Pub Date : 2024-12-01Epub Date: 2024-05-22DOI: 10.1007/s12035-024-04230-4
Huiyi Zhang, Ye Tian, Shuai Ma, Yichen Ji, Zhihang Wang, Peilun Xiao, Ying Xu
Autophagy is an intracellular recycling process that maintains cellular homeostasis by degrading excess or defective macromolecules and organelles. Chaperone-mediated autophagy (CMA) is a highly selective form of autophagy in which a substrate containing a KFERQ-like motif is recognized by a chaperone protein, delivered to the lysosomal membrane, and then translocated to the lysosome for degradation with the assistance of lysosomal membrane protein 2A. Normal CMA activity is involved in the regulation of cellular proteostasis, metabolism, differentiation, and survival. CMA dysfunction disturbs cellular homeostasis and directly participates in the pathogenesis of human diseases. Previous investigations on CMA in the central nervous system have primarily focus on neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Recently, mounting evidence suggested that brain injuries involve a wider range of types and severities, making the involvement of CMA in the bidirectional processes of damage and repair even more crucial. In this review, we summarize the basic processes of CMA and its associated regulatory mechanisms and highlight the critical role of CMA in brain injury such as cerebral ischemia, traumatic brain injury, and other specific brain injuries. We also discuss the potential of CMA as a therapeutic target to treat brain injury and provide valuable insights into clinical strategies.
{"title":"Chaperone-Mediated Autophagy in Brain Injury: A Double-Edged Sword with Therapeutic Potentials.","authors":"Huiyi Zhang, Ye Tian, Shuai Ma, Yichen Ji, Zhihang Wang, Peilun Xiao, Ying Xu","doi":"10.1007/s12035-024-04230-4","DOIUrl":"10.1007/s12035-024-04230-4","url":null,"abstract":"<p><p>Autophagy is an intracellular recycling process that maintains cellular homeostasis by degrading excess or defective macromolecules and organelles. Chaperone-mediated autophagy (CMA) is a highly selective form of autophagy in which a substrate containing a KFERQ-like motif is recognized by a chaperone protein, delivered to the lysosomal membrane, and then translocated to the lysosome for degradation with the assistance of lysosomal membrane protein 2A. Normal CMA activity is involved in the regulation of cellular proteostasis, metabolism, differentiation, and survival. CMA dysfunction disturbs cellular homeostasis and directly participates in the pathogenesis of human diseases. Previous investigations on CMA in the central nervous system have primarily focus on neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Recently, mounting evidence suggested that brain injuries involve a wider range of types and severities, making the involvement of CMA in the bidirectional processes of damage and repair even more crucial. In this review, we summarize the basic processes of CMA and its associated regulatory mechanisms and highlight the critical role of CMA in brain injury such as cerebral ischemia, traumatic brain injury, and other specific brain injuries. We also discuss the potential of CMA as a therapeutic target to treat brain injury and provide valuable insights into clinical strategies.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10671-10683"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141076256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-05-31DOI: 10.1007/s12035-024-04258-6
Lilian Leite Fausto, Adriano Alberti, Gabriela Kades, Risoní Pereira Dias de Carvalho, Viviane Freiberger, Leticia Ventura, Paula Dias, Eliton Marcio Zanoni, Ben Hur Soares, Matheus Luchini Dutra, Daniel Fernandes Martins, Clarissa Martinelli Comim
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive skeletal muscle degeneration and systemic effects, including the central nervous system (CNS). This study aimed to assess the impact of a 14-day ketogenic diet (DCet) on biochemical and clinical parameters in a DMD mouse model. Young adult mice (50 days old) were fed DCet, while control groups received a standard diet. On the 14th day, memory and behavior tests were conducted, followed by biochemical evaluations of oxidative stress, inflammatory biomarkers, body weight, feed intake, and brain-derived neurotrophic factor (BDNF) levels. mdx + DCet mice showed reduced mass (0.2 g ± 2.49) and improved memory retention (p < 0.05) compared to controls. Oxidative damage in muscle tissue and CNS decreased, along with a significant cytokine level reduction (p <0.05). The protocol led to an increase in hippocampal BDNF and mitochondrial respiratory complex activity in muscle tissue and the central nervous system (CNS), while also decreasing creatine kinase activity only in the striatum. Overall, a 14-day DCet showed protective effects by improving spatial learning and memory through reductions in oxidative stress and immune response, as well as increases in BDNF levels, consistent with our study's findings.
