In this monograph we provided a tutorial on a family of sequential learning and decision problems known as the multi-armed bandit problems. We introduced a wide range of application scenarios for this learning framework, as well as its many different variants. The more detailed discussion has focused more on the stochastic bandit problems, with rewards driven by either an IID or a Markovian process, and when the environment consists of a single or multiple simultaneous users. We also presented literature on learning of MDPs, which captures coupling among the evolution of different options that a classical MAB problem does not.
{"title":"Online Learning Methods for Networking","authors":"Cem Tekin, M. Liu","doi":"10.1561/1300000050","DOIUrl":"https://doi.org/10.1561/1300000050","url":null,"abstract":"In this monograph we provided a tutorial on a family of sequential learning and decision problems known as the multi-armed bandit problems. We introduced a wide range of application scenarios for this learning framework, as well as its many different variants. The more detailed discussion has focused more on the stochastic bandit problems, with rewards driven by either an IID or a Markovian process, and when the environment consists of a single or multiple simultaneous users. We also presented literature on learning of MDPs, which captures coupling among the evolution of different options that a classical MAB problem does not.","PeriodicalId":188056,"journal":{"name":"Found. Trends Netw.","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115291533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multi-hop communication paradigms are expected to play a central role in future wireless networks by enabling a higher spatial reuse of the spectrum. A major challenge in multi-hop multi-user or multi-flow wireless networks is that "interference management" and "relaying" are coupled with each other. In other words, wireless relay nodes must play a dual role: they serve as intermediate steps for multi-hop communication and as part of the mechanism that allows interference management schemes. Nonetheless, in the communications, networking and information theory literature, these two tasks have traditionally been addressed separately, and the fundamental principles of the "wireless networks of the future" are currently not well understood. In this monograph, we take a unified approach to relaying and interference management, and seek to develop tools to study the fundamentals of multi-hop multi-flowwireless networks. We first consider multi-hop two-flow - or two-unicast - wireless networks. In order to handle networks with an arbitrary number of hops and arbitrary interference patterns, we introduce the idea of network condensation, by which a network with an arbitrary number of layers is effectively reduced to a network with at most four layers. This is done by identifying key layers and letting the nodes in all other layers apply random linear coding to relay the messages. Only the nodes in the remaining key layers need to be "smart" and perform coupled relaying and interference management operations. In addition, we introduce the new notion of paths with manageable interference, which represents a first attempt at finding flow-like structures in multi-user wireless networks, and develop novel outer bounds that capture the interference structure of a given topology. These techniques yield a complete characterization of the degrees of freedom of two-unicast layered networks as a function of the network graph. Extending these results for general K-unicast networks is quite challenging. To make progress on this front, we focus on the K x K x K wireless network, a two-hop network consisting of K sources, K relays, and K destinations. This network represents a canonical example of a multi-hop multi-flow wireless network for which previously there was a large gap between known inner and outer bounds, even from a degrees-of-freedom perspective. We introduce a coding scheme called Aligned Network Diagonalization AND that couples relaying and interference management in a way that all interference experienced by the destinations is simultaneously neutralized. This proves that K x K x K wireless networks have K sum degrees of freedom and demonstrates the significant gains that can be obtained with a unified approach to relaying and interference management. Moreover, this automotically yields the optimal scheme and degrees-of-freedom characterization for layered K unicast networks with fully connected hops. We then describe ideas and preliminary results for
