Colorectal cancer (CRC) is the third most common malignant disease worldwide, and its incidence is increasing, but the molecular mechanisms of this disease are highly heterogeneous and still far from being fully understood. Increasing evidence suggests that fibrosis mediated by abnormal activation of fibroblasts based in the microenvironment is associated with a poor prognosis. However, the function and pathogenic mechanisms of fibroblasts in CRC remain unclear. Here, combining scrna-seq and clinical specimen data, DAZ Interacting Protein 1 (DZIP1) was found to be expressed on fibroblasts and cancer cells and positively correlated with stromal deposition. Importantly, pseudotime-series analysis showed that DZIP1 levels were up-regulated in malignant transformation of fibroblasts and experimentally confirmed that DZIP1 modulates activation of fibroblasts and promotes epithelial-mesenchymal transition (EMT) in tumor cells. Further studies showed that DZIP1 expressed by tumor cells also has a driving effect on EMT and contributes to the recruitment of more fibroblasts. A similar phenomenon was observed in xenografted nude mice. And it was confirmed in xenograft mice that downregulation of DZIP1 expression significantly delayed tumor formation and reduced tumor size in CRC cells. Taken together, our findings suggested that DZIP1 was a regulator of the CRC mesenchymal phenotype. The revelation of targeting DZIP1 provides a new avenue for CRC therapy.
{"title":"An Analysis Regarding the Association Between DAZ Interacting Zinc Finger Protein 1 (DZIP1) and Colorectal Cancer (CRC).","authors":"Yu Zhang, Yuan-Jie Liu, Jia Mei, Zhao-Xu Yang, Xiao-Ping Qian, Wei Huang","doi":"10.1007/s12033-024-01065-1","DOIUrl":"10.1007/s12033-024-01065-1","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is the third most common malignant disease worldwide, and its incidence is increasing, but the molecular mechanisms of this disease are highly heterogeneous and still far from being fully understood. Increasing evidence suggests that fibrosis mediated by abnormal activation of fibroblasts based in the microenvironment is associated with a poor prognosis. However, the function and pathogenic mechanisms of fibroblasts in CRC remain unclear. Here, combining scrna-seq and clinical specimen data, DAZ Interacting Protein 1 (DZIP1) was found to be expressed on fibroblasts and cancer cells and positively correlated with stromal deposition. Importantly, pseudotime-series analysis showed that DZIP1 levels were up-regulated in malignant transformation of fibroblasts and experimentally confirmed that DZIP1 modulates activation of fibroblasts and promotes epithelial-mesenchymal transition (EMT) in tumor cells. Further studies showed that DZIP1 expressed by tumor cells also has a driving effect on EMT and contributes to the recruitment of more fibroblasts. A similar phenomenon was observed in xenografted nude mice. And it was confirmed in xenograft mice that downregulation of DZIP1 expression significantly delayed tumor formation and reduced tumor size in CRC cells. Taken together, our findings suggested that DZIP1 was a regulator of the CRC mesenchymal phenotype. The revelation of targeting DZIP1 provides a new avenue for CRC therapy.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"527-547"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139707237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-03-01DOI: 10.1007/s12033-024-01077-x
Bin Zou, Qin Zhang, Hui Gan, Yue Qin, Yudong Zhou, Xuan Zhai, Ping Liang
Intraventricular hemorrhage results in posthemorrhagic hydrocephalus (PHH). Neonatal hydrocephalus remains a challenging disease due to the high failure rate of all management strategies. We evaluated long noncoding RNA growth arrest-specific 5 (GAS5)-mediated network in neonatal hydrocephalus, providing a new direction for the treatment of hydrocephalus. The PHH model was constructed in neonatal rats after intracerebroventricular injection with GAS5, miR-325-3p, and chaperonin containing T-complex protein 1, subunit 8 (CCT8) plasmids, or oligonucleotides. Next, behavioral tests, measurement of serum inflammation, observation of brain tissue pathology, and calculation of hemoglobin and brain water contents were implemented. GAS5, miR-325-3p, and CCT8 expression, in combination with their interactions, was checked. As the results reported, collagenase infusion induced hydrocephalus, impairing neurological function, enhancing inflammation and neuronal apoptosis, and increasing hemoglobin and brain water contents. GAS5 and CCT8 were up-regulated, while miR-325-3p was down-regulated in hydrocephalic rats. Downregulating GAS5/CCT8 or upregulating miR-325-3p could inhibit inflammatory response and improve neurological function in young hydrocephalic rats. GAS5 promotes CCT8 expression through sponge adsorption of miR-325-3p. GAS5 silencing-mediated protections against hydrocephalus were counteracted by CCT8 overexpression. In summary, GAS5 aggravates neonatal hydrocephalus and inflammatory responses in a way of leasing miR-325-3p-involved regulation of CCT8.