杜兴氏肌营养不良症(DMD)是一种 X 连锁隐性疾病,其特征是进行性骨骼肌变性和全身性影响,包括中枢神经系统(CNS)。本研究旨在评估为期 14 天的生酮饮食(DCet)对 DMD 小鼠模型的生化和临床参数的影响。年轻的成年小鼠(50 天大)被喂食 DCet,而对照组则接受标准饮食。与对照组相比,mdx + DCet 小鼠的体重减少(0.2 g ± 2.49),记忆保持能力提高(p < 0.05)。肌肉组织和中枢神经系统的氧化损伤减轻,细胞因子水平显著降低(p
{"title":"Effects of a Ketogenic Diet on the Assessment of Biochemical and Clinical Parameters in Duchenne Muscular Dystrophy: A Preclinical Investigation.","authors":"Lilian Leite Fausto, Adriano Alberti, Gabriela Kades, Risoní Pereira Dias de Carvalho, Viviane Freiberger, Leticia Ventura, Paula Dias, Eliton Marcio Zanoni, Ben Hur Soares, Matheus Luchini Dutra, Daniel Fernandes Martins, Clarissa Martinelli Comim","doi":"10.1007/s12035-024-04258-6","DOIUrl":"10.1007/s12035-024-04258-6","url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive skeletal muscle degeneration and systemic effects, including the central nervous system (CNS). This study aimed to assess the impact of a 14-day ketogenic diet (DCet) on biochemical and clinical parameters in a DMD mouse model. Young adult mice (50 days old) were fed DCet, while control groups received a standard diet. On the 14th day, memory and behavior tests were conducted, followed by biochemical evaluations of oxidative stress, inflammatory biomarkers, body weight, feed intake, and brain-derived neurotrophic factor (BDNF) levels. mdx + DCet mice showed reduced mass (0.2 g ± 2.49) and improved memory retention (p < 0.05) compared to controls. Oxidative damage in muscle tissue and CNS decreased, along with a significant cytokine level reduction (p <0.05). The protocol led to an increase in hippocampal BDNF and mitochondrial respiratory complex activity in muscle tissue and the central nervous system (CNS), while also decreasing creatine kinase activity only in the striatum. Overall, a 14-day DCet showed protective effects by improving spatial learning and memory through reductions in oxidative stress and immune response, as well as increases in BDNF levels, consistent with our study's findings.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10992-11011"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141180325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-08-07DOI: 10.1007/s12035-023-03511-8
Xiao-Xi Jia, Cao Chen, Chao Hu, Zhi-Yue Chao, Wei-Wei Zhang, Yue-Zhang Wu, Qin Fan, Ru-Han A, Xin Liu, Kang Xiao, Qi Shi, Xiao-Ping Dong
Interleukin 3 (IL-3) plays an important role in hematopoiesis and immune regulation, brain IL-3/IL-3R signaling has been shown to involve in the physiological and pathological processes of a variety of neurodegenerative diseases, but its role in prion diseases is rarely described. Here, the changes of IL-3/IL-3R and its downstream signaling pathways in a scrapie-infected cell line and in the brains of several scrapie-infected rodent models were evaluated by various methods. Markedly decreased IL-3Rα were observed in the brains of scrapie-infected rodents at terminal stage and in the prion-infected cell model, which showed increased in the brain samples collected at early and middle stage of infection. The IL-3 levels were almost unchanged in the brains of scrapie-infected mice and in the prion-infected cell line. Morphological assays identified close co-localization of the increased IL-3Rα signals with NeuN- and Iba1-positive cells, whereas co-localization of IL-3 signals with NeuN- and GFAP-positive cells in the scrapie-infected brain tissues. Some downstream components of IL-3/IL-3R pathways, including JAK2-STAT5 and PI3K/AKT/mTOR pathways, were downregulated in the brains of scrapie-infected rodents at terminal stage and in the prion-infected cells. Stimulation of recombinant IL-3 on the cultured cells showed prion that the prion-infected cells displayed markedly more reluctant responses of JAK2-STAT5 and PI3K/AKT/mTOR pathways than the normal partner cells. These data suggest that although prion infection or PrPSc accumulation in brain tissues does not affect IL-3 expression, it significantly downregulates IL-3R levels, thereby inhibiting the downstream pathways of IL-3/IL-3R and blocking the neuroregulatory and neuroprotective activities of IL-3.
