Pub Date : 2024-09-26DOI: 10.1007/s00438-024-02186-7
Jin Lee Kim, Kyung Min Jung, Jae Yong Han
Primordial germ cells (PGCs) in avian species exhibit unique developmental features, including the ability to migrate through the bloodstream and colonize the gonads, allowing their isolation at various developmental stages. Several methods have been developed for the isolation of avian PGCs, including density gradient centrifugation, size-dependent separation, and magnetic-activated cell sorting (MACS) or fluorescence-activated cell sorting (FACS) using a stage-specific embryonic antigen-1 (SSEA-1) antibody. However, these methods present limitations in terms of efficiency and applicability across development stages. In particular, the specificity of SSEA-1 decreases in later developmental stages. Furthermore, surface markers that can be utilized for isolating or utilizing PGCs are lacking for wild birds, including zebra finches, and endangered avian species. To address this, we used single-cell RNA sequencing (scRNA-seq) to uncover novel PGC-specific surface markers in chicken and zebra finch. We screened for genes that were primarily expressed in the PGC population within the gonadal cells. Analyses of gene expression patterns and levels based on scRNA-seq, coupled with validation by RT-PCR, identified NEGR1 and SLC34A2 as novel PGC-specific surface markers in chickens and ESYT3 in zebra finches. Notably, these newly identified genes exhibited sustained expression not only during later developmental stages but also in reproductive tissues.
鸟类的原始生殖细胞(PGCs)具有独特的发育特征,包括能够通过血液迁移并定植于性腺,因此可以在不同的发育阶段对其进行分离。目前已开发出几种分离禽类 PGCs 的方法,包括密度梯度离心法、大小依赖性分离法、磁激活细胞分选法(MACS)或使用阶段特异性胚胎抗原-1(SSEA-1)抗体的荧光激活细胞分选法(FACS)。然而,这些方法在效率和各发育阶段的适用性方面存在局限性。特别是,SSEA-1 的特异性在发育后期会降低。此外,野生鸟类(包括斑马雀)和濒危鸟类物种缺乏可用于分离或利用 PGCs 的表面标记物。为了解决这个问题,我们利用单细胞 RNA 测序(scRNA-seq)发现了鸡和斑马雀的新型 PGC 特异性表面标记。我们筛选了主要在性腺细胞内的 PGC 群体中表达的基因。基于 scRNA-seq 的基因表达模式和水平分析以及 RT-PCR 验证,发现 NEGR1 和 SLC34A2 是鸡的新型 PGC 特异性表面标记,ESYT3 是斑马雀的新型 PGC 特异性表面标记。值得注意的是,这些新发现的基因不仅在发育后期表现出持续表达,而且在生殖组织中也表现出持续表达。
{"title":"Single-cell RNA sequencing reveals surface markers of primordial germ cells in chicken and zebra finch.","authors":"Jin Lee Kim, Kyung Min Jung, Jae Yong Han","doi":"10.1007/s00438-024-02186-7","DOIUrl":"https://doi.org/10.1007/s00438-024-02186-7","url":null,"abstract":"<p><p>Primordial germ cells (PGCs) in avian species exhibit unique developmental features, including the ability to migrate through the bloodstream and colonize the gonads, allowing their isolation at various developmental stages. Several methods have been developed for the isolation of avian PGCs, including density gradient centrifugation, size-dependent separation, and magnetic-activated cell sorting (MACS) or fluorescence-activated cell sorting (FACS) using a stage-specific embryonic antigen-1 (SSEA-1) antibody. However, these methods present limitations in terms of efficiency and applicability across development stages. In particular, the specificity of SSEA-1 decreases in later developmental stages. Furthermore, surface markers that can be utilized for isolating or utilizing PGCs are lacking for wild birds, including zebra finches, and endangered avian species. To address this, we used single-cell RNA sequencing (scRNA-seq) to uncover novel PGC-specific surface markers in chicken and zebra finch. We screened for genes that were primarily expressed in the PGC population within the gonadal cells. Analyses of gene expression patterns and levels based on scRNA-seq, coupled with validation by RT-PCR, identified NEGR1 and SLC34A2 as novel PGC-specific surface markers in chickens and ESYT3 in zebra finches. Notably, these newly identified genes exhibited sustained expression not only during later developmental stages but also in reproductive tissues.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"90"},"PeriodicalIF":2.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1007/s00438-024-02183-w
Yong Wang, Xiufang Zhou
A burn is a type of injury to the skin or other tissues caused by heat, chemicals, electricity, sunlight, or radiation. Burn injuries have been proven to have the potential for long-term detrimental effects on the human body. The conventional therapeutic approaches are not able to effectively and easily heal these burn wounds completely. The main potential drawbacks of these treatments include hypertrophic scarring, contracture, infection, necrosis, allergic reactions, prolonged healing times, and unsatisfactory cosmetic results. The existence of these drawbacks and limitations in current treatment approaches necessitates the need to search for and develop better, more efficient therapies. The regenerative potential of microRNAs (miRNAs) and the exosomal miRNAs derived from various cell types, especially stem cells, offer advantages that outweigh traditional burn wound healing treatment procedures. The use of multiple types of stem cells is gaining interest due to their improved healing efficiency for various applications. Stem cells have several key