Pub Date : 2024-09-04DOI: 10.1038/s41589-024-01720-3
Kai Lu, Bingnan Luo, Xuan Tao, Yongbo Luo, Mingjun Ao, Bin Zheng, Xiang Xu, Xiaoyan Ma, Jingling Niu, Huinan Li, Yanxuan Xie, Zhennan Zhao, Peng Zheng, Guanbo Wang, Song Gao, Chao Wang, Wei Xia, Zhaoming Su, Zong-Wan Mao
Protein phosphorylation is a pivotal post-translational modification modulating various cellular processes. In Gram-positive bacteria, the protein arginine kinase McsB, along with its activator McsA, has a key role in labeling misfolded and damaged proteins during stress. However, the activation mechanism of McsB by McsA remains elusive. Here we report the cryo-electron microscopy structure of a tetrameric McsA–McsB complex at 3.41 Å resolution. Biochemical analysis indicates that the homotetrameric assembly is essential for McsB’s kinase activity. The conserved C-terminal zinc finger of McsA interacts with an extended loop in McsB, optimally orienting a critical catalytic cysteine residue. In addition, McsA binding decreases the CtsR’s affinity for McsB, enhancing McsB’s kinase activity and accelerating the turnover rate of CtsR phosphorylation. Furthermore, McsA binding also increases McsB’s thermostability, ensuring its activity under heat stress. These findings elucidate the structural basis and activation mechanism of McsB in stress response.
{"title":"Complex structure and activation mechanism of arginine kinase McsB by McsA","authors":"Kai Lu, Bingnan Luo, Xuan Tao, Yongbo Luo, Mingjun Ao, Bin Zheng, Xiang Xu, Xiaoyan Ma, Jingling Niu, Huinan Li, Yanxuan Xie, Zhennan Zhao, Peng Zheng, Guanbo Wang, Song Gao, Chao Wang, Wei Xia, Zhaoming Su, Zong-Wan Mao","doi":"10.1038/s41589-024-01720-3","DOIUrl":"https://doi.org/10.1038/s41589-024-01720-3","url":null,"abstract":"<p>Protein phosphorylation is a pivotal post-translational modification modulating various cellular processes. In Gram-positive bacteria, the protein arginine kinase McsB, along with its activator McsA, has a key role in labeling misfolded and damaged proteins during stress. However, the activation mechanism of McsB by McsA remains elusive. Here we report the cryo-electron microscopy structure of a tetrameric McsA–McsB complex at 3.41 Å resolution. Biochemical analysis indicates that the homotetrameric assembly is essential for McsB’s kinase activity. The conserved C-terminal zinc finger of McsA interacts with an extended loop in McsB, optimally orienting a critical catalytic cysteine residue. In addition, McsA binding decreases the CtsR’s affinity for McsB, enhancing McsB’s kinase activity and accelerating the turnover rate of CtsR phosphorylation. Furthermore, McsA binding also increases McsB’s thermostability, ensuring its activity under heat stress. These findings elucidate the structural basis and activation mechanism of McsB in stress response.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":14.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1038/s41589-024-01714-1
Ting Dang, Jie Yu, Zhihe Cao, Bingjie Zhang, Shanshan Li, Ye Xin, Lingyun Yang, Ronghui Lou, Min Zhuang, Wenqing Shui
The GLP-1 receptor, one of the most successful drug targets for the treatment of type 2 diabetes and obesity, is known to engage multiple intracellular signaling proteins. However, it remains less explored how the receptor interacts with proteins on the cell membrane. Here, we present a ligand-based proximity labeling approach to interrogate the native cell membrane interactome for the GLP-1 receptor after agonist simulation. Our study identified several unreported putative cell membrane interactors for the endogenous receptor in either a pancreatic β cell line or a neuronal cell line. We further uncovered new regulators of GLP-1 receptor-mediated signaling and insulinotropic responses in β cells. Additionally, we obtained a time-resolved cell membrane interactome map for the receptor in β cells. Therefore, our study provides a new approach that is generalizable to map endogenous cell membrane interactomes for G-protein-coupled receptors to decipher the molecular basis of their cell-type-specific functional regulation.
