首页 > 最新文献

Nature Reviews Drug Discovery最新文献

英文 中文
Top companies and drugs by sales in 2024
Pub Date : 2025-03-12 DOI: 10.1038/d41573-025-00049-3
Discover the world’s best science and medicine | Nature.com
{"title":"Top companies and drugs by sales in 2024","authors":"","doi":"10.1038/d41573-025-00049-3","DOIUrl":"https://doi.org/10.1038/d41573-025-00049-3","url":null,"abstract":"Discover the world’s best science and medicine | Nature.com","PeriodicalId":18847,"journal":{"name":"Nature Reviews Drug Discovery","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143598890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upcoming FDA approval decisions in Q2 2025
Pub Date : 2025-03-11 DOI: 10.1038/d41573-025-00050-w
Discover the world’s best science and medicine | Nature.com
{"title":"Upcoming FDA approval decisions in Q2 2025","authors":"","doi":"10.1038/d41573-025-00050-w","DOIUrl":"https://doi.org/10.1038/d41573-025-00050-w","url":null,"abstract":"Discover the world’s best science and medicine | Nature.com","PeriodicalId":18847,"journal":{"name":"Nature Reviews Drug Discovery","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143589597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered nasal bacteria slide drugs into the brain
Pub Date : 2025-03-11 DOI: 10.1038/d41573-025-00048-4
Discover the world’s best science and medicine | Nature.com
{"title":"Engineered nasal bacteria slide drugs into the brain","authors":"","doi":"10.1038/d41573-025-00048-4","DOIUrl":"https://doi.org/10.1038/d41573-025-00048-4","url":null,"abstract":"Discover the world’s best science and medicine | Nature.com","PeriodicalId":18847,"journal":{"name":"Nature Reviews Drug Discovery","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143589598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FDA approves CSF1R inhibitor for rare, non-cancerous joint tumours
Pub Date : 2025-03-10 DOI: 10.1038/d41573-025-00045-7
Discover the world’s best science and medicine | Nature.com
发现世界上最好的科学和医学 | Nature.com
{"title":"FDA approves CSF1R inhibitor for rare, non-cancerous joint tumours","authors":"","doi":"10.1038/d41573-025-00045-7","DOIUrl":"https://doi.org/10.1038/d41573-025-00045-7","url":null,"abstract":"Discover the world’s best science and medicine | Nature.com","PeriodicalId":18847,"journal":{"name":"Nature Reviews Drug Discovery","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143583105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FDA approves MEK inhibitor for rare neurofibromas
Pub Date : 2025-03-10 DOI: 10.1038/d41573-025-00044-8
Discover the world’s best science and medicine | Nature.com
{"title":"FDA approves MEK inhibitor for rare neurofibromas","authors":"","doi":"10.1038/d41573-025-00044-8","DOIUrl":"https://doi.org/10.1038/d41573-025-00044-8","url":null,"abstract":"Discover the world’s best science and medicine | Nature.com","PeriodicalId":18847,"journal":{"name":"Nature Reviews Drug Discovery","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143583107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bluebird Bio’s cut-price sale highlights challenges for gene therapy field
Pub Date : 2025-03-10 DOI: 10.1038/d41573-025-00046-6
Discover the world’s best science and medicine | Nature.com
{"title":"Bluebird Bio’s cut-price sale highlights challenges for gene therapy field","authors":"","doi":"10.1038/d41573-025-00046-6","DOIUrl":"https://doi.org/10.1038/d41573-025-00046-6","url":null,"abstract":"Discover the world’s best science and medicine | Nature.com","PeriodicalId":18847,"journal":{"name":"Nature Reviews Drug Discovery","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143583101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumour-agnostic kinase inhibitors
Pub Date : 2025-03-06 DOI: 10.1038/s41573-025-01147-y
Jacob J. Adashek, Mina Nikanjam, Razelle Kurzrock

Protein kinases are crucial targets for cancer treatment as they orchestrate important signals for oncogenesis and are often aberrantly activated owing to genomic alterations. In the past two decades, multiple kinase inhibitors have been developed, including those that are clinically effective regardless of tumour location, provided that the tumour harbours the aberrantly activated kinase. Consequently, a biomarker-based therapy model, untethered from tumour histology and organ of origin, has been established, which has led to transformative regulatory approvals of tumour-agnostic kinase inhibitors such as larotrectinib, selpercatinib, dabrafenib–trametinib and pemigatinib. However, almost all such approvals are partial in nature, as they do not include both solid and haematological cancers, even if the kinase inhibitor has shown activity in both. Moreover, clinical trials to assess these compounds are challenging because genomic sequencing of hundreds or thousands of tumours may be required to find eligible patients whose malignancy bears the targeted genetic alterations. In this Review, we describe the precision medicine paradigm that has successfully launched tumour-agnostic drug development, concentrating on small-molecule inhibitors that target kinase pathway aberrations, and we discuss the challenges in developing tumour‐agnostic agents.