distinguishing characteristics, including the ability to promote more effective and rapid healing of burn wounds, reduced inflammation levels at the wound site, and less scar tissue formation and fibrosis. In this review, we have discussed the stages of wound healing, the role of exosomes and miRNAs in improving thermal-induced wounds, and the impact of miRNAs in preventing the formation of hypertrophic scars. Research studies, pre-clinical and clinical, on the use of different cell-derived exosomal miRNAs and miRNAs for the treatment of thermal burns have been documented from the year 2000 up to the current time. Studies show that the use of different cell-derived exosomal miRNAs and miRNAs can improve the healing of burn wounds. The migration of exosomal miRNAs to the site of a wound leads to inhibition of apoptosis, induction of autophagy, re-epithelialization, granulation, regeneration of skin appendages, and angiogenesis. In conclusion, this study underscores the importance of integrating miRNA and exosome research into treatment strategies for burn injuries, paving the way for novel therapeutic approaches that could significantly improve patient outcomes and recovery times.
{"title":"Exosomes and microRNAs: insights into their roles in thermal-induced skin injury, wound healing and scarring.","authors":"Yong Wang, Xiufang Zhou","doi":"10.1007/s00438-024-02183-w","DOIUrl":"https://doi.org/10.1007/s00438-024-02183-w","url":null,"abstract":"<p><p>A burn is a type of injury to the skin or other tissues caused by heat, chemicals, electricity, sunlight, or radiation. Burn injuries have been proven to have the potential for long-term detrimental effects on the human body. The conventional therapeutic approaches are not able to effectively and easily heal these burn wounds completely. The main potential drawbacks of these treatments include hypertrophic scarring, contracture, infection, necrosis, allergic reactions, prolonged healing times, and unsatisfactory cosmetic results. The existence of these drawbacks and limitations in current treatment approaches necessitates the need to search for and develop better, more efficient therapies. The regenerative potential of microRNAs (miRNAs) and the exosomal miRNAs derived from various cell types, especially stem cells, offer advantages that outweigh traditional burn wound healing treatment procedures. The use of multiple types of stem cells is gaining interest due to their improved healing efficiency for various applications. Stem cells have several key distinguishing characteristics, including the ability to promote more effective and rapid healing of burn wounds, reduced inflammation levels at the wound site, and less scar tissue formation and fibrosis. In this review, we have discussed the stages of wound healing, the role of exosomes and miRNAs in improving thermal-induced wounds, and the impact of miRNAs in preventing the formation of hypertrophic scars. Research studies, pre-clinical and clinical, on the use of different cell-derived exosomal miRNAs and miRNAs for the treatment of thermal burns have been documented from the year 2000 up to the current time. Studies show that the use of different cell-derived exosomal miRNAs and miRNAs can improve the healing of burn wounds. The migration of exosomal miRNAs to the site of a wound leads to inhibition of apoptosis, induction of autophagy, re-epithelialization, granulation, regeneration of skin appendages, and angiogenesis. In conclusion, this study underscores the importance of integrating miRNA and exosome research into treatment strategies for burn injuries, paving the way for novel therapeutic approaches that could significantly improve patient outcomes and recovery times.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"89"},"PeriodicalIF":2.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1007/s00438-024-02182-x
Miao Yu, Fangyuan Wang, Huihui Gang, Chuanhu Liu
Nanog is a crucial regulatory factor in maintaining the self-renewal and pluripotency of embryonic stem cells. It is involved in various biological processes, such as early embryonic development, cell reprogramming, cell cycle regulation, the proliferation and migration of primordial germ cells. While research on this gene has primarily focused on mammals, there has been a growing interest in studying nanog in fish. However, there is a notable lack of comprehensive reviews regarding this gene in fish, which is essential for guiding future research. This review aims to provide a thorough summary of the gene's structure, expression patterns, functions and regulatory mechanisms in fish. The findings suggest that nanog probably has both conserved and divergent functions in regulating cell pluripotency, early embryonic development, and germ cell development in teleosts compared to other species, including mammals. These insights lay the foundation for future research and applications of the nanog gene, providing a new perspective for understanding the evolution and conserved charactristics of teleost nanog.