{"title":"Endogenous cell membrane interactome mapping for the GLP-1 receptor in different cell types","authors":"Ting Dang, Jie Yu, Zhihe Cao, Bingjie Zhang, Shanshan Li, Ye Xin, Lingyun Yang, Ronghui Lou, Min Zhuang, Wenqing Shui","doi":"10.1038/s41589-024-01714-1","DOIUrl":"https://doi.org/10.1038/s41589-024-01714-1","url":null,"abstract":"<p>The GLP-1 receptor, one of the most successful drug targets for the treatment of type 2 diabetes and obesity, is known to engage multiple intracellular signaling proteins. However, it remains less explored how the receptor interacts with proteins on the cell membrane. Here, we present a ligand-based proximity labeling approach to interrogate the native cell membrane interactome for the GLP-1 receptor after agonist simulation. Our study identified several unreported putative cell membrane interactors for the endogenous receptor in either a pancreatic β cell line or a neuronal cell line. We further uncovered new regulators of GLP-1 receptor-mediated signaling and insulinotropic responses in β cells. Additionally, we obtained a time-resolved cell membrane interactome map for the receptor in β cells. Therefore, our study provides a new approach that is generalizable to map endogenous cell membrane interactomes for G-protein-coupled receptors to decipher the molecular basis of their cell-type-specific functional regulation.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":14.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1038/s41589-024-01699-x
Michelle L. Halls
A method to study G-protein-coupled receptor (GPCR) trafficking has been developed using engineered APEX2 and CRISPR interference screening. The innovative approach reveals a network of proteins coordinated by DNAJC13 that control efficient GPCR sorting into degradative or recycling pathways.
{"title":"Illuminating GPCR trafficking","authors":"Michelle L. Halls","doi":"10.1038/s41589-024-01699-x","DOIUrl":"https://doi.org/10.1038/s41589-024-01699-x","url":null,"abstract":"A method to study G-protein-coupled receptor (GPCR) trafficking has been developed using engineered APEX2 and CRISPR interference screening. The innovative approach reveals a network of proteins coordinated by DNAJC13 that control efficient GPCR sorting into degradative or recycling pathways.","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":14.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1038/s41589-024-01705-2
Brandon Novy, Aleksandra Dagunts, Tatum Weishaar, Emily E. Holland, Hayden Adoff, Emily Hutchinson, Monica De Maria, Martin Kampmann, Nikoleta G. Tsvetanova, Braden T. Lobingier
Trafficking of G protein-coupled receptors (GPCRs) through the endosomal–lysosomal pathway is critical to homeostatic regulation of GPCRs following activation with agonist. Identifying the genes involved in GPCR trafficking is challenging due to the complexity of sorting operations and the large number of cellular proteins involved in the process. Here, we developed a high-sensitivity biosensor for GPCR expression and agonist-induced trafficking to the lysosome by leveraging the ability of the engineered peroxidase APEX2 to activate the fluorogenic substrate Amplex UltraRed (AUR). We used the GPCR–APEX2/AUR assay to perform a genome-wide CRISPR interference screen focused on identifying genes regulating expression and trafficking of the δ-opioid receptor (DOR). We identified 492 genes consisting of both known and new regulators of DOR function. We demonstrate that one new regulator, DNAJC13, controls trafficking of multiple GPCRs, including DOR, through the endosomal–lysosomal pathway by regulating the composition of the endosomal proteome and endosomal homeostasis.