{"title":"Long Noncoding RNA GAS5-Involved Progression of Neonatal Hydrocephalus and Inflammatory Responses.","authors":"Bin Zou, Qin Zhang, Hui Gan, Yue Qin, Yudong Zhou, Xuan Zhai, Ping Liang","doi":"10.1007/s12033-024-01077-x","DOIUrl":"10.1007/s12033-024-01077-x","url":null,"abstract":"<p><p>Intraventricular hemorrhage results in posthemorrhagic hydrocephalus (PHH). Neonatal hydrocephalus remains a challenging disease due to the high failure rate of all management strategies. We evaluated long noncoding RNA growth arrest-specific 5 (GAS5)-mediated network in neonatal hydrocephalus, providing a new direction for the treatment of hydrocephalus. The PHH model was constructed in neonatal rats after intracerebroventricular injection with GAS5, miR-325-3p, and chaperonin containing T-complex protein 1, subunit 8 (CCT8) plasmids, or oligonucleotides. Next, behavioral tests, measurement of serum inflammation, observation of brain tissue pathology, and calculation of hemoglobin and brain water contents were implemented. GAS5, miR-325-3p, and CCT8 expression, in combination with their interactions, was checked. As the results reported, collagenase infusion induced hydrocephalus, impairing neurological function, enhancing inflammation and neuronal apoptosis, and increasing hemoglobin and brain water contents. GAS5 and CCT8 were up-regulated, while miR-325-3p was down-regulated in hydrocephalic rats. Downregulating GAS5/CCT8 or upregulating miR-325-3p could inhibit inflammatory response and improve neurological function in young hydrocephalic rats. GAS5 promotes CCT8 expression through sponge adsorption of miR-325-3p. GAS5 silencing-mediated protections against hydrocephalus were counteracted by CCT8 overexpression. In summary, GAS5 aggravates neonatal hydrocephalus and inflammatory responses in a way of leasing miR-325-3p-involved regulation of CCT8.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"661-672"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140013012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-03-16DOI: 10.1007/s12033-024-01093-x
Xing Yang, Yu Chen, Bingshuang Pu, Xuan Yuan, Jiaojiao Wang, Chun Chen
Tuberculosis (TB) is a chronic respiratory infectious disease and is induced by Mycobacterium tuberculosis (M.tb) infection. Macrophages serve as the cellular home in immunoreaction against M.tb infection, which is tightly regulated through Toll-like receptor 4 (TLR4) expression. Therefore, this study is designed to explore the role and mechanism of TLR4 in mycobacterial injury in human macrophages (THP-1 cells) after M.tb infection. Cell proliferation and apoptosis were assessed using MTT, EdU, and flow cytometry assays. ELISA kits were utilized to assess the levels of Interleukin-6 (IL-6), IL-1β, and tumor necrosis factor α (TNF-α). The binding between Yin-Yang-1 (YY1) and TLR4 promoter was predicted by JASPAR and verified using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. M.tb infection might repress THP-1 cell proliferation, and induce cell apoptosis and inflammatory response in a multiplicity of infection (MOI)-dependent manner. Moreover, M.tb infection increased the expression of TLR4 in HTP-1 cells in an MOI-dependent way, and its downregulation might overturn M.tb infection-mediated HTP-1 cell damage and inflammatory response. At the molecular level, YY1 was a transcription factor of TLR4 and promoted TLR4 transcription via binding to its promoter region. Besides, YY1 might activate the NF-kB signaling pathway via regulating TLR4. Meanwhile, TLR4 inhibitor BAY11-7082 might overturn the repression effect of TLR4 on M.tb-infected HTP-1 cell damage. YY1-activated TLR4 might aggravate mycobacterial injury in human macrophages after M.tb infection by the NF-kB pathway, providing a promising therapeutic target for TB treatment.