通过实现更高的频谱空间复用,多跳通信范式有望在未来的无线网络中发挥核心作用。多跳多用户或多流无线网络的一个主要挑战是“干扰管理”和“中继”相互耦合。换句话说,无线中继节点必须扮演双重角色:它们作为多跳通信的中间步骤,并作为允许干扰管理方案的机制的一部分。尽管如此,在通信、网络和信息理论文献中,这两项任务传统上是分开处理的,而且“未来无线网络”的基本原理目前还没有得到很好的理解。在本专著中,我们采用统一的方法来中继和干扰管理,并寻求开发工具来研究多跳多流无线网络的基础。我们首先考虑多跳双流或双单播无线网络。为了处理具有任意跳数和任意干扰模式的网络,我们引入了网络凝聚的思想,通过该思想,具有任意层数的网络可以有效地简化为最多四层的网络。这是通过识别关键层并让所有其他层中的节点应用随机线性编码来中继消息来实现的。只有其余关键层中的节点需要“智能”并执行耦合中继和干扰管理操作。此外,我们引入了具有可管理干扰的路径的新概念,这代表了在多用户无线网络中寻找流状结构的首次尝试,并开发了捕获给定拓扑的干扰结构的新外部边界。这些技术产生了作为网络图函数的双单播分层网络的自由度的完整表征。将这些结果扩展到一般的k -单播网络是相当具有挑战性的。为了在这方面取得进展,我们将重点放在K x K x K无线网络上,这是一个由K个源、K个中继和K个目的地组成的两跳网络。该网络代表了一个多跳多流无线网络的典型例子,即使从自由度的角度来看,以前已知的内外边界之间也存在很大的差距。我们引入了一种称为对齐网络对角化AND的编码方案,该方案将中继和干扰管理结合在一起,使目的地所经历的所有干扰同时被中和。这证明了K × K × K无线网络具有K和自由度,并证明了采用统一的中继和干扰管理方法可以获得显著的收益。此外,这自动产生具有完全连接跳数的分层K单播网络的最优方案和自由度表征。然后,我们描述了具有一般拓扑结构的k -单播网络的想法和初步结果。除了讨论为双单播网络和K × K × K网络开发的工具如何扩展到这种一般设置之外,我们还提出了一种新的外边界技术,该技术改进了切集边界,并且可以捕获由不同用户之间的干扰所施加的限制。新边界可以理解为计算跨多个“嵌套切割”的流,而不是像经典切割集边界那样计算单个切割。该技术允许我们在任意连接的kxkxk无线网络中建立可管理干扰的图论概念。在整个专著中,讨论了许多扩展和未来的方向。在每章的最后,还描述了相关的工作,并提出了几个悬而未决的问题。讨论了大型网络中缺乏全局信道状态信息和降低中继操作复杂性等重要研究方向,并描述了这些方面的最新成果。
{"title":"Multihop Wireless Networks: A Unified Approach to Relaying and Interference Management","authors":"Ilan Shomorony, A. Avestimehr","doi":"10.1561/1300000044","DOIUrl":"https://doi.org/10.1561/1300000044","url":null,"abstract":"Multi-hop communication paradigms are expected to play a central role in future wireless networks by enabling a higher spatial reuse of the spectrum. A major challenge in multi-hop multi-user or multi-flow wireless networks is that \"interference management\" and \"relaying\" are coupled with each other. In other words, wireless relay nodes must play a dual role: they serve as intermediate steps for multi-hop communication and as part of the mechanism that allows interference management schemes. Nonetheless, in the communications, networking and information theory literature, these two tasks have traditionally been addressed separately, and the fundamental principles of the \"wireless networks of the future\" are currently not well understood. In this monograph, we take a unified approach to relaying and interference management, and seek to develop tools to study the fundamentals of multi-hop multi-flowwireless networks. We first consider multi-hop two-flow - or two-unicast - wireless networks. In order to handle networks with an arbitrary number of hops and arbitrary interference patterns, we introduce the idea of network condensation, by which a network with an arbitrary number of layers is effectively reduced to a network with at most four layers. This is done by identifying key layers and letting the nodes in all other layers apply random linear coding to relay the messages. Only the nodes in the remaining key layers need to be \"smart\" and perform coupled relaying and interference management operations. In addition, we introduce the new notion of paths with manageable interference, which represents a first attempt at finding flow-like structures in multi-user wireless networks, and develop novel outer bounds that capture the interference structure of a given topology. These techniques yield a complete characterization of the degrees of freedom of two-unicast layered networks as a function of the network graph. Extending these results for general K-unicast networks is quite challenging. To make progress on this front, we focus on the K x K x K wireless network, a two-hop network consisting of K sources, K relays, and K destinations. This network represents a canonical example of a multi-hop multi-flow wireless network for which previously there was a large gap between known inner and outer bounds, even from a degrees-of-freedom perspective. We introduce a coding scheme called Aligned Network Diagonalization AND that couples relaying and interference management in a way that all interference experienced by the destinations is simultaneously neutralized. This proves that K x K x K wireless networks have K sum degrees of freedom and demonstrates the significant gains that can be obtained with a unified approach to relaying and interference management. Moreover, this automotically yields the optimal scheme and degrees-of-freedom characterization for layered K unicast networks with fully connected hops. We then describe ideas and preliminary results for ","PeriodicalId":188056,"journal":{"name":"Found. Trends Netw.