G 蛋白偶联受体(GPCR)通过内泌体-溶酶体途径的转运对于 GPCR 在激动剂激活后的平衡调节至关重要。由于分拣操作的复杂性以及参与该过程的细胞蛋白数量庞大,因此鉴定参与 GPCR 转运的基因具有挑战性。在这里,我们利用工程过氧化物酶 APEX2 激活荧光底物 Amplex UltraRed (AUR) 的能力,开发了一种高灵敏度生物传感器,用于检测 GPCR 的表达和激动剂诱导的向溶酶体的迁移。我们利用 GPCR-APEX2/AUR 试验进行了全基因组 CRISPR 干扰筛选,重点是鉴定调控δ-阿片受体(DOR)表达和转运的基因。我们鉴定了 492 个基因,其中既有已知的 DOR 功能调控因子,也有新的调控因子。我们证明,一个新的调控因子 DNAJC13 通过调控内泌体蛋白组的组成和内泌体稳态,控制包括 DOR 在内的多种 GPCR 通过内泌体-溶酶体途径的转运。
{"title":"An engineered trafficking biosensor reveals a role for DNAJC13 in DOR downregulation","authors":"Brandon Novy, Aleksandra Dagunts, Tatum Weishaar, Emily E. Holland, Hayden Adoff, Emily Hutchinson, Monica De Maria, Martin Kampmann, Nikoleta G. Tsvetanova, Braden T. Lobingier","doi":"10.1038/s41589-024-01705-2","DOIUrl":"https://doi.org/10.1038/s41589-024-01705-2","url":null,"abstract":"<p>Trafficking of G protein-coupled receptors (GPCRs) through the endosomal–lysosomal pathway is critical to homeostatic regulation of GPCRs following activation with agonist. Identifying the genes involved in GPCR trafficking is challenging due to the complexity of sorting operations and the large number of cellular proteins involved in the process. Here, we developed a high-sensitivity biosensor for GPCR expression and agonist-induced trafficking to the lysosome by leveraging the ability of the engineered peroxidase APEX2 to activate the fluorogenic substrate Amplex UltraRed (AUR). We used the GPCR–APEX2/AUR assay to perform a genome-wide CRISPR interference screen focused on identifying genes regulating expression and trafficking of the δ-opioid receptor (DOR). We identified 492 genes consisting of both known and new regulators of DOR function. We demonstrate that one new regulator, DNAJC13, controls trafficking of multiple GPCRs, including DOR, through the endosomal–lysosomal pathway by regulating the composition of the endosomal proteome and endosomal homeostasis.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":14.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1038/s41589-024-01719-w
Congcong Cao, Aolin Li, Chaojie Xu, Baorui Wu, Lin Yao, Yuchen Liu
Targeted protein degradation has become a notable drug development strategy, but its application has been limited by the dependence on protein-based chimeras with restricted genetic manipulation capabilities. The use of long non-coding RNAs (lncRNAs) has emerged as a viable alternative, offering interactions with cellular proteins to modulate pathways and enhance degradation capabilities. Here we introduce a strategy employing artificial lncRNAs (alncRNAs) for precise targeted protein degradation. By integrating RNA aptamers and sequences from the lncRNA HOTAIR, our alncRNAs specifically target and facilitate the ubiquitination and degradation of oncogenic transcription factors and tumor-related proteins, such as c-MYC, NF-κB, ETS-1, KRAS and EGFR. These alncRNAs show potential in reducing malignant phenotypes in cells, both in vitro and in vivo, offering advantages in efficiency, adaptability and versatility. This research enhances knowledge of lncRNA-driven protein degradation and presents an effective method for targeted therapies.