{"title":"Abnormal Changes of IL3/IL3R and Its Downstream Signaling Pathways in the Prion-Infected Cell Line and in the Brains of Scrapie-Infected Rodents.","authors":"Xiao-Xi Jia, Cao Chen, Chao Hu, Zhi-Yue Chao, Wei-Wei Zhang, Yue-Zhang Wu, Qin Fan, Ru-Han A, Xin Liu, Kang Xiao, Qi Shi, Xiao-Ping Dong","doi":"10.1007/s12035-023-03511-8","DOIUrl":"10.1007/s12035-023-03511-8","url":null,"abstract":"<p><p>Interleukin 3 (IL-3) plays an important role in hematopoiesis and immune regulation, brain IL-3/IL-3R signaling has been shown to involve in the physiological and pathological processes of a variety of neurodegenerative diseases, but its role in prion diseases is rarely described. Here, the changes of IL-3/IL-3R and its downstream signaling pathways in a scrapie-infected cell line and in the brains of several scrapie-infected rodent models were evaluated by various methods. Markedly decreased IL-3Rα were observed in the brains of scrapie-infected rodents at terminal stage and in the prion-infected cell model, which showed increased in the brain samples collected at early and middle stage of infection. The IL-3 levels were almost unchanged in the brains of scrapie-infected mice and in the prion-infected cell line. Morphological assays identified close co-localization of the increased IL-3Rα signals with NeuN- and Iba1-positive cells, whereas co-localization of IL-3 signals with NeuN- and GFAP-positive cells in the scrapie-infected brain tissues. Some downstream components of IL-3/IL-3R pathways, including JAK2-STAT5 and PI3K/AKT/mTOR pathways, were downregulated in the brains of scrapie-infected rodents at terminal stage and in the prion-infected cells. Stimulation of recombinant IL-3 on the cultured cells showed prion that the prion-infected cells displayed markedly more reluctant responses of JAK2-STAT5 and PI3K/AKT/mTOR pathways than the normal partner cells. These data suggest that although prion infection or PrP<sup>Sc</sup> accumulation in brain tissues does not affect IL-3 expression, it significantly downregulates IL-3R levels, thereby inhibiting the downstream pathways of IL-3/IL-3R and blocking the neuroregulatory and neuroprotective activities of IL-3.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"9756-9775"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9949625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-11-01DOI: 10.1007/s12035-023-03704-1
Bindu, Hriday Shanker Pandey, Pankaj Seth
The Zika virus (ZIKV) outbreaks and its co-relation with microcephaly have become a global health concern. It is primarily transmitted by a mosquito, but can also be transmitted from an infected mother to her fetus causing impairment in brain development, leading to microcephaly. However, the underlying molecular mechanism of ZIKV-induced microcephaly is poorly understood. In this study, we explored the role of ZIKV non-structural protein NS4A and NS4B in ZIKV pathogenesis in a well-characterized primary culture of human fetal neural stem cells (fNSCs). We observed that the co-transfection of NS4A and NS4B altered the neural stem cell fate by arresting proliferation and inducing premature neurogenesis. NS4A + NS4B transfection in fNSCs increased autophagy and dysregulated notch signaling. Further, it also altered the regulation of downstream genes controlling cell proliferation. Additionally, we reported that 3 methyl-adenine (3-MA), a potent autophagy inhibitor, attenuated the deleterious effects of NS4A and NS4B as evidenced by the rescue in Notch1 expression, enhanced proliferation, and reduced premature neurogenesis. Our attempts to understand the mechanism of autophagy induction indicate the involvement of mitochondrial fission and ROS. Collectively, our findings highlight the novel role of NS4A and NS4B in mediating NSC fate alteration through autophagy-mediated notch degradation. The study also helps to advance our understanding of ZIKV-induced neuropathogenesis and suggests autophagy as a potential target for anti-ZIKV therapeutic intervention.
