzymes from model organisms, but adapted to own specific needs. Remarkably, those accessory catabolic enzymes are not unique for anammox bacteria and N-DAMO. Close homologs are found in protein databases where those homologs derive from (partly) known, but in most cases unknown species that together comprise an only poorly comprehended microbial world. </p>","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"15 ","pages":"257-313"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-12415-5_7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33076958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases 维持地球上的生命:控制双氧和其他耐嚼气体的金属酶
Pub Date : 2015-01-01 DOI: 10.1007/978-3-319-12415-5
P. Kroneck, Martha E Sosa Torres
{"title":"Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases","authors":"P. Kroneck, Martha E Sosa Torres","doi":"10.1007/978-3-319-12415-5","DOIUrl":"https://doi.org/10.1007/978-3-319-12415-5","url":null,"abstract":"","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"79 1","pages":"vii-ix"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82409168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 40
期刊
Metal ions in life sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1