{"title":"Engineering artificial non-coding RNAs for targeted protein degradation","authors":"Congcong Cao, Aolin Li, Chaojie Xu, Baorui Wu, Lin Yao, Yuchen Liu","doi":"10.1038/s41589-024-01719-w","DOIUrl":"https://doi.org/10.1038/s41589-024-01719-w","url":null,"abstract":"<p>Targeted protein degradation has become a notable drug development strategy, but its application has been limited by the dependence on protein-based chimeras with restricted genetic manipulation capabilities. The use of long non-coding RNAs (lncRNAs) has emerged as a viable alternative, offering interactions with cellular proteins to modulate pathways and enhance degradation capabilities. Here we introduce a strategy employing artificial lncRNAs (alncRNAs) for precise targeted protein degradation. By integrating RNA aptamers and sequences from the lncRNA HOTAIR, our alncRNAs specifically target and facilitate the ubiquitination and degradation of oncogenic transcription factors and tumor-related proteins, such as c-MYC, NF-κB, ETS-1, KRAS and EGFR. These alncRNAs show potential in reducing malignant phenotypes in cells, both in vitro and in vivo, offering advantages in efficiency, adaptability and versatility. This research enhances knowledge of lncRNA-driven protein degradation and presents an effective method for targeted therapies.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":14.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1038/s41589-024-01721-2
Chenmengxiao (Roderick) Pan, Steve D. Knutson, Sean W. Huth, David W. C. MacMillan
Phase-separated condensates are membrane-less intracellular structures comprising dynamic protein interactions that organize essential biological processes. Understanding the composition and dynamics of these organelles advances our knowledge of cellular behaviors and disease pathologies related to granule dysregulation. In this study, we apply microenvironment mapping with a HaloTag-based platform (HaloMap) to characterize intracellular stress granule dynamics in living cells. After validating the robustness and sensitivity of this approach, we then profile the stress granule proteome throughout the formation and disassembly and under pharmacological perturbation. These experiments reveal several ubiquitin-related modulators, including the HECT (homologous to E6AP C terminus) E3 ligases ITCH and NEDD4L, as well as the ubiquitin receptor toll-interacting protein TOLLIP, as key mediators of granule disassembly. In addition, we identify an autophagy-related pathway that promotes granule clearance. Collectively, this work establishes a general photoproximity labeling approach for unraveling intracellular protein interactomes and uncovers previously unexplored regulatory mechanisms of stress granule dynamics.
{"title":"µMap proximity labeling in living cells reveals stress granule disassembly mechanisms","authors":"Chenmengxiao (Roderick) Pan, Steve D. Knutson, Sean W. Huth, David W. C. MacMillan","doi":"10.1038/s41589-024-01721-2","DOIUrl":"https://doi.org/10.1038/s41589-024-01721-2","url":null,"abstract":"<p>Phase-separated condensates are membrane-less intracellular structures comprising dynamic protein interactions that organize essential biological processes. Understanding the composition and dynamics of these organelles advances our knowledge of cellular behaviors and disease pathologies related to granule dysregulation. In this study, we apply microenvironment mapping with a HaloTag-based platform (HaloMap) to characterize intracellular stress granule dynamics in living cells. After validating the robustness and sensitivity of this approach, we then profile the stress granule proteome throughout the formation and disassembly and under pharmacological perturbation. These experiments reveal several ubiquitin-related modulators, including the HECT (homologous to E6AP C terminus) E3 ligases <i>ITCH</i> and <i>NEDD4L</i>, as well as the ubiquitin receptor toll-interacting protein <i>TOLLIP</i>, as key mediators of granule disassembly. In addition, we identify an autophagy-related pathway that promotes granule clearance. Collectively, this work establishes a general photoproximity labeling approach for unraveling intracellular protein interactomes and uncovers previously unexplored regulatory mechanisms of stress granule dynamics.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":14.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1038/s41589-024-01716-z
Zeyu Qiao, Long C. Nguyen, Dongbo Yang, Christopher Dann, Deborah M. Thomas, Madeline Henn, Andrea Valdespino, Colin S. Swenson, Scott A. Oakes, Marsha Rich Rosner, Raymond E. Moellering
Many oncogenic transcription factors (TFs) are considered to be undruggable because of their reliance on large protein–protein and protein–DNA interfaces. TFs such as hypoxia-inducible factors (HIFs) and X-box-binding protein 1 (XBP1) are induced by hypoxia and other stressors in solid tumors and bind to unfolded protein response element (UPRE) and hypoxia-induced response element (HRE) motifs to control oncogenic gene programs. Here, we report a strategy to create synthetic transcriptional repressors (STRs) that mimic the basic leucine zipper domain of XBP1 and recognize UPRE and HRE motifs. A lead molecule, STR22, binds UPRE and HRE DNA sequences with high fidelity and competes with both TFs in cells. Under hypoxia, STR22 globally suppresses HIF1α binding to HRE-containing promoters and enhancers, inhibits hypoxia-induced gene expression and blocks protumorigenic phenotypes in triple-negative breast cancer (TNBC) cells. In vivo, intratumoral and systemic STR22 treatment inhibited hypoxia-dependent gene expression, primary tumor growth and metastasis of TNBC tumors. These data validate a novel strategy to target the tumor hypoxia response through coordinated inhibition of TF–DNA binding.