{"title":"Research progress of nanog gene in fish.","authors":"Miao Yu, Fangyuan Wang, Huihui Gang, Chuanhu Liu","doi":"10.1007/s00438-024-02182-x","DOIUrl":"10.1007/s00438-024-02182-x","url":null,"abstract":"<p><p>Nanog is a crucial regulatory factor in maintaining the self-renewal and pluripotency of embryonic stem cells. It is involved in various biological processes, such as early embryonic development, cell reprogramming, cell cycle regulation, the proliferation and migration of primordial germ cells. While research on this gene has primarily focused on mammals, there has been a growing interest in studying nanog in fish. However, there is a notable lack of comprehensive reviews regarding this gene in fish, which is essential for guiding future research. This review aims to provide a thorough summary of the gene's structure, expression patterns, functions and regulatory mechanisms in fish. The findings suggest that nanog probably has both conserved and divergent functions in regulating cell pluripotency, early embryonic development, and germ cell development in teleosts compared to other species, including mammals. These insights lay the foundation for future research and applications of the nanog gene, providing a new perspective for understanding the evolution and conserved charactristics of teleost nanog.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"88"},"PeriodicalIF":2.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1007/s00438-024-02180-z
Babak Sokouti
Renal cell carcinoma with clear cells (ccRCC) is the most frequent kind; it accounts for almost 70% of all kidney cancers. A primary objective of current research was to find genes that may be used in ccRCC gene therapy to understand better the molecular pathways underlying the disease. Based on PubMed microarray searches and meta-analyses, we compared overall survival and recurrence-free survival rates in ccRCC patients with those in healthy samples. The technique was followed by a KEGG pathway and Gene Ontology (GO) function analyses, both performed in conjunction with the approach. Tumor immune estimate and multi-gene biomarkers validation for clinical outcomes were performed at the molecular and clinical cohort levels. Our analysis included fourteen GEO datasets based on inclusion and exclusion criteria. A meta-analysis procedure, network construction using PPIs, and four significant gene identification standard algorithms indicated that 11 genes had the most important differences. Ten genes were upregulated, and one was downregulated in the study. In order to analyze RFS and OS survival rates, 11 genes expressed in the GEPIA2 database were examined. Nearly nine of eleven significant genes have been found to beinvolved in tumor immunity. Furthermore, it was found that mRNA expression levels of these genes were significantly correlated with experimental literature studies on ccRCCs, which explained these findings. This study identified eleven gene panels associated with ccRCC growth and metastasis, as well as their immune system infiltration.
{"title":"A systematic investigation of clear cell renal cell carcinoma using meta-analysis and systems biology approaches","authors":"Babak Sokouti","doi":"10.1007/s00438-024-02180-z","DOIUrl":"https://doi.org/10.1007/s00438-024-02180-z","url":null,"abstract":"<p>Renal cell carcinoma with clear cells (ccRCC) is the most frequent kind; it accounts for almost 70% of all kidney cancers. A primary objective of current research was to find genes that may be used in ccRCC gene therapy to understand better the molecular pathways underlying the disease. Based on PubMed microarray searches and meta-analyses, we compared overall survival and recurrence-free survival rates in ccRCC patients with those in healthy samples. The technique was followed by a KEGG pathway and Gene Ontology (GO) function analyses, both performed in conjunction with the approach. Tumor immune estimate and multi-gene biomarkers validation for clinical outcomes were performed at the molecular and clinical cohort levels. Our analysis included fourteen GEO datasets based on inclusion and exclusion criteria. A meta-analysis procedure, network construction using PPIs, and four significant gene identification standard algorithms indicated that 11 genes had the most important differences. Ten genes were upregulated, and one was downregulated in the study. In order to analyze RFS and OS survival rates, 11 genes expressed in the GEPIA2 database were examined. Nearly nine of eleven significant genes have been found to beinvolved in tumor immunity. Furthermore, it was found that mRNA expression levels of these genes were significantly correlated with experimental literature studies on ccRCCs, which explained these findings. This study identified eleven gene panels associated with ccRCC growth and metastasis, as well as their immune system infiltration.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"7 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1007/s00438-024-02170-1