{"title":"YY1 Contributes to the Inflammatory Responses of Mycobacterium tuberculosis-Infected Macrophages Through Transcription Activation-Mediated Upregulation TLR4.","authors":"Xing Yang, Yu Chen, Bingshuang Pu, Xuan Yuan, Jiaojiao Wang, Chun Chen","doi":"10.1007/s12033-024-01093-x","DOIUrl":"10.1007/s12033-024-01093-x","url":null,"abstract":"<p><p>Tuberculosis (TB) is a chronic respiratory infectious disease and is induced by Mycobacterium tuberculosis (M.tb) infection. Macrophages serve as the cellular home in immunoreaction against M.tb infection, which is tightly regulated through Toll-like receptor 4 (TLR4) expression. Therefore, this study is designed to explore the role and mechanism of TLR4 in mycobacterial injury in human macrophages (THP-1 cells) after M.tb infection. Cell proliferation and apoptosis were assessed using MTT, EdU, and flow cytometry assays. ELISA kits were utilized to assess the levels of Interleukin-6 (IL-6), IL-1β, and tumor necrosis factor α (TNF-α). The binding between Yin-Yang-1 (YY1) and TLR4 promoter was predicted by JASPAR and verified using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. M.tb infection might repress THP-1 cell proliferation, and induce cell apoptosis and inflammatory response in a multiplicity of infection (MOI)-dependent manner. Moreover, M.tb infection increased the expression of TLR4 in HTP-1 cells in an MOI-dependent way, and its downregulation might overturn M.tb infection-mediated HTP-1 cell damage and inflammatory response. At the molecular level, YY1 was a transcription factor of TLR4 and promoted TLR4 transcription via binding to its promoter region. Besides, YY1 might activate the NF-kB signaling pathway via regulating TLR4. Meanwhile, TLR4 inhibitor BAY11-7082 might overturn the repression effect of TLR4 on M.tb-infected HTP-1 cell damage. YY1-activated TLR4 might aggravate mycobacterial injury in human macrophages after M.tb infection by the NF-kB pathway, providing a promising therapeutic target for TB treatment.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"778-789"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140140480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-03-08DOI: 10.1007/s12033-024-01086-w
Rachna M Pallar, Shubhangi K Pingle, Avinash Shivaji Gaikwad, Naveen S Yennam, N Raju, Panja Kumar, Vinay Kumar Adepu, Rajani G Tumane, Chennuru Veeranjaneyulu, Kartikey Matte
The prevalence of cancer deaths globally and domestically is higher especially due to the deferment of diagnosis and lack of facilities for women's reproductive cancers. The present review focussed to explore the application of lectins in cancer theranostics. Though there is cancer diagnostic and treatment available there is no promising early diagnostic tool and effective treatment available for the cancer which is the major concern. Lectins are cellulose-binding proteins that are strongly determined in saccharide groups of glycans, glycopeptides, or glycolipids. In the concomitance of events in cells, carbohydrates, and proteins, lectins play an important role. Lectins bind superiorly to the cancer cell membrane and their receptors induce the cytotoxic effect, which results in caspase-mediated cell death, and prohibits tumour development. Lectin snuffing also reveals polyamine stocks and impedes the growth of cancerous cells. They affect the cell cycle by non-apoptotic aggregation, seizure of the cell cycle phase G2, M, and the mediation of caspases. It can also adversely affect the action of telomerase and hinder vascularisation. They promote immunomodulation and adversely limit protein synthesis. Their easy availability and its characteristics support its use in cancer diagnosis and therapy, despite their small corollary effects. Future investigations recommend focussing more on the key applications of lectin by reducing its concurrent effects and carrying out more in-vitro investigations. However, the use of lectin formulations for cancer theranostics is a new area in cancer detection and treatment. In this review, plant lectin appears to be a potential target for cancer research in the fields of diagnosis and theranostics.