{"title":"Interplay Between Zika Virus-Induced Autophagy and Neural Stem Cell Fate Determination.","authors":"Bindu, Hriday Shanker Pandey, Pankaj Seth","doi":"10.1007/s12035-023-03704-1","DOIUrl":"10.1007/s12035-023-03704-1","url":null,"abstract":"<p><p>The Zika virus (ZIKV) outbreaks and its co-relation with microcephaly have become a global health concern. It is primarily transmitted by a mosquito, but can also be transmitted from an infected mother to her fetus causing impairment in brain development, leading to microcephaly. However, the underlying molecular mechanism of ZIKV-induced microcephaly is poorly understood. In this study, we explored the role of ZIKV non-structural protein NS4A and NS4B in ZIKV pathogenesis in a well-characterized primary culture of human fetal neural stem cells (fNSCs). We observed that the co-transfection of NS4A and NS4B altered the neural stem cell fate by arresting proliferation and inducing premature neurogenesis. NS4A + NS4B transfection in fNSCs increased autophagy and dysregulated notch signaling. Further, it also altered the regulation of downstream genes controlling cell proliferation. Additionally, we reported that 3 methyl-adenine (3-MA), a potent autophagy inhibitor, attenuated the deleterious effects of NS4A and NS4B as evidenced by the rescue in Notch1 expression, enhanced proliferation, and reduced premature neurogenesis. Our attempts to understand the mechanism of autophagy induction indicate the involvement of mitochondrial fission and ROS. Collectively, our findings highlight the novel role of NS4A and NS4B in mediating NSC fate alteration through autophagy-mediated notch degradation. The study also helps to advance our understanding of ZIKV-induced neuropathogenesis and suggests autophagy as a potential target for anti-ZIKV therapeutic intervention.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"9927-9944"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71425091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-07-27DOI: 10.1007/s12035-023-03512-7
Meiqin Zeng, Meichang Peng, Jianhao Liang, Haitao Sun
Growing evidence has proved that alterations in the gut microbiota have been linked to neurological disorders including stroke. Structural and functional disruption of the blood-brain barrier (BBB) is observed after stroke. In this context, there is pioneering evidence supporting that gut microbiota may be involved in the pathogenesis of stroke by regulating the BBB function. However, only a few experimental studies have been performed on stroke models to observe the BBB by altering the structure of gut microbiota, which warrant further exploration. Therefore, in order to provide a novel mechanism for stroke and highlight new insights into BBB modification as a stroke intervention, this review summarizes existing evidence of the relationship between gut microbiota and BBB integrity and discusses the mechanisms of gut microbiota on BBB dysfunction and its role in stroke.
{"title":"The Role of Gut Microbiota in Blood-Brain Barrier Disruption after Stroke.","authors":"Meiqin Zeng, Meichang Peng, Jianhao Liang, Haitao Sun","doi":"10.1007/s12035-023-03512-7","DOIUrl":"10.1007/s12035-023-03512-7","url":null,"abstract":"<p><p>Growing evidence has proved that alterations in the gut microbiota have been linked to neurological disorders including stroke. Structural and functional disruption of the blood-brain barrier (BBB) is observed after stroke. In this context, there is pioneering evidence supporting that gut microbiota may be involved in the pathogenesis of stroke by regulating the BBB function. However, only a few experimental studies have been performed on stroke models to observe the BBB by altering the structure of gut microbiota, which warrant further exploration. Therefore, in order to provide a novel mechanism for stroke and highlight new insights into BBB modification as a stroke intervention, this review summarizes existing evidence of the relationship between gut microbiota and BBB integrity and discusses the mechanisms of gut microbiota on BBB dysfunction and its role in stroke.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"9735-9755"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9876835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-11-23DOI: 10.1007/s12035-023-03744-7
Liying Yu, Xiaoyu Chen, Xuefeng Bai, Jingping Fang, Ming Sui
Depression is one of the complications in patients with polycystic ovary syndrome (PCOS) that leads to considerable mental health. Accumulating evidence suggests that human gut microbiomes are associated with the progression of PCOS and depression. However, whether microbiota influences depression development in PCOS patients is still uncharacterized. In this study, we employed metagenomic sequencing and transcriptome sequencing (RNA-seq) to profile the composition of the fecal microbiota and gene expression of peripheral blood mononuclear cells in depressed women with PCOS (PCOS-DP, n = 27) in comparison to mentally healthy women with PCOS (PCOS, n = 18) and compared with healthy control (HC, n = 27) and patients with major depressive disorder (MDD, n = 29). Gut microbiota assessment revealed distinct patterns in the relative abundance in the PCOS-DP compared to HC, MDD, and PCOS groups. Several gut microbes exhibited uniquely and significantly higher abundance in the PCOS-DP compared to PCOS patients, inducing EC Ruminococcus torques, Coprococcus comes, Megasphaera elsdenii, Acidaminococcus intestini, and Barnesiella viscericola. Bacteroides eggerthii was a potential gut microbial biomarker for the PCOS-DP. RNA-seq profiling identified that 35 and 37 genes were significantly elevated and downregulated in the PCOS-DP, respectively. The enhanced differential expressed genes (DEGs) in the PCOS-DP were enriched in pathways involved in signal transduction and endocrine and metabolic diseases, whereas several lipid metabolism pathways were downregulated. Intriguingly, genes correlated with the gut microbiota were found to be significantly enriched in pathways of neurodegenerative diseases and the immune system, suggesting that changes in the microbiota may have a systemic impact on the expression of neurodegenerative diseases and immune genes. Gut microbe-related DEGs of CREB3L3 and CCDC173 were possible molecular biomarkers and therapeutic targets of women with PCOS-DP. Our multi-omics data indicate shifts in the gut microbiome and host gene regulation in PCOS patients with depression, which is of possible etiological and diagnostic importance.