Zichao Wu
Cholangiocarcinoma (CCA) is a heterogeneous and aggressive malignancy with limited therapeutic options and poor prognosis. The identification of reliable prognostic biomarkers and a deeper understanding of the molecular subtypes are critical for the development of targeted therapies and improvement of patient outcomes. This study aims to uncover oxidative stress-related genes (ORGs) in CCA and develop a prognostic risk model using comprehensive transcriptomic analysis from The Cancer Genome Atlas (TCGA). Through LASSO regression analysis, we identified prognosis-related ORGs and constructed a prognostic signature consisting of six ORGs. This signature demonstrated strong predictive performance in survival analysis and ROC curve assessment. Functional enrichment and GSEA analyses revealed significant enrichment of immune-related pathways among different risk groups. GSVA analysis indicated reduced activity in inflammation and oxidative stress pathways in the high-risk subgroup, and xCell results showed lower immune cell infiltration levels in this group. Additionally, immune checkpoint genes and immune-related pathways were downregulated in the high-risk subgroup. Our research has developed a unique prognostic model focusing on oxidative stress, enabling accurate forecasting of patient outcomes and providing crucial insights and recommendations for the prognosis of individuals with CCA. Future studies should aim to validate these findings in clinical settings and further explore therapeutic targets within oxidative stress pathways.
胆管癌(CCA)是一种异质性侵袭性恶性肿瘤,治疗方案有限,预后较差。鉴定可靠的预后生物标志物和加深对分子亚型的了解对于开发靶向疗法和改善患者预后至关重要。本研究旨在发现CCA中的氧化应激相关基因(ORGs),并利用癌症基因组图谱(TCGA)的全面转录组分析建立预后风险模型。通过LASSO回归分析,我们确定了与预后相关的ORGs,并构建了由6个ORGs组成的预后特征。该特征在生存分析和 ROC 曲线评估中表现出很强的预测能力。功能富集和GSEA分析显示,免疫相关通路在不同风险组别中显著富集。GSVA分析表明,高风险亚组的炎症和氧化应激通路活性降低,xCell结果显示该组的免疫细胞浸润水平较低。此外,免疫检查点基因和免疫相关通路在高风险亚组中下调。我们的研究建立了一个独特的预后模型,重点关注氧化应激,能够准确预测患者的预后,并为 CCA 患者的预后提供重要的见解和建议。未来的研究应着眼于在临床环境中验证这些发现,并进一步探索氧化应激通路中的治疗靶点。
{"title":"Transcriptomic analysis reveals oxidative stress-related signature and molecular subtypes in cholangio carcinoma.","authors":"Zichao Wu","doi":"10.1007/s00438-024-02170-1","DOIUrl":"https://doi.org/10.1007/s00438-024-02170-1","url":null,"abstract":"<p><p>Cholangiocarcinoma (CCA) is a heterogeneous and aggressive malignancy with limited therapeutic options and poor prognosis. The identification of reliable prognostic biomarkers and a deeper understanding of the molecular subtypes are critical for the development of targeted therapies and improvement of patient outcomes. This study aims to uncover oxidative stress-related genes (ORGs) in CCA and develop a prognostic risk model using comprehensive transcriptomic analysis from The Cancer Genome Atlas (TCGA). Through LASSO regression analysis, we identified prognosis-related ORGs and constructed a prognostic signature consisting of six ORGs. This signature demonstrated strong predictive performance in survival analysis and ROC curve assessment. Functional enrichment and GSEA analyses revealed significant enrichment of immune-related pathways among different risk groups. GSVA analysis indicated reduced activity in inflammation and oxidative stress pathways in the high-risk subgroup, and xCell results showed lower immune cell infiltration levels in this group. Additionally, immune checkpoint genes and immune-related pathways were downregulated in the high-risk subgroup. Our research has developed a unique prognostic model focusing on oxidative stress, enabling accurate forecasting of patient outcomes and providing crucial insights and recommendations for the prognosis of individuals with CCA. Future studies should aim to validate these findings in clinical settings and further explore therapeutic targets within oxidative stress pathways.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"86"},"PeriodicalIF":2.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1007/s00438-024-02176-9
Janaki M Nair, Khushdeep Bandesh, Anil K Giri, Gauri Prasad, Donaka Rajashekhar, Punam Jha, Analabha Basu, Nikhil Tandon, Dwaipayan Bharadwaj
Clinical biomarkers such as fasting glucose, HbA1c, and fasting insulin, which gauge glycemic status in the body, are highly influenced by diet. Indians are genetically predisposed to type 2 diabetes and their carbohydrate-centric diet further elevates the disease risk. Despite the combined influence of genetic and environmental risk factors, Indians have been inadequately explored in the studies of glycemic traits. Addressing this gap, we investigate the genetic architecture of glycemic traits at genome-wide level in 4927 Indians (without diabetes). Our analysis revealed numerous variants of sub-genome-wide significance, and their credibility was thoroughly assessed by integrating data from various levels. This identified key effector