{"title":"Tumour-agnostic kinase inhibitors","authors":"Jacob J. Adashek, Mina Nikanjam, Razelle Kurzrock","doi":"10.1038/s41573-025-01147-y","DOIUrl":"https://doi.org/10.1038/s41573-025-01147-y","url":null,"abstract":"<p>Protein kinases are crucial targets for cancer treatment as they orchestrate important signals for oncogenesis and are often aberrantly activated owing to genomic alterations. In the past two decades, multiple kinase inhibitors have been developed, including those that are clinically effective regardless of tumour location, provided that the tumour harbours the aberrantly activated kinase. Consequently, a biomarker-based therapy model, untethered from tumour histology and organ of origin, has been established, which has led to transformative regulatory approvals of tumour-agnostic kinase inhibitors such as larotrectinib, selpercatinib, dabrafenib–trametinib and pemigatinib. However, almost all such approvals are partial in nature, as they do not include both solid and haematological cancers, even if the kinase inhibitor has shown activity in both. Moreover, clinical trials to assess these compounds are challenging because genomic sequencing of hundreds or thousands of tumours may be required to find eligible patients whose malignancy bears the targeted genetic alterations. In this Review, we describe the precision medicine paradigm that has successfully launched tumour-agnostic drug development, concentrating on small-molecule inhibitors that target kinase pathway aberrations, and we discuss the challenges in developing tumour‐agnostic agents.</p>","PeriodicalId":18847,"journal":{"name":"Nature Reviews Drug Discovery","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143561255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating adoption of new approach methodologies in regulatory decision making: an industry perspective
Pub Date : 2025-03-06 DOI: 10.1038/d41573-025-00038-6
Andrew S. Robertson, Nahid Latif, Imein Bousnina, Donna Boyce, Kevin Carl, Sean P. Curtis, Jennifer Dudinak, Carlos O. Garner, Michael Garvin, Sabine Luik, Eddie Reilly, Michelle Rohrer, Katrin Rupalla, Jacintha Shenton, Jerry Stewart, Mark Taisey, Raymond C. Votzmeyer, Matthew P. Wagoner, Max Wegner, Kathy Williams
Clear and harmonized regulatory guidelines are needed to realize the potential of new approach methodologies for improving the predictivity of nonclinical drug candidate assessment.
{"title":"Accelerating adoption of new approach methodologies in regulatory decision making: an industry perspective","authors":"Andrew S. Robertson, Nahid Latif, Imein Bousnina, Donna Boyce, Kevin Carl, Sean P. Curtis, Jennifer Dudinak, Carlos O. Garner, Michael Garvin, Sabine Luik, Eddie Reilly, Michelle Rohrer, Katrin Rupalla, Jacintha Shenton, Jerry Stewart, Mark Taisey, Raymond C. Votzmeyer, Matthew P. Wagoner, Max Wegner, Kathy Williams","doi":"10.1038/d41573-025-00038-6","DOIUrl":"https://doi.org/10.1038/d41573-025-00038-6","url":null,"abstract":"Clear and harmonized regulatory guidelines are needed to realize the potential of new approach methodologies for improving the predictivity of nonclinical drug candidate assessment.","PeriodicalId":18847,"journal":{"name":"Nature Reviews Drug Discovery","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143561011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ASO targets DNA repair protein to combat Huntington disease
Pub Date : 2025-03-05 DOI: 10.1038/d41573-025-00042-w
Discover the world’s best science and medicine | Nature.com
{"title":"ASO targets DNA repair protein to combat Huntington disease","authors":"","doi":"10.1038/d41573-025-00042-w","DOIUrl":"https://doi.org/10.1038/d41573-025-00042-w","url":null,"abstract":"Discover the world’s best science and medicine | Nature.com","PeriodicalId":18847,"journal":{"name":"Nature Reviews Drug Discovery","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143545874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thirty years of NRF2: advances and therapeutic challenges
Pub Date : 2025-03-04 DOI: 10.1038/s41573-025-01145-0
Donna D. Zhang

Over the last 30 years, NRF2 has evolved from being recognized as a transcription factor primarily involved in redox balance and detoxification to a well-appreciated master regulator of cellular proteostasis, metabolism and iron homeostasis. NRF2 plays a pivotal role in diverse pathologies, including cancer, and metabolic, inflammatory and neurodegenerative disorders. It exhibits a Janus-faced duality, safeguarding cellular integrity in normal cells against environmental insults to prevent disease onset, whereas in certain cancers, constitutively elevated NRF2 levels provide a tumour survival advantage, promoting progression, therapy resistance and metastasis. Advances in understanding the mechanistic regulation of NRF2 and its roles in human pathology have propelled the investigation of NRF2-targeted therapeutic strategies. This Review dissects the mechanistic intricacies of NRF2 signalling, its cross-talk with biological processes and its far-reaching implications for health and disease, highlighting key discoveries that have shaped innovative therapeutic approaches targeting NRF2.

{"title":"Thirty years of NRF2: advances and therapeutic challenges","authors":"Donna D. Zhang","doi":"10.1038/s41573-025-01145-0","DOIUrl":"https://doi.org/10.1038/s41573-025-01145-0","url":null,"abstract":"<p>Over the last 30 years, NRF2 has evolved from being recognized as a transcription factor primarily involved in redox balance and detoxification to a well-appreciated master regulator of cellular proteostasis, metabolism and iron homeostasis. NRF2 plays a pivotal role in diverse pathologies, including cancer, and metabolic, inflammatory and neurodegenerative disorders. It exhibits a Janus-faced duality, safeguarding cellular integrity in normal cells against environmental insults to prevent disease onset, whereas in certain cancers, constitutively elevated NRF2 levels provide a tumour survival advantage, promoting progression, therapy resistance and metastasis. Advances in understanding the mechanistic regulation of NRF2 and its roles in human pathology have propelled the investigation of NRF2-targeted therapeutic strategies. This Review dissects the mechanistic intricacies of NRF2 signalling, its cross-talk with biological processes and its far-reaching implications for health and disease, highlighting key discoveries that have shaped innovative therapeutic approaches targeting NRF2.</p>","PeriodicalId":18847,"journal":{"name":"Nature Reviews Drug Discovery","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Reviews Drug Discovery
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1