抑郁症是多囊卵巢综合征(PCOS)患者的并发症之一,严重影响心理健康。越来越多的证据表明,人类肠道微生物群与多囊卵巢综合征和抑郁症的进展有关。然而,微生物群是否影响PCOS患者的抑郁发展仍不清楚。在本研究中,我们采用宏基因组测序和转录组测序(RNA-seq)分析了PCOS抑郁女性(PCOS- dp, n = 27)与心理健康PCOS女性(PCOS, n = 18)、健康对照(HC, n = 27)和重度抑郁症患者(MDD, n = 29)的粪便微生物群组成和外周血单个核细胞基因表达。肠道菌群评估显示,与HC、MDD和PCOS组相比,PCOS- dp组的相对丰度有不同的模式。与PCOS患者相比,PCOS- dp患者肠道微生物的丰度明显高于PCOS患者,包括EC Ruminococcus torques、Coprococcus comes、Megasphaera elsdenii、Acidaminococcus n肠癌和Barnesiella vericola。卵拟杆菌是PCOS-DP的潜在肠道微生物生物标志物。RNA-seq分析发现,在PCOS-DP中,35个基因显著升高,37个基因显著下调。PCOS-DP中差异表达基因(DEGs)的增强在信号转导和内分泌代谢疾病相关通路中富集,而一些脂质代谢通路则下调。有趣的是,与肠道微生物群相关的基因被发现在神经退行性疾病和免疫系统的通路中显著富集,这表明微生物群的变化可能对神经退行性疾病和免疫基因的表达产生全身性影响。CREB3L3和CCDC173的肠道微生物相关DEGs可能是PCOS-DP女性的分子生物标志物和治疗靶点。我们的多组学数据表明PCOS合并抑郁症患者的肠道微生物组和宿主基因调控发生了变化,这可能具有病因学和诊断意义。
{"title":"Microbiota Alters and Its Correlation with Molecular Regulation Underlying Depression in PCOS Patients.","authors":"Liying Yu, Xiaoyu Chen, Xuefeng Bai, Jingping Fang, Ming Sui","doi":"10.1007/s12035-023-03744-7","DOIUrl":"10.1007/s12035-023-03744-7","url":null,"abstract":"<p><p>Depression is one of the complications in patients with polycystic ovary syndrome (PCOS) that leads to considerable mental health. Accumulating evidence suggests that human gut microbiomes are associated with the progression of PCOS and depression. However, whether microbiota influences depression development in PCOS patients is still uncharacterized. In this study, we employed metagenomic sequencing and transcriptome sequencing (RNA-seq) to profile the composition of the fecal microbiota and gene expression of peripheral blood mononuclear cells in depressed women with PCOS (PCOS-DP, n = 27) in comparison to mentally healthy women with PCOS (PCOS, n = 18) and compared with healthy control (HC, n = 27) and patients with major depressive disorder (MDD, n = 29). Gut microbiota assessment revealed distinct patterns in the relative abundance in the PCOS-DP compared to HC, MDD, and PCOS groups. Several gut microbes exhibited uniquely and significantly higher abundance in the PCOS-DP compared to PCOS patients, inducing EC Ruminococcus torques, Coprococcus comes, Megasphaera elsdenii, Acidaminococcus intestini, and Barnesiella viscericola. Bacteroides eggerthii was a potential gut microbial biomarker for the PCOS-DP. RNA-seq profiling identified that 35 and 37 genes were significantly elevated and downregulated in the PCOS-DP, respectively. The enhanced differential expressed genes (DEGs) in the PCOS-DP were enriched in pathways involved in signal transduction and endocrine and metabolic diseases, whereas several lipid metabolism pathways were downregulated. Intriguingly, genes correlated with the gut microbiota were found to be significantly enriched in pathways of neurodegenerative diseases and the immune system, suggesting that changes in the microbiota may have a systemic impact on the expression of neurodegenerative diseases and immune genes. Gut microbe-related DEGs of CREB3L3 and CCDC173 were possible molecular biomarkers and therapeutic targets of women with PCOS-DP. Our multi-omics data indicate shifts in the gut microbiome and host gene regulation in PCOS patients with depression, which is of possible etiological and diagnostic importance.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"9977-9992"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138295535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Spinal cord injury (SCI) often leads to neurological dysfunction, and neuronal cell death is one of the main causes of neurological dysfunction. After SCI, in addition to necrosis, programmed cell death (PCD) occurs in nerve cells. At first, studies recognized only necrosis, apoptosis, and autophagy. In recent years, researchers have identified new forms of PCD, including pyroptosis, necroptosis, ferroptosis, and cuproptosis. Related studies have confirmed that all of these cell death modes are involved in various phases of SCI and affect the direction of the disease through different mechanisms and pathways. Furthermore, regulating neuronal cell death after SCI through various means has been proven to be beneficial for the recovery of neural function. In recent years, emerging therapies for SCI have also provided new potential methods to restore neural function. Thus, the relationship between SCI and cell death plays an important role in the occurrence and development of SCI. This review summarizes and generalizes the relevant research results on neuronal necrosis, apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis after SCI to provide a new understanding of neuronal cell death after SCI and to aid in the treatment of SCI.