genes, ZNF470, DPP6, GXYLT2, PITPNM3, BEND7, and LORICRIN-PGLYRP3. While these genes were weakly linked with carbohydrate intake or glycemia earlier in other populations, our findings demonstrated a much stronger association in the Indian population. Associated genetic variants within these genes served as expression quantitative trait loci (eQTLs) in various gut tissues essential for digestion. Additionally, majority of these gut eQTLs functioned as methylation quantitative trait loci (meth-QTLs) observed in peripheral blood samples from 223 Indians, elucidating the underlying mechanism of their regulation of target gene expression. Specific co-localized eQTLs-meth-QTLs altered the binding affinity of transcription factors targeting crucial genes involved in glucose metabolism. Our study identifies previously unreported genetic variants that strongly influence the diet-glycemia relationship. These findings set the stage for future research into personalized lifestyle interventions integrating genetic insights with tailored dietary strategies to mitigate disease risk based on individual genetic profiles.
{"title":"Uncovering novel regulatory variants in carbohydrate metabolism: a comprehensive multi-omics study of glycemic traits in the Indian population.","authors":"Janaki M Nair, Khushdeep Bandesh, Anil K Giri, Gauri Prasad, Donaka Rajashekhar, Punam Jha, Analabha Basu, Nikhil Tandon, Dwaipayan Bharadwaj","doi":"10.1007/s00438-024-02176-9","DOIUrl":"https://doi.org/10.1007/s00438-024-02176-9","url":null,"abstract":"<p><p>Clinical biomarkers such as fasting glucose, HbA1c, and fasting insulin, which gauge glycemic status in the body, are highly influenced by diet. Indians are genetically predisposed to type 2 diabetes and their carbohydrate-centric diet further elevates the disease risk. Despite the combined influence of genetic and environmental risk factors, Indians have been inadequately explored in the studies of glycemic traits. Addressing this gap, we investigate the genetic architecture of glycemic traits at genome-wide level in 4927 Indians (without diabetes). Our analysis revealed numerous variants of sub-genome-wide significance, and their credibility was thoroughly assessed by integrating data from various levels. This identified key effector genes, ZNF470, DPP6, GXYLT2, PITPNM3, BEND7, and LORICRIN-PGLYRP3. While these genes were weakly linked with carbohydrate intake or glycemia earlier in other populations, our findings demonstrated a much stronger association in the Indian population. Associated genetic variants within these genes served as expression quantitative trait loci (eQTLs) in various gut tissues essential for digestion. Additionally, majority of these gut eQTLs functioned as methylation quantitative trait loci (meth-QTLs) observed in peripheral blood samples from 223 Indians, elucidating the underlying mechanism of their regulation of target gene expression. Specific co-localized eQTLs-meth-QTLs altered the binding affinity of transcription factors targeting crucial genes involved in glucose metabolism. Our study identifies previously unreported genetic variants that strongly influence the diet-glycemia relationship. These findings set the stage for future research into personalized lifestyle interventions integrating genetic insights with tailored dietary strategies to mitigate disease risk based on individual genetic profiles.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"85"},"PeriodicalIF":2.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1007/s00438-024-02168-9
Shixiong Tian, Muhammad Faheem, Humayoon Shafique Satti, Jianqiu Xiao, Feng Zhang, Tahir Naeem Khan, Chunyu Liu
Male infertility is a complex multifactorial reproductive disorder with highly heterogeneous phenotypic presentations. Azoospermia is a medically non-manageable cause of male infertility affecting ∼1% of men. Precise etiology of azoospermia is not known in approximately three-fourth of the cases. To explore the genetic basis of azoospermia, we performed whole exome sequencing in two non-obstructive azoospermia affected siblings from a consanguineous Pakistani family. Bioinformatic filtering and segregation analysis of whole exome sequencing data resulted in the identification of a rare homozygous missense variant (c.962G>C, p. Arg321Thr) in YTHDC2, segregating with disease in the family. Structural analysis of the missense variant identified in our study and two previously reported functionally characterized missense changes (p. Glu332Gln and p. His327Arg) in mice showed that all these three variants may affect Mg2+ binding ability and helicase activity of YTHDC2. Collectively, our genetic analyses and experimental observations revealed that missense variant of YTHDC2 can induce azoospermia in humans. These findings indicate the important role of YTHDC2 deficiency for azoospermia and will provide important guidance for genetic counseling of male infertility.