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126693265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular communication (MC) is a promising bio-inspired paradigm for the interconnection of autonomous nanotechnology-enabled devices, or nanomachines, into nanonetworks. MC realizes the exchange of information through the transmission, propagation, and reception of molecules, and it is proposed as a feasible solution for nanonetworks. This idea is motivated by the observation of nature, where MC is successfully adopted by cells for intracellular and intercellular communication. MC-based nanonetworks have the potential to be the enabling technology for a wide range of applications, mostly in the biomedical, but also in the industrial and surveillance fields. The focus of this article is on the most fundamental type of MC, i.e., diffusion-based MC, where the propagation of information-bearing molecules between a transmitter and a receiver is realized through free diffusion in a fluid. The objectives of the research presented in this article are to analyze an MC link from the point of view of communication engineering and information theory, and to provide solutions to the modeling and design of MC-based nanonetworks. First, a deterministic model is realized to study each component, as well as the overall diffusion-based- MC link, in terms of gain and delay. Second, the noise sources affecting a diffusion-based-MC link are identified and statistically modeled. Third, upper/lower bounds to the capacity are derived to evaluate the information-theoretic performance of diffusion-based MC. Fourth, an analysis of the interference produced by multiple diffusion-based MC links in a nanonetwork is provided. This research provides fundamental results that establish a basis for the modeling, design, and realization of future MC-based nanonetworks, as novel technologies and tools are being developed.
{"title":"Fundamentals of Diffusion-Based Molecular Communication in Nanonetworks","authors":"M. Pierobon, I. Akyildiz","doi":"10.1561/1300000033","DOIUrl":"https://doi.org/10.1561/1300000033","url":null,"abstract":"Molecular communication (MC) is a promising bio-inspired paradigm for the interconnection of autonomous nanotechnology-enabled devices, or nanomachines, into nanonetworks. MC realizes the exchange of information through the transmission, propagation, and reception of molecules, and it is proposed as a feasible solution for nanonetworks. This idea is motivated by the observation of nature, where MC is successfully adopted by cells for intracellular and intercellular communication. MC-based nanonetworks have the potential to be the enabling technology for a wide range of applications, mostly in the biomedical, but also in the industrial and surveillance fields. The focus of this article is on the most fundamental type of MC, i.e., diffusion-based MC, where the propagation of information-bearing molecules between a transmitter and a receiver is realized through free diffusion in a fluid. The objectives of the research presented in this article are to analyze an MC link from the point of view of communication engineering and information theory, and to provide solutions to the modeling and design of MC-based nanonetworks. First, a deterministic model is realized to study each component, as well as the overall diffusion-based- MC link, in terms of gain and delay. Second, the noise sources affecting a diffusion-based-MC link are identified and statistically modeled. Third, upper/lower bounds to the capacity are derived to evaluate the information-theoretic performance of diffusion-based MC. Fourth, an analysis of the interference produced by multiple diffusion-based MC links in a nanonetwork is provided. This research provides fundamental results that establish a basis for the modeling, design, and realization of future MC-based nanonetworks, as novel technologies and tools are being developed.","PeriodicalId":188056,"journal":{"name":"Found. Trends Netw.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114542406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present a review of the notion of stability and of stable throughput regions in wireless networks, with emphasis on network layer cooperation between interacting users. After a brief introduction, we examine in detail specific instances of the stability issue. These instances differ from each other in terms of the network, channel and traffic models they use. What they share is the notion of how stability is affected by node cooperation, as well as the notion of "interacting queues" that makes the stable throughput analysis difficult and often intractable. This review is intended to provide a reference point for the rich set of network control problems that arise in the context of queue stability in modern and future networks.