{"title":"Crosstalk Between Cell Death and Spinal Cord Injury: Neurology and Therapy.","authors":"Qifeng Song, Qian Cui, Shi Sun, Yashi Wang, Yin Yuan, Lixin Zhang","doi":"10.1007/s12035-024-04188-3","DOIUrl":"10.1007/s12035-024-04188-3","url":null,"abstract":"<p><p>Spinal cord injury (SCI) often leads to neurological dysfunction, and neuronal cell death is one of the main causes of neurological dysfunction. After SCI, in addition to necrosis, programmed cell death (PCD) occurs in nerve cells. At first, studies recognized only necrosis, apoptosis, and autophagy. In recent years, researchers have identified new forms of PCD, including pyroptosis, necroptosis, ferroptosis, and cuproptosis. Related studies have confirmed that all of these cell death modes are involved in various phases of SCI and affect the direction of the disease through different mechanisms and pathways. Furthermore, regulating neuronal cell death after SCI through various means has been proven to be beneficial for the recovery of neural function. In recent years, emerging therapies for SCI have also provided new potential methods to restore neural function. Thus, the relationship between SCI and cell death plays an important role in the occurrence and development of SCI. This review summarizes and generalizes the relevant research results on neuronal necrosis, apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis after SCI to provide a new understanding of neuronal cell death after SCI and to aid in the treatment of SCI.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10271-10287"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140850643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-05-04DOI: 10.1007/s12035-024-04198-1
Amanda Gollo Bertollo, Maiqueli Eduarda Dama Mingoti, Jesiel de Medeiros, Gilnei Bruno da Silva, Giovana Tamara Capoani, Heloisa Lindemann, Joana Cassol, Daiane Manica, Tacio de Oliveira, Michelle Lima Garcez, Margarete Dulce Bagatini, Lilian Caroline Bohnen, Walter Antônio Roman Junior, Zuleide Maria Ignácio
Major depressive disorder (MDD) is a severe disorder that causes enormous loss of quality of life, and among the factors underlying MDD is stress in maternal deprivation (MD). In addition, classic pharmacotherapy has presented severe adverse effects. Centella asiatica (C. asiatica) demonstrates a potential neuroprotective effect but has not yet been evaluated in MD models. This study aimed to evaluate the effect of C. asiatica extract and the active compound madecassic acid on possible depressive-like behavior, inflammation, and oxidative stress in the hippocampus and serum of young rats submitted to MD in the first days of life. Rats (after the first day of birth) were separated from the mother for 3 h a day for 10 days. When adults, these animals were divided into groups and submitted to treatment for 14 days. After subjecting the animals to protocols of locomotor activity in the open field and behavioral despair in the forced swimming test, researchers then euthanized the animals. The hippocampus and serum were collected and analyzed for the inflammatory cytokines and oxidative markers. The C. asiatica extract and active compound reversed or reduced depressive-like behaviors, inflammation in the hippocampus, and oxidative stress in serum and hippocampus. These results suggest that C. asiatica and madecassic acid have potential antidepressant action, at least partially, through anti-inflammatory and antioxidant profiles.