{"title":"Lectin: A Molecular Tool in Cancer Diagnosis and Therapy with Special Reference to Reproductive Cancers.","authors":"Rachna M Pallar, Shubhangi K Pingle, Avinash Shivaji Gaikwad, Naveen S Yennam, N Raju, Panja Kumar, Vinay Kumar Adepu, Rajani G Tumane, Chennuru Veeranjaneyulu, Kartikey Matte","doi":"10.1007/s12033-024-01086-w","DOIUrl":"10.1007/s12033-024-01086-w","url":null,"abstract":"<p><p>The prevalence of cancer deaths globally and domestically is higher especially due to the deferment of diagnosis and lack of facilities for women's reproductive cancers. The present review focussed to explore the application of lectins in cancer theranostics. Though there is cancer diagnostic and treatment available there is no promising early diagnostic tool and effective treatment available for the cancer which is the major concern. Lectins are cellulose-binding proteins that are strongly determined in saccharide groups of glycans, glycopeptides, or glycolipids. In the concomitance of events in cells, carbohydrates, and proteins, lectins play an important role. Lectins bind superiorly to the cancer cell membrane and their receptors induce the cytotoxic effect, which results in caspase-mediated cell death, and prohibits tumour development. Lectin snuffing also reveals polyamine stocks and impedes the growth of cancerous cells. They affect the cell cycle by non-apoptotic aggregation, seizure of the cell cycle phase G2, M, and the mediation of caspases. It can also adversely affect the action of telomerase and hinder vascularisation. They promote immunomodulation and adversely limit protein synthesis. Their easy availability and its characteristics support its use in cancer diagnosis and therapy, despite their small corollary effects. Future investigations recommend focussing more on the key applications of lectin by reducing its concurrent effects and carrying out more in-vitro investigations. However, the use of lectin formulations for cancer theranostics is a new area in cancer detection and treatment. In this review, plant lectin appears to be a potential target for cancer research in the fields of diagnosis and theranostics.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"456-468"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-02-24DOI: 10.1007/s12033-024-01087-9
María Eugenia Aranda-Barradas, Héctor Eduardo Coronado-Contreras, Yareli Lizbeth Aguilar-Castañeda, Karen Donají Olivo-Escalante, Francisco Rodolfo González-Díaz, Carlos Gerardo García-Tovar, Samuel Álvarez-Almazán, Susana Patricia Miranda-Castro, Alicia Del Real-López, Abraham Méndez-Albores
A strategy to increase the transfection efficiency of chitosan-based nanoparticles for gene therapy is by adding nuclear localization signals through karyophilic peptides. Here, the effect of the length and sequence of these peptides and their interaction with different plasmids on the physical characteristics and biological functionality of nanoparticles is reported. The karyophilic peptides (P1 or P2) were used to assemble nanoparticles by complex coacervation with pEGFP-N1, pQBI25 or pSelect-Zeo-HSV1-tk plasmids, and chitosan. Size, polydispersity index, zeta potential, and morphology, as well as in vitro nucleus internalization and transfection capability of nanoparticles were determined. The P2 nanoparticles resulted smaller compared to the ones without peptides or P1 for the three plasmids. In general, the addition of either P1 or P2 did not have a significant impact on the polydispersity index and the zeta potential. P1 and P2 nanoparticles were localized in the nucleus after 30 min of exposure to HeLa cells. Nevertheless, the presence of P2 in pEGFP-N1 and pQBI25 nanoparticles raised their capability to transfect and express the green fluorescent protein. Thus, karyophilic peptides are an efficient tool for the optimization of nonviral vectors for gene delivery; however, the sequence and length of peptides have an impact on characteristics and functionality of nanoparticles.
{"title":"Effect of Different Karyophilic Peptides on Physical Characteristics and In Vitro Transfection Efficiency of Chitosan-Plasmid Nanoparticles as Nonviral Gene Delivery Systems.","authors":"María Eugenia Aranda-Barradas, Héctor Eduardo Coronado-Contreras, Yareli Lizbeth Aguilar-Castañeda, Karen Donají Olivo-Escalante, Francisco Rodolfo González-Díaz, Carlos Gerardo García-Tovar, Samuel Álvarez-Almazán, Susana Patricia Miranda-Castro, Alicia Del Real-López, Abraham Méndez-Albores","doi":"10.1007/s12033-024-01087-9","DOIUrl":"10.1007/s12033-024-01087-9","url":null,"abstract":"<p><p>A strategy to increase the transfection efficiency of chitosan-based nanoparticles for gene therapy is by adding nuclear localization signals through karyophilic peptides. Here, the effect of the length and sequence of these peptides and their interaction with different plasmids on the physical characteristics and biological functionality of nanoparticles is reported. The karyophilic peptides (P1 or P2) were used to assemble nanoparticles by complex coacervation with pEGFP-N1, pQBI25 or pSelect-Zeo-HSV1-tk plasmids, and chitosan. Size, polydispersity index, zeta potential, and morphology, as well as in vitro nucleus internalization and transfection capability of nanoparticles were determined. The P2 nanoparticles resulted smaller compared to the ones without peptides or P1 for the three plasmids. In general, the addition of either P1 or P2 did not have a significant impact on the polydispersity index and the zeta potential. P1 and P2 nanoparticles were localized in the nucleus after 30 min of exposure to HeLa cells. Nevertheless, the presence of P2 in pEGFP-N1 and pQBI25 nanoparticles raised their capability to transfect and express the green fluorescent protein. Thus, karyophilic peptides are an efficient tool for the optimization of nonviral vectors for gene delivery; however, the sequence and length of peptides have an impact on characteristics and functionality of nanoparticles.