{"title":"Stable Throughput Regions in Wireless Networks","authors":"S. Kompella, A. Ephremides","doi":"10.1561/1300000039","DOIUrl":"https://doi.org/10.1561/1300000039","url":null,"abstract":"We present a review of the notion of stability and of stable throughput regions in wireless networks, with emphasis on network layer cooperation between interacting users. After a brief introduction, we examine in detail specific instances of the stability issue. These instances differ from each other in terms of the network, channel and traffic models they use. What they share is the notion of how stability is affected by node cooperation, as well as the notion of \"interacting queues\" that makes the stable throughput analysis difficult and often intractable. This review is intended to provide a reference point for the rich set of network control problems that arise in the context of queue stability in modern and future networks.","PeriodicalId":188056,"journal":{"name":"Found. Trends Netw.","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133552581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nanotechnology is providing a new set of tools to the engineering community to design nanoscale components withunprecedented functionalities. The integration of several nano-components into a single entity will enable thedevelopment of advanced nanomachines. Nanonetworks, i.e., networks of nanomachines, will enable a plethora ofapplications in the biomedical, environmental, industrial and military fields. To date, it is still not clear hownanomachines will communicate. The miniaturization of a classical antenna to meet the size requirements ofnanomachines would impose the use of very high radiation frequencies, which would compromise the feasibility ofelectromagnetic nanonetworks. Therefore, a new wireless technology is needed to enable this paradigm. The objectiveof this work is to establish the foundations of graphene–enabled electromagnetic communication in nanonetworks.First, novel graphene-based plasmonic nano-antennas are proposed, modeled and analyzed. The obtained results pointto the Terahertz Band (0.1–10 THz) as the frequency range of operation of novel nano–antennas. For this, the secondcontribution in this work is the development of a novel channel model for Terahertz Band communication. In addition,the channel capacity of the Terahertz Band is numerically investigated to highlight the potential of thisstill–unregulated frequency band. Third, new communication mechanisms for electromagnetic nanonetworks are developed.These include a novel modulation based on the transmission of femtosecond-long pulses, new low-weight codes for channelerror prevention in nanonetworks, a novel symbol detection scheme at the nano–receiver, a new energy model forself–powered nanomachines with piezoelectric nano–generators, and a new Medium Access Control protocol tailored tothe Terahertz Band. Finally, a one–to–one nano-link is emulated to validate the proposed solutions.
{"title":"Fundamentals of Electromagnetic Nanonetworks in the Terahertz Band","authors":"J. Jornet, I. Akyildiz","doi":"10.1561/1300000045","DOIUrl":"https://doi.org/10.1561/1300000045","url":null,"abstract":"Nanotechnology is providing a new set of tools to the engineering community to design nanoscale components withunprecedented functionalities. The integration of several nano-components into a single entity will enable thedevelopment of advanced nanomachines. Nanonetworks, i.e., networks of nanomachines, will enable a plethora ofapplications in the biomedical, environmental, industrial and military fields. To date, it is still not clear hownanomachines will communicate. The miniaturization of a classical antenna to meet the size requirements ofnanomachines would impose the use of very high radiation frequencies, which would compromise the feasibility ofelectromagnetic nanonetworks. Therefore, a new wireless technology is needed to enable this paradigm. The objectiveof this work is to establish the foundations of graphene–enabled electromagnetic communication in nanonetworks.First, novel graphene-based plasmonic nano-antennas are proposed, modeled and analyzed. The obtained results pointto the Terahertz Band (0.1–10 THz) as the frequency range of operation of novel nano–antennas. For this, the secondcontribution in this work is the development of a novel channel model for Terahertz Band communication. In addition,the channel capacity of the Terahertz Band is numerically investigated to highlight the potential of thisstill–unregulated frequency band. Third, new communication mechanisms for electromagnetic nanonetworks are developed.These include a novel modulation based on the transmission of femtosecond-long pulses, new low-weight codes for channelerror prevention in nanonetworks, a novel symbol detection scheme at the nano–receiver, a new energy model forself–powered nanomachines with piezoelectric nano–generators, and a new Medium Access Control protocol tailored tothe Terahertz Band. Finally, a one–to–one nano-link is emulated to validate the proposed solutions.","PeriodicalId":188056,"journal":{"name":"Found. Trends Netw.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133957673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optimization has been widely used in recent design of communication and networking systems. One major hurdle in this endeavor lies in the nonconvexity of many optimization problems that arise from practical systems. To address this issue, we observe that most nonconvex problems encountered in communication and networking systems exhibit monotonicity or hidden monotonicity structures. A systematic use of the monotonicity properties would substantially alleviate the difficulty in obtaining the global optimal solutions of the problems. This monograph provides a succinct and accessible introduction to monotonic optimization, including the formulation skills and solution algorithms. Through several application examples, we will illustrate modeling techniques and algorithm details of monotonic optimization in various scenarios. With this promising technique, many previously difficult problems can now be solved with great efficiency. With this monograph, we wish to spur new research activities in broadening the scope of application of monotonic optimization in communication and networking systems.