{"title":"A homozygous missense variant in YTHDC2 induces azoospermia in two siblings.","authors":"Shixiong Tian, Muhammad Faheem, Humayoon Shafique Satti, Jianqiu Xiao, Feng Zhang, Tahir Naeem Khan, Chunyu Liu","doi":"10.1007/s00438-024-02168-9","DOIUrl":"10.1007/s00438-024-02168-9","url":null,"abstract":"<p><p>Male infertility is a complex multifactorial reproductive disorder with highly heterogeneous phenotypic presentations. Azoospermia is a medically non-manageable cause of male infertility affecting ∼1% of men. Precise etiology of azoospermia is not known in approximately three-fourth of the cases. To explore the genetic basis of azoospermia, we performed whole exome sequencing in two non-obstructive azoospermia affected siblings from a consanguineous Pakistani family. Bioinformatic filtering and segregation analysis of whole exome sequencing data resulted in the identification of a rare homozygous missense variant (c.962G>C, p. Arg321Thr) in YTHDC2, segregating with disease in the family. Structural analysis of the missense variant identified in our study and two previously reported functionally characterized missense changes (p. Glu332Gln and p. His327Arg) in mice showed that all these three variants may affect Mg<sup>2+</sup> binding ability and helicase activity of YTHDC2. Collectively, our genetic analyses and experimental observations revealed that missense variant of YTHDC2 can induce azoospermia in humans. These findings indicate the important role of YTHDC2 deficiency for azoospermia and will provide important guidance for genetic counseling of male infertility.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"84"},"PeriodicalIF":2.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1007/s00438-024-02177-8
Yinyin Mo, Lishuang Sun, Shu Li, Lvjing Luo, Huiting Liu, Shi Huang, Zhengyu Chen, Genliang Li
The INO80D protein, a component of the INO80 chromatin remodeling complex, plays a pivotal role in chromatin remodeling, gene expression, and DNA repair within mammalian sperm. In contrast to the condensed nuclear structure of mammalian sperm, Chinese mitten crab, Eriocheir sinensis, exhibits a distinctively decondensed sperm nucleus. The distribution and function of INO80D during the E. sinensis spermatogenesis were previously enigmatic. Our research endeavored to elucidate the distribution and function of INO80D, thereby enhancing our comprehension of sperm decondensation and the process of spermatogenesis in this species. Employing transcriptome sequencing, RT-qPCR, western blot analysis, and immunofluorescence techniques, we observed a pronounced upregulation of INO80D in the adult E. sinensis in comparison to the juvenile. The protein predominantly resides in the cellular nucleus, with high levels in spermatogonia and spermatocytes, less in stage I and III spermatids, and lowest in mature sperm. The results indicated that INO80D is initially instrumental in chromatin decondensation to facilitate gene accessibility and DNA repair during the early phases of spermatogenesis. Its role subsequently shifts to maintaining decondensed chromatin stability and genetic integrity during spermiogenesis. The sustained presence of INO80D during spermiogenesis is essential for the ultimate maturation of the decondensed sperm nucleus, imperative for preserving the unique decondensed state and the protection of genetic material in E. sinensis. Our study concludes that INO80D exerts a multifaceted influence on the spermatogenesis of E. sinensis, impacting chromatin decondensation, genetic integrity, and the regulation of early gene expression. This understanding could potentially improve crab breeding in aquaculture.