许多致癌转录因子(TFs)被认为是不可药用的,因为它们依赖于大的蛋白质-蛋白质和蛋白质-DNA界面。低氧诱导因子(HIFs)和X-box结合蛋白1(XBP1)等TFs在实体瘤中由低氧和其他压力诱导,并与未折叠蛋白反应元件(UPRE)和低氧诱导反应元件(HRE)基序结合,控制致癌基因程序。在这里,我们报告了一种创建合成转录抑制因子(STR)的策略,这种抑制因子可模仿 XBP1 的基本亮氨酸拉链结构域并识别 UPRE 和 HRE 基序。先导分子 STR22 能高保真地结合 UPRE 和 HRE DNA 序列,并在细胞中与这两种 TF 竞争。在缺氧条件下,STR22 可全面抑制 HIF1α 与含 HRE 启动子和增强子的结合,抑制缺氧诱导的基因表达,并阻断三阴性乳腺癌(TNBC)细胞的原瘤表型。在体内,瘤内和全身 STR22 治疗抑制了 TNBC 肿瘤的低氧依赖基因表达、原发性肿瘤生长和转移。这些数据验证了一种通过协调抑制 TF-DNA 结合来靶向肿瘤缺氧反应的新策略。
{"title":"Direct inhibition of tumor hypoxia response with synthetic transcriptional repressors","authors":"Zeyu Qiao, Long C. Nguyen, Dongbo Yang, Christopher Dann, Deborah M. Thomas, Madeline Henn, Andrea Valdespino, Colin S. Swenson, Scott A. Oakes, Marsha Rich Rosner, Raymond E. Moellering","doi":"10.1038/s41589-024-01716-z","DOIUrl":"https://doi.org/10.1038/s41589-024-01716-z","url":null,"abstract":"<p>Many oncogenic transcription factors (TFs) are considered to be undruggable because of their reliance on large protein–protein and protein–DNA interfaces. TFs such as hypoxia-inducible factors (HIFs) and X-box-binding protein 1 (XBP1) are induced by hypoxia and other stressors in solid tumors and bind to unfolded protein response element (UPRE) and hypoxia-induced response element (HRE) motifs to control oncogenic gene programs. Here, we report a strategy to create synthetic transcriptional repressors (STRs) that mimic the basic leucine zipper domain of XBP1 and recognize UPRE and HRE motifs. A lead molecule, STR22, binds UPRE and HRE DNA sequences with high fidelity and competes with both TFs in cells. Under hypoxia, STR22 globally suppresses HIF1α binding to HRE-containing promoters and enhancers, inhibits hypoxia-induced gene expression and blocks protumorigenic phenotypes in triple-negative breast cancer (TNBC) cells. In vivo, intratumoral and systemic STR22 treatment inhibited hypoxia-dependent gene expression, primary tumor growth and metastasis of TNBC tumors. These data validate a novel strategy to target the tumor hypoxia response through coordinated inhibition of TF–DNA binding.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":14.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Organisms evolve mechanisms that regulate the properties of biogenic crystals to support a wide range of functions, from vision and camouflage to communication and thermal regulation. Yet, the mechanism underlying the formation of diverse intracellular crystals remains enigmatic. Here we unravel the biochemical control over crystal morphogenesis in zebrafish iridophores. We show that the chemical composition of the crystals determines their shape, particularly through the ratio between the nucleobases guanine and hypoxanthine. We reveal that these variations in composition are genetically controlled through tissue-specific expression of specialized paralogs, which exhibit remarkable substrate selectivity. This orchestrated combination grants the organism with the capacity to generate a broad spectrum of crystal morphologies. Overall, our findings suggest a mechanism for the morphological and functional diversity of biogenic crystals and may, thus, inspire the development of genetically designed biomaterials and medical therapeutics.