{"title":"Hydroalcoholic Extract of Centella asiatica and Madecassic Acid Reverse Depressive-Like Behaviors, Inflammation and Oxidative Stress in Adult Rats Submitted to Stress in Early Life.","authors":"Amanda Gollo Bertollo, Maiqueli Eduarda Dama Mingoti, Jesiel de Medeiros, Gilnei Bruno da Silva, Giovana Tamara Capoani, Heloisa Lindemann, Joana Cassol, Daiane Manica, Tacio de Oliveira, Michelle Lima Garcez, Margarete Dulce Bagatini, Lilian Caroline Bohnen, Walter Antônio Roman Junior, Zuleide Maria Ignácio","doi":"10.1007/s12035-024-04198-1","DOIUrl":"10.1007/s12035-024-04198-1","url":null,"abstract":"<p><p>Major depressive disorder (MDD) is a severe disorder that causes enormous loss of quality of life, and among the factors underlying MDD is stress in maternal deprivation (MD). In addition, classic pharmacotherapy has presented severe adverse effects. Centella asiatica (C. asiatica) demonstrates a potential neuroprotective effect but has not yet been evaluated in MD models. This study aimed to evaluate the effect of C. asiatica extract and the active compound madecassic acid on possible depressive-like behavior, inflammation, and oxidative stress in the hippocampus and serum of young rats submitted to MD in the first days of life. Rats (after the first day of birth) were separated from the mother for 3 h a day for 10 days. When adults, these animals were divided into groups and submitted to treatment for 14 days. After subjecting the animals to protocols of locomotor activity in the open field and behavioral despair in the forced swimming test, researchers then euthanized the animals. The hippocampus and serum were collected and analyzed for the inflammatory cytokines and oxidative markers. The C. asiatica extract and active compound reversed or reduced depressive-like behaviors, inflammation in the hippocampus, and oxidative stress in serum and hippocampus. These results suggest that C. asiatica and madecassic acid have potential antidepressant action, at least partially, through anti-inflammatory and antioxidant profiles.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10182-10197"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140852517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neuropathic pain (NP) resulting from a lesion or disease of the somatosensory system can lead to loss of function and reduced life quality. Neuroinflammation plays a vital role in the development and maintenance of NP. Exercise as an economical, effective, and nonpharmacological treatment, recommended by clinical practice guidelines, has been proven to alleviate chronic NP. Previous studies have shown that exercise decreases NP by modifying inflammation; however, the exact mechanisms of exercise-mediated NP are unclear. Therefore, from the perspective of neuroinflammation, this review mainly discussed the effects of exercise on inflammatory cytokines in different parts of NP conduction pathways, such as the brain, spinal cord, dorsal root ganglion, sciatic nerve, and blood in rat/mice models. Results suggested that exercise training could modulate neuroinflammation, inhibit astrocyte glial cell proliferation and microglial activation, alter the macrophage phenotype, reduce the expression of proinflammatory cytokines, increase anti-inflammatory cytokine levels, and positively modulate the state of the immune system, thereby relieving NP.
{"title":"Role of Exercise on Inflammation Cytokines of Neuropathic Pain in Animal Models.","authors":"Ya-Nan Zheng, Yi-Li Zheng, Xue-Qiang Wang, Pei-Jie Chen","doi":"10.1007/s12035-024-04214-4","DOIUrl":"10.1007/s12035-024-04214-4","url":null,"abstract":"<p><p>Neuropathic pain (NP) resulting from a lesion or disease of the somatosensory system can lead to loss of function and reduced life quality. Neuroinflammation plays a vital role in the development and maintenance of NP. Exercise as an economical, effective, and nonpharmacological treatment, recommended by clinical practice guidelines, has been proven to alleviate chronic NP. Previous studies have shown that exercise decreases NP by modifying inflammation; however, the exact mechanisms of exercise-mediated NP are unclear. Therefore, from the perspective of neuroinflammation, this review mainly discussed the effects of exercise on inflammatory cytokines in different parts of NP conduction pathways, such as the brain, spinal cord, dorsal root ganglion, sciatic nerve, and blood in rat/mice models. Results suggested that exercise training could modulate neuroinflammation, inhibit astrocyte glial cell proliferation and microglial activation, alter the macrophage phenotype, reduce the expression of proinflammatory cytokines, increase anti-inflammatory cytokine levels, and positively modulate the state of the immune system, thereby relieving NP.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10288-10301"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-05-25DOI: 10.1007/s12035-024-04237-x
Mubashshir Ali, Heena Tabassum, Mohammad Mumtaz Alam, Abdulaziz S Alothaim, Esam S Al-Malki, Azfar Jamal, Suhel Parvez
AT1 receptor blockers (ARBs) are commonly used drugs to treat cardiovascular disease and hypertension, but research on their impact on brain disorders is unattainable. Valsartan (VAL) is a drug that specifically blocks AT1 receptor. Despite the previous evidence for VAL to provide neuroprotection in case of ischemic reperfusion injury, evaluation of their potential in mitigating mitochondrial dysfunction that causes neuronal cell death and neurobehavioral impairment remains unknown. The aim of this study was to evaluate the therapeutic effect of repurposed drug VAL against ischemic reperfusion injury-induced neuronal alternation. tMCAO surgery was performed to induce focal cerebral ischemic reperfusion injury. Following ischemic reperfusion injury, we analyzed the therapeutic efficacy of VAL by measuring the infarct volume, brain water content, mitochondrial oxidative stress, mitochondrial membrane potential, histopathological architecture, and apoptotic marker protein. Our results showed that VAL administrations (5 and 10 mg/kg b.wt.) mitigated the brain damage, enhanced neurobehavioral outcomes, and alleviated mitochondrial-mediated oxidative damage. In addition to this, our findings demonstrated that VAL administration inhibits neuronal apoptosis by restoring the mitochondrial membrane potential. A follow-up investigation demonstrated that VAL induces BDNF expression and promoted ischemic tolerance via modulating the Akt/p-Creb signaling pathway. In summary, our results suggested that VAL administration provided neuroprotection, ameliorated mitochondrial dysfunction, preserved the integrity of neurons, and lead to functional improvement after ischemic reperfusion injury.