{"title":"The mechanism of INO80D involved in chromatin remodeling regulating spermatogenesis in Chinese mitten crab (Eriocheir sinensis).","authors":"Yinyin Mo, Lishuang Sun, Shu Li, Lvjing Luo, Huiting Liu, Shi Huang, Zhengyu Chen, Genliang Li","doi":"10.1007/s00438-024-02177-8","DOIUrl":"10.1007/s00438-024-02177-8","url":null,"abstract":"<p><p>The INO80D protein, a component of the INO80 chromatin remodeling complex, plays a pivotal role in chromatin remodeling, gene expression, and DNA repair within mammalian sperm. In contrast to the condensed nuclear structure of mammalian sperm, Chinese mitten crab, Eriocheir sinensis, exhibits a distinctively decondensed sperm nucleus. The distribution and function of INO80D during the E. sinensis spermatogenesis were previously enigmatic. Our research endeavored to elucidate the distribution and function of INO80D, thereby enhancing our comprehension of sperm decondensation and the process of spermatogenesis in this species. Employing transcriptome sequencing, RT-qPCR, western blot analysis, and immunofluorescence techniques, we observed a pronounced upregulation of INO80D in the adult E. sinensis in comparison to the juvenile. The protein predominantly resides in the cellular nucleus, with high levels in spermatogonia and spermatocytes, less in stage I and III spermatids, and lowest in mature sperm. The results indicated that INO80D is initially instrumental in chromatin decondensation to facilitate gene accessibility and DNA repair during the early phases of spermatogenesis. Its role subsequently shifts to maintaining decondensed chromatin stability and genetic integrity during spermiogenesis. The sustained presence of INO80D during spermiogenesis is essential for the ultimate maturation of the decondensed sperm nucleus, imperative for preserving the unique decondensed state and the protection of genetic material in E. sinensis. Our study concludes that INO80D exerts a multifaceted influence on the spermatogenesis of E. sinensis, impacting chromatin decondensation, genetic integrity, and the regulation of early gene expression. This understanding could potentially improve crab breeding in aquaculture.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"83"},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Blue mold, caused by Penicillium italicum, is one of the main postharvest diseases of citrus fruits during storage and marketing. The pathogenic mechanism remains largely unclear. To explore the potential pathogenesis-related genes of this pathogen, a T-DNA insertion library of P. italicum PI5 was established via Agrobacterium tumefaciens-mediated transformation (ATMT). The system yielded 200-250 transformants per million conidia, and the transformants were genetically stable after five generations of successive subcultures on hygromycin-free media. 2700 transformants were obtained to generate a T-DNA insertion library of P. italicum. Only a few of the 200 randomly selected mutants exhibited significantly weakened virulence on citrus fruits, with two mutants displaying attenuated sporulation. The T-DNA in the two mutants existed as a single copy. Moreover, the mutant genes PiBla (PITC_048370) and PiFTF1 (PITC_077280) identified may be involved in conidia production by regulating expressions of the key regulatory components for conidiogenesis. These results demonstrated that the ATMT system is useful to obtain mutants of P. italicum for further investigation of the molecular mechanisms of pathogenicity and the obtained two pathogenesis-related genes might be novel loci associated with pathogenesis and conidia production.
{"title":"Screening of pathogenicity-deficient Penicillium italicum mutants established by Agrobacterium tumefaciens-mediated transformation.","authors":"Meihong Zhang, Shuzhen Yang, Qianru Li, Meng Wang, Litao Peng","doi":"10.1007/s00438-024-02171-0","DOIUrl":"https://doi.org/10.1007/s00438-024-02171-0","url":null,"abstract":"<p><p>Blue mold, caused by Penicillium italicum, is one of the main postharvest diseases of citrus fruits during storage and marketing. The pathogenic mechanism remains largely unclear. To explore the potential pathogenesis-related genes of this pathogen, a T-DNA insertion library of P. italicum PI5 was established via Agrobacterium tumefaciens-mediated transformation (ATMT). The system yielded 200-250 transformants per million conidia, and the transformants were genetically stable after five generations of successive subcultures on hygromycin-free media. 2700 transformants were obtained to generate a T-DNA insertion library of P. italicum. Only a few of the 200 randomly selected mutants exhibited significantly weakened virulence on citrus fruits, with two mutants displaying attenuated sporulation. The T-DNA in the two mutants existed as a single copy. Moreover, the mutant genes PiBla (PITC_048370) and PiFTF1 (PITC_077280) identified may be involved in conidia production by regulating expressions of the key regulatory components for conidiogenesis. These results demonstrated that the ATMT system is useful to obtain mutants of P. italicum for further investigation of the molecular mechanisms of pathogenicity and the obtained two pathogenesis-related genes might be novel loci associated with pathogenesis and conidia production.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"82"},"PeriodicalIF":2.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Austroasiatic (AA) speakers constitute around 4% of the population of Thailand, while the majority (89.4%) speak Kra-Dai (KD) languages. Previous forensic and population genetic studies in various Thai populations have employed a limited number of short tandem repeats (STRs). This study aims to expand the investigation of the genetic makeup of AA populations in Thailand and their relationship to KD populations using a larger number of autosomal STRs with the VeriFiler™ Plus PCR Amplification Kit. We generated 593 new genotypes from AA-speaking groups and combined them with previously reported data from AA and KD groups. A total of 1,129 genotypes across 23 STR loci were used to construct the largest allelic frequency profile for Thai and Lao populations. However, several loci deviated from Hardy-Weinberg equilibrium, likely due to the reduced genetic diversity in some highland populations, which should be considered in forensic investigations. Beyond forensic applications, our findings reveal genetic differences between AA-speaking groups in Northern and Northeastern Thailand. The AA groups from Northeastern Thailand exhibit greater genetic homogeneity and diversity, likely due to population interactions. In contrast, reduced diversity and increased heterogeneity in AA groups from Northern Thailand are possibly driven by genetic drift and cultural and geographic isolation. In conclusion, we emphasize the usefulness of increasing the number of autosomal STRs in forensic and anthropological genetic studies. Additional Y-STR and X-STR data from various AA-speaking groups in Thailand would further enhance and strengthen forensic STR databases in the region.