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"723-733"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-03-13DOI: 10.1007/s12033-024-01066-0
Gang Yang, Jinsong Fu, Jiawei Wang, Mei Ding
Lung adenocarcinoma (LUAD) is a malignant tumor with the characteristics of progressive advancement and high mortality rate worldwide. We aimed to explore the role and mechanism of helicase Lymphoid-Specific (HELLS) in LUAD. Bioinformatics databases were applied to predict HELLS and kinesin family member (KIF)11 expression in LUAD tissues. The expressions of HELLS and KIF11 before and after HELLS knockdown were detected by RT-qPCR and western blot. After HELLS was knocked down, the proliferative, migratory, and invasive capabilities of A549 cells were evaluated. Cell apoptotic level was assessed using TUNEL. Western blot was employed to evaluate the expressions of Akt/CREB pathway-related proteins. The interaction between HELLS and KIF11 was analyzed using bioinformatics databases, and testified by Co-IP assay. Results revealed that HELLS and KIF11 expressions were significantly upregulated in LUAD cells and tissues. High HELLS and KIF11 expression was correlated with the poor prognosis of patients with LUAD. Additionally, HELLS knockdown suppressed the capabilities of LUAD cells to proliferate, migrate, and invade whereas promoted the cell apoptotic level. Moreover, HELLS could interact with KIF11 and had positive correlation with KIF11. Furthermore, KIF11 overexpression partially counteracted the impacts of HELLS knockdown on cell proliferative, migratory, invasive capabilities, and apoptotic level in LUAD cells. Besides, Akt/CREB pathway was blocked by HELLS silencing, which was restored by KIF11 overexpression. Collectively, HELLS knockdown blocked Akt/CREB pathway by downregulating KIF11 expression, thereby inhibiting LUAD cell proliferation, invasion, migration, and promoting apoptosis.
{"title":"HELLS Knockdown Inhibits the Malignant Progression of Lung Adenocarcinoma Via Blocking Akt/CREB Pathway by Downregulating KIF11.","authors":"Gang Yang, Jinsong Fu, Jiawei Wang, Mei Ding","doi":"10.1007/s12033-024-01066-0","DOIUrl":"10.1007/s12033-024-01066-0","url":null,"abstract":"<p><p>Lung adenocarcinoma (LUAD) is a malignant tumor with the characteristics of progressive advancement and high mortality rate worldwide. We aimed to explore the role and mechanism of helicase Lymphoid-Specific (HELLS) in LUAD. Bioinformatics databases were applied to predict HELLS and kinesin family member (KIF)11 expression in LUAD tissues. The expressions of HELLS and KIF11 before and after HELLS knockdown were detected by RT-qPCR and western blot. After HELLS was knocked down, the proliferative, migratory, and invasive capabilities of A549 cells were evaluated. Cell apoptotic level was assessed using TUNEL. Western blot was employed to evaluate the expressions of Akt/CREB pathway-related proteins. The interaction between HELLS and KIF11 was analyzed using bioinformatics databases, and testified by Co-IP assay. Results revealed that HELLS and KIF11 expressions were significantly upregulated in LUAD cells and tissues. High HELLS and KIF11 expression was correlated with the poor prognosis of patients with LUAD. Additionally, HELLS knockdown suppressed the capabilities of LUAD cells to proliferate, migrate, and invade whereas promoted the cell apoptotic level. Moreover, HELLS could interact with KIF11 and had positive correlation with KIF11. Furthermore, KIF11 overexpression partially counteracted the impacts of HELLS knockdown on cell proliferative, migratory, invasive capabilities, and apoptotic level in LUAD cells. Besides, Akt/CREB pathway was blocked by HELLS silencing, which was restored by KIF11 overexpression. Collectively, HELLS knockdown blocked Akt/CREB pathway by downregulating KIF11 expression, thereby inhibiting LUAD cell proliferation, invasion, migration, and promoting apoptosis.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"548-561"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140120120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-02-08DOI: 10.1007/s12033-024-01095-9
Yongjia Ji, Huili Liu, Fang Niu, Bo Kang, Xiu Luo, Hua Yang, Zhen Tian, Juan Yang