{"title":"Genetic control over biogenic crystal morphogenesis in zebrafish","authors":"Rachael Deis, Tali Lerer-Goldshtein, Olha Baiko, Zohar Eyal, Dolev Brenman-Begin, Moshe Goldsmith, Sylvia Kaufmann, Uwe Heinig, Yonghui Dong, Sofya Lushchekina, Neta Varsano, Tsviya Olender, Meital Kupervaser, Ziv Porat, Smadar Levin-Zaidman, Iddo Pinkas, Rita Mateus, Dvir Gur","doi":"10.1038/s41589-024-01722-1","DOIUrl":"https://doi.org/10.1038/s41589-024-01722-1","url":null,"abstract":"<p>Organisms evolve mechanisms that regulate the properties of biogenic crystals to support a wide range of functions, from vision and camouflage to communication and thermal regulation. Yet, the mechanism underlying the formation of diverse intracellular crystals remains enigmatic. Here we unravel the biochemical control over crystal morphogenesis in zebrafish iridophores. We show that the chemical composition of the crystals determines their shape, particularly through the ratio between the nucleobases guanine and hypoxanthine. We reveal that these variations in composition are genetically controlled through tissue-specific expression of specialized paralogs, which exhibit remarkable substrate selectivity. This orchestrated combination grants the organism with the capacity to generate a broad spectrum of crystal morphologies. Overall, our findings suggest a mechanism for the morphological and functional diversity of biogenic crystals and may, thus, inspire the development of genetically designed biomaterials and medical therapeutics.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":14.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1038/s41589-024-01710-5
Joshua C. Black, Tatiana G. Kutateladze
Engineered demethylase LSD1 opens a new avenue in developing tools to study intricate relationships between histone post-translational modifications that can be enzymatically edited.
工程化去甲基化酶 LSD1 为研究组蛋白翻译后修饰之间错综复杂的关系开辟了一条新途径。
{"title":"Coaching LSD1 to ignore acetylation","authors":"Joshua C. Black, Tatiana G. Kutateladze","doi":"10.1038/s41589-024-01710-5","DOIUrl":"https://doi.org/10.1038/s41589-024-01710-5","url":null,"abstract":"Engineered demethylase LSD1 opens a new avenue in developing tools to study intricate relationships between histone post-translational modifications that can be enzymatically edited.","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":14.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1038/s41589-024-01732-z
Louis-Philippe Picard, Alexander Orazietti, Duy Phuoc Tran, Andrejs Tucs, Sari Hagimoto, Zhenzhou Qi, Shuya Kate Huang, Koji Tsuda, Akio Kitao, Adnan Sljoka, R Scott Prosser
{"title":"Author Correction: Balancing G protein selectivity and efficacy in the adenosine A<sub>2A</sub> receptor.","authors":"Louis-Philippe Picard, Alexander Orazietti, Duy Phuoc Tran, Andrejs Tucs, Sari Hagimoto, Zhenzhou Qi, Shuya Kate Huang, Koji Tsuda, Akio Kitao, Adnan Sljoka, R Scott Prosser","doi":"10.1038/s41589-024-01732-z","DOIUrl":"https://doi.org/10.1038/s41589-024-01732-z","url":null,"abstract":"","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":12.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}