AT1受体阻断剂(ARB)是治疗心血管疾病和高血压的常用药物,但有关其对脑部疾病影响的研究却遥遥无期。缬沙坦(VAL)是一种专门阻断AT1受体的药物。尽管已有证据表明缬沙坦能在缺血再灌注损伤的情况下提供神经保护,但对其在减轻导致神经细胞死亡和神经行为障碍的线粒体功能障碍方面的潜力的评估仍然未知。本研究旨在评估再利用药物VAL对缺血再灌注损伤诱导的神经元交替的治疗效果。缺血再灌注损伤后,我们通过测量梗死体积、脑含水量、线粒体氧化应激、线粒体膜电位、组织病理学结构和凋亡标志蛋白来分析VAL的疗效。我们的研究结果表明,服用 VAL(5 毫克/千克体重和 10 毫克/千克体重)可减轻脑损伤,改善神经行为结果,并减轻线粒体介导的氧化损伤。此外,我们的研究结果表明,服用 VAL 可通过恢复线粒体膜电位抑制神经元凋亡。后续研究表明,VAL 可诱导 BDNF 的表达,并通过调节 Akt/p-Creb 信号通路促进缺血耐受。总之,我们的研究结果表明,服用 VAL 可提供神经保护,改善线粒体功能障碍,保持神经元的完整性,并导致缺血再灌注损伤后的功能改善。
{"title":"Valsartan: An Angiotensin Receptor Blocker Modulates BDNF Expression and Provides Neuroprotection Against Cerebral Ischemic Reperfusion Injury.","authors":"Mubashshir Ali, Heena Tabassum, Mohammad Mumtaz Alam, Abdulaziz S Alothaim, Esam S Al-Malki, Azfar Jamal, Suhel Parvez","doi":"10.1007/s12035-024-04237-x","DOIUrl":"10.1007/s12035-024-04237-x","url":null,"abstract":"<p><p>AT1 receptor blockers (ARBs) are commonly used drugs to treat cardiovascular disease and hypertension, but research on their impact on brain disorders is unattainable. Valsartan (VAL) is a drug that specifically blocks AT1 receptor. Despite the previous evidence for VAL to provide neuroprotection in case of ischemic reperfusion injury, evaluation of their potential in mitigating mitochondrial dysfunction that causes neuronal cell death and neurobehavioral impairment remains unknown. The aim of this study was to evaluate the therapeutic effect of repurposed drug VAL against ischemic reperfusion injury-induced neuronal alternation. tMCAO surgery was performed to induce focal cerebral ischemic reperfusion injury. Following ischemic reperfusion injury, we analyzed the therapeutic efficacy of VAL by measuring the infarct volume, brain water content, mitochondrial oxidative stress, mitochondrial membrane potential, histopathological architecture, and apoptotic marker protein. Our results showed that VAL administrations (5 and 10 mg/kg b.wt.) mitigated the brain damage, enhanced neurobehavioral outcomes, and alleviated mitochondrial-mediated oxidative damage. In addition to this, our findings demonstrated that VAL administration inhibits neuronal apoptosis by restoring the mitochondrial membrane potential. A follow-up investigation demonstrated that VAL induces BDNF expression and promoted ischemic tolerance via modulating the Akt/p-Creb signaling pathway. In summary, our results suggested that VAL administration provided neuroprotection, ameliorated mitochondrial dysfunction, preserved the integrity of neurons, and lead to functional improvement after ischemic reperfusion injury.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10805-10819"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}