Hypoxic-ischemic brain damage (HIBD) poses a significant risk of neurological damage in newborns. This study investigates the impact of endoplasmic reticulum stress (ERS) on neuronal damage in neonatal HIBD and its underlying mechanisms. HIBD neonatal rat model was constructed and pre-treated with 4-phenylbutiric acid (4-PBA). Nissl and TUNEL staining were utilised to assess neuronal damage and apoptosis in rat brains. HIBD cell model was established by inducing oxygen-glucose deprivation (OGD) in rat H19-7 neurons, which were then pre-treated with Thapsigargin (TG), Ferrostatin-1 (Fer-1), or both. Cell viability and apoptosis of H19-7 neurons were analysed using cell counting kit-8 assay and TUNEL staining. GRP78-PERK-CHOP pathway activity and glutathione peroxidase-4 (GPX4) expression in rat brains and H19-7 neurons were assessed using Western blot. Ferroptosis-related indicators, including glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA) and iron content, were measured using commercial kits in both rat brains and H19-7 neurons. GRP78-PERK-CHOP pathway was overactivated in HIBD neonatal rats' brains, which was mitigated by 4-PBA treatment. 4-PBA treatment demonstrated a reduction in neuronal damage and apoptosis in HIBD-affected neonatal rat brains. Furthermore, it attenuated ferroptosis in rats by increasing GPX4, GSH and SOD while decreasing MDA and iron content. In the OGD-induced H19-7 neurons, Fer-1 treatment counteracted the suppressive effects of TG on viability, the exacerbation of apoptosis, the promotion of ferroptosis and the activation of the GRP78-PERK-CHOP pathway. Overall, ERS facilitates neuronal damage in neonatal HIBD by inducing ferroptosis. Consequently, the suppression of ERS may represent a promising therapeutic strategy for treating neonatal HIBD.
{"title":"Endoplasmic Reticulum Stress Promotes Neuronal Damage in Neonatal Hypoxic-Ischemic Brain Damage by Inducing Ferroptosis.","authors":"Yongjia Ji, Huili Liu, Fang Niu, Bo Kang, Xiu Luo, Hua Yang, Zhen Tian, Juan Yang","doi":"10.1007/s12033-024-01095-9","DOIUrl":"10.1007/s12033-024-01095-9","url":null,"abstract":"<p><p>Hypoxic-ischemic brain damage (HIBD) poses a significant risk of neurological damage in newborns. This study investigates the impact of endoplasmic reticulum stress (ERS) on neuronal damage in neonatal HIBD and its underlying mechanisms. HIBD neonatal rat model was constructed and pre-treated with 4-phenylbutiric acid (4-PBA). Nissl and TUNEL staining were utilised to assess neuronal damage and apoptosis in rat brains. HIBD cell model was established by inducing oxygen-glucose deprivation (OGD) in rat H19-7 neurons, which were then pre-treated with Thapsigargin (TG), Ferrostatin-1 (Fer-1), or both. Cell viability and apoptosis of H19-7 neurons were analysed using cell counting kit-8 assay and TUNEL staining. GRP78-PERK-CHOP pathway activity and glutathione peroxidase-4 (GPX4) expression in rat brains and H19-7 neurons were assessed using Western blot. Ferroptosis-related indicators, including glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA) and iron content, were measured using commercial kits in both rat brains and H19-7 neurons. GRP78-PERK-CHOP pathway was overactivated in HIBD neonatal rats' brains, which was mitigated by 4-PBA treatment. 4-PBA treatment demonstrated a reduction in neuronal damage and apoptosis in HIBD-affected neonatal rat brains. Furthermore, it attenuated ferroptosis in rats by increasing GPX4, GSH and SOD while decreasing MDA and iron content. In the OGD-induced H19-7 neurons, Fer-1 treatment counteracted the suppressive effects of TG on viability, the exacerbation of apoptosis, the promotion of ferroptosis and the activation of the GRP78-PERK-CHOP pathway. Overall, ERS facilitates neuronal damage in neonatal HIBD by inducing ferroptosis. Consequently, the suppression of ERS may represent a promising therapeutic strategy for treating neonatal HIBD.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"805-815"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139702982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-02-16DOI: 10.1007/s12033-024-01060-6
Sarmishta Majumdar, Ranjeet Desai, Aakarsh Hans, Prajakta Dandekar, Ratnesh Jain
The increasing demand for biosimilar monoclonal antibodies (mAbs) has prompted the development of stable high-producing cell lines while simultaneously decreasing the time required for screening. Existing platforms have proven inefficient, resulting in inconsistencies in yields, growth characteristics, and quality features in the final mAb products. Selecting a suitable expression host, designing an effective gene expression system, developing a streamlined cell line generation approach, optimizing culture conditions, and defining scaling-up and purification strategies are all critical steps in the production of recombinant proteins, particularly monoclonal antibodies, in mammalian cells. As a result, an active area of study is dedicated to expression and optimizing recombinant protein production. This review explores recent breakthroughs and approaches targeted at accelerating cell line development to attain efficiency and consistency in the synthesis of therapeutic proteins, specifically monoclonal antibodies. The primary goal is to bridge the gap between rising demand and consistent, high-quality mAb production, thereby benefiting the healthcare and pharmaceutical industries.