讲奥斯特西亚语(AA)的人约占泰国人口的 4%,而大多数人(89.4%)讲克拉-傣语(KD)。以往对泰国不同人群进行的法医和人群遗传学研究仅使用了数量有限的短串联重复序列(STR)。本研究旨在使用 VeriFiler™ Plus PCR 扩增试剂盒扩增常染色体 STRs 的数量,从而扩大对泰国 AA 人口遗传构成及其与 KD 人口关系的调查。我们从讲 AA 语的群体中生成了 593 个新的基因型,并将它们与之前报告的 AA 和 KD 群体的数据相结合。我们利用 23 个 STR 位点的 1,129 个基因型构建了泰国和老挝人群的最大等位基因频率图谱。然而,有几个位点偏离了哈代-温伯格平衡,这可能是由于一些高原人群的遗传多样性降低所致,在法医调查中应考虑到这一点。除法医应用外,我们的研究结果还揭示了泰国北部和东北部讲 AA 语群体之间的遗传差异。泰国东北部的 AA 群体表现出更大的遗传同质性和多样性,这可能是由于种群间的相互作用。与此相反,泰国北部 AA 群体的多样性减少,异质性增加,这可能是遗传漂移以及文化和地理隔离造成的。总之,我们强调在法医和人类学基因研究中增加常染色体 STR 的数量是非常有用的。从泰国各种讲 AA 语的群体中获得更多的 Y-STR 和 X-STR 数据将进一步提高和加强该地区的法医 STR 数据库。
{"title":"Genetic variability of 23 autosomal STRs in Austroasiatic-speaking populations from Thailand.","authors":"Nonglak Prakhun, Kanha Muisuk, Jatupol Kampuansai, Metawee Srikummool, Pittayawat Pittayaporn, Sukhum Ruangchai, Wibhu Kutanan, Nisarat Tungpairojwong","doi":"10.1007/s00438-024-02175-w","DOIUrl":"10.1007/s00438-024-02175-w","url":null,"abstract":"<p><p>Austroasiatic (AA) speakers constitute around 4% of the population of Thailand, while the majority (89.4%) speak Kra-Dai (KD) languages. Previous forensic and population genetic studies in various Thai populations have employed a limited number of short tandem repeats (STRs). This study aims to expand the investigation of the genetic makeup of AA populations in Thailand and their relationship to KD populations using a larger number of autosomal STRs with the VeriFiler™ Plus PCR Amplification Kit. We generated 593 new genotypes from AA-speaking groups and combined them with previously reported data from AA and KD groups. A total of 1,129 genotypes across 23 STR loci were used to construct the largest allelic frequency profile for Thai and Lao populations. However, several loci deviated from Hardy-Weinberg equilibrium, likely due to the reduced genetic diversity in some highland populations, which should be considered in forensic investigations. Beyond forensic applications, our findings reveal genetic differences between AA-speaking groups in Northern and Northeastern Thailand. The AA groups from Northeastern Thailand exhibit greater genetic homogeneity and diversity, likely due to population interactions. In contrast, reduced diversity and increased heterogeneity in AA groups from Northern Thailand are possibly driven by genetic drift and cultural and geographic isolation. In conclusion, we emphasize the usefulness of increasing the number of autosomal STRs in forensic and anthropological genetic studies. Additional Y-STR and X-STR data from various AA-speaking groups in Thailand would further enhance and strengthen forensic STR databases in the region.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"80"},"PeriodicalIF":2.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}