{"title":"Monotonic Optimization in Communication and Networking Systems","authors":"Y. Zhang, L. Qian, Jianwei Huang","doi":"10.1561/1300000038","DOIUrl":"https://doi.org/10.1561/1300000038","url":null,"abstract":"Optimization has been widely used in recent design of communication and networking systems. One major hurdle in this endeavor lies in the nonconvexity of many optimization problems that arise from practical systems. To address this issue, we observe that most nonconvex problems encountered in communication and networking systems exhibit monotonicity or hidden monotonicity structures. A systematic use of the monotonicity properties would substantially alleviate the difficulty in obtaining the global optimal solutions of the problems. This monograph provides a succinct and accessible introduction to monotonic optimization, including the formulation skills and solution algorithms. Through several application examples, we will illustrate modeling techniques and algorithm details of monotonic optimization in various scenarios. With this promising technique, many previously difficult problems can now be solved with great efficiency. With this monograph, we wish to spur new research activities in broadening the scope of application of monotonic optimization in communication and networking systems.","PeriodicalId":188056,"journal":{"name":"Found. Trends Netw.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127201345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In large-scale ad-hoc wireless networks, individual nodes communicate directly and reliably only with their neighbors, namely those nodes within their transmission range. A basic question is to determine the critical transmission range, namely the smallest transmission range value that enables network connectivity amongst participating nodes. On the sensitivity of the critical transmission range: Lessons from the lonely dimension discusses this important resource allocation issue in the context of a simple one-dimensional disk model. It carefully explores how properties of the node distribution affect the critical transmission range, and develop engineering implications for power allocation. Interest in the one-dimensional stems from the fact that a complete set of results is available in that case, suggesting appropriate versions in the less developed higher dimensional situation, possibly by formal transfer.
{"title":"On the Sensitivity of the Critical Transmission Range: Lessons from the Lonely Dimension","authors":"A. Makowski, Guang Han","doi":"10.1561/1300000029","DOIUrl":"https://doi.org/10.1561/1300000029","url":null,"abstract":"In large-scale ad-hoc wireless networks, individual nodes communicate directly and reliably only with their neighbors, namely those nodes within their transmission range. A basic question is to determine the critical transmission range, namely the smallest transmission range value that enables network connectivity amongst participating nodes. On the sensitivity of the critical transmission range: Lessons from the lonely dimension discusses this important resource allocation issue in the context of a simple one-dimensional disk model. It carefully explores how properties of the node distribution affect the critical transmission range, and develop engineering implications for power allocation. Interest in the one-dimensional stems from the fact that a complete set of results is available in that case, suggesting appropriate versions in the less developed higher dimensional situation, possibly by formal transfer.","PeriodicalId":188056,"journal":{"name":"Found. Trends Netw.","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128302050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, engineers have been increasingly called upon to have basic skills in economic modeling and game theory at their disposal for two related reasons. First, the economics of networks has a significant effect on the adoption and creation of network innovations, and second, and perhaps more importantly, engineered networks serve as the platform for many of our basic economic interactions today. This monograph aims to provide engineering students who have a basic training in economic modeling and game theory an understanding of where and when game theoretic models are employed, the assumptions underpinning key models, and conceptual insights that are broadly applicable. Full text available at: http://dx.doi.org/10.1561/1300000011
{"title":"Economic Modeling in Networking: A Primer","authors":"R. Berry, Ramesh Johari","doi":"10.1561/1300000011","DOIUrl":"https://doi.org/10.1561/1300000011","url":null,"abstract":"In recent years, engineers have been increasingly called upon to have basic skills in economic modeling and game theory at their disposal for two related reasons. First, the economics of networks has a significant effect on the adoption and creation of network innovations, and second, and perhaps more importantly, engineered networks serve as the platform for many of our basic economic interactions today. This monograph aims to provide engineering students who have a basic training in economic modeling and game theory an understanding of where and when game theoretic models are employed, the assumptions underpinning key models, and conceptual insights that are broadly applicable. Full text available at: http://dx.doi.org/10.1561/1300000011","PeriodicalId":188056,"journal":{"name":"Found. Trends Netw.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125170086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Weeraddana, M. Codreanu, M. Latva-aho, A. Ephremides, C. Fischione
The weighted sum-rate maximization (WSRMax) problem plays a central role in many network control and optimization methods, such as power control, link scheduling, cross-layer control, network utility maximization. The problem is NP-hard in general. In Weighted Sum-Rate Maximization in Wireless Networks: A Review, a cohesive discussion of the existing solution methods associated with the WSRMax problem, including global, fast local, as well as decentralized methods is presented. In addition, general optimization approaches, such as branch and bound methods, complementary geometric programming, and decomposition methods, are discussed in depth to address the problem. Through a number of numerical examples, the applicability of the resulting algorithms in various application domains is demonstrated. The presented algorithms and the associated numerical results can be very useful for network engineers or researchers with an interest in network design.
{"title":"Weighted Sum-Rate Maximization in Wireless Networks: A Review","authors":"C. Weeraddana, M. Codreanu, M. Latva-aho, A. Ephremides, C. Fischione","doi":"10.1561/1300000036","DOIUrl":"https://doi.org/10.1561/1300000036","url":null,"abstract":"The weighted sum-rate maximization (WSRMax) problem plays a central role in many network control and optimization methods, such as power control, link scheduling, cross-layer control, network utility maximization. The problem is NP-hard in general. In Weighted Sum-Rate Maximization in Wireless Networks: A Review, a cohesive discussion of the existing solution methods associated with the WSRMax problem, including global, fast local, as well as decentralized methods is presented. In addition, general optimization approaches, such as branch and bound methods, complementary geometric programming, and decomposition methods, are discussed in depth to address the problem. Through a number of numerical examples, the applicability of the resulting algorithms in various application domains is demonstrated. The presented algorithms and the associated numerical results can be very useful for network engineers or researchers with an interest in network design.","PeriodicalId":188056,"journal":{"name":"Found. Trends Netw.","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114470162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wireless Underground Sensor Networks (WUSNs) are the networks of wireless sensors that operate in the underground soil medium. In this monograph, to realize reliable and efficient WUSNs, two enabling techniques are developed to address the challenges brought by the underground soil medium, including the EM wave-based WUSNs and the MI-based WUSNs. For EM wave-based WUSNs, the heterogeneous network architecture and dynamic connectivity are investigated based on a comprehensive channel model in soil medium. Then a spatio-temporal correlation-based data collection scheme is developed to reduce the sensor density while keeping high monitoring accuracy. For MI-based WUSNs, the MI channel is first analytically characterized. Then based on the MI channel model, the MI waveguide technique is developed in order to enlarge the underground transmission range. After that, the optimal deployment algorithms for MI waveguides in WUSNs are analyzed to construct the WUSNs with high reliability and low costs. Finally, the mathematical models are developed to evaluate the channel and network capacities of MI-based WUSNs. This monograph provides principles and guidelines for WUSN designs.
{"title":"Key Communication Techniques for Underground Sensor Networks","authors":"Zhi Sun, I. Akyildiz","doi":"10.1561/1300000034","DOIUrl":"https://doi.org/10.1561/1300000034","url":null,"abstract":"Wireless Underground Sensor Networks (WUSNs) are the networks of wireless sensors that operate in the underground soil medium. In this monograph, to realize reliable and efficient WUSNs, two enabling techniques are developed to address the challenges brought by the underground soil medium, including the EM wave-based WUSNs and the MI-based WUSNs. For EM wave-based WUSNs, the heterogeneous network architecture and dynamic connectivity are investigated based on a comprehensive channel model in soil medium. Then a spatio-temporal correlation-based data collection scheme is developed to reduce the sensor density while keeping high monitoring accuracy. For MI-based WUSNs, the MI channel is first analytically characterized. Then based on the MI channel model, the MI waveguide technique is developed in order to enlarge the underground transmission range. After that, the optimal deployment algorithms for MI waveguides in WUSNs are analyzed to construct the WUSNs with high reliability and low costs. Finally, the mathematical models are developed to evaluate the channel and network capacities of MI-based WUSNs. This monograph provides principles and guidelines for WUSN designs.","PeriodicalId":188056,"journal":{"name":"Found. Trends Netw.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116797686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}