对生物仿制单克隆抗体(mAbs)的需求日益增长,这促使人们开发稳定的高产细胞系,同时缩短筛选所需的时间。事实证明,现有平台效率低下,导致最终 mAb 产品的产量、生长特性和质量特征不一致。选择合适的表达宿主、设计有效的基因表达系统、开发简化的细胞系生成方法、优化培养条件以及确定放大和纯化策略,这些都是在哺乳动物细胞中生产重组蛋白(尤其是单克隆抗体)的关键步骤。因此,表达和优化重组蛋白生产是一个活跃的研究领域。本综述探讨了加速细胞系开发的最新突破和方法,以实现治疗蛋白(尤其是单克隆抗体)合成的高效性和一致性。其主要目标是缩小日益增长的需求与稳定、高质量的 mAb 生产之间的差距,从而造福于医疗保健和制药行业。
{"title":"From Efficiency to Yield: Exploring Recent Advances in CHO Cell Line Development for Monoclonal Antibodies.","authors":"Sarmishta Majumdar, Ranjeet Desai, Aakarsh Hans, Prajakta Dandekar, Ratnesh Jain","doi":"10.1007/s12033-024-01060-6","DOIUrl":"10.1007/s12033-024-01060-6","url":null,"abstract":"<p><p>The increasing demand for biosimilar monoclonal antibodies (mAbs) has prompted the development of stable high-producing cell lines while simultaneously decreasing the time required for screening. Existing platforms have proven inefficient, resulting in inconsistencies in yields, growth characteristics, and quality features in the final mAb products. Selecting a suitable expression host, designing an effective gene expression system, developing a streamlined cell line generation approach, optimizing culture conditions, and defining scaling-up and purification strategies are all critical steps in the production of recombinant proteins, particularly monoclonal antibodies, in mammalian cells. As a result, an active area of study is dedicated to expression and optimizing recombinant protein production. This review explores recent breakthroughs and approaches targeted at accelerating cell line development to attain efficiency and consistency in the synthesis of therapeutic proteins, specifically monoclonal antibodies. The primary goal is to bridge the gap between rising demand and consistent, high-quality mAb production, thereby benefiting the healthcare and pharmaceutical industries.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"369-392"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139741454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1007/s12033-025-01380-1
Anand Kumar Pandey, Shalja Verma, Rupanjali Singh
Aldose reductase is a reduced monomeric enzyme that utilizes NADPH as a cofactor to mediate the glucose reduction to sorbitol in the polyol pathway. Overexpression of aldose reductase has been observed to mediate pathologies associated with diabetes mellitus. Inhibition of aldose reductase thus seems promising to deal with these pathologies. Pineapple and its extract have been identified for its anti-diabetic effect due to the presence of effective bioactive agents. In the present study, the major bioactive compounds of pineapple have been studied for their potential to structurally inhibit aldose reductase. The ADMET analysis of lead bioactive compounds including myrcene, palmitic acid, limonene, n-decanal, beta-carophyllene, 1-cyclohexane-1-caboxaldehyde, and α-farnesene showed most of the compounds were non-toxic and have druglike properties with LD50 values of greater than 2000 mg/kg. Molecular docking of these compounds at the substrate binding site of the aldose reductase-NADPH complex disclosed effective binding with binding energy values of - 5.025 to - 8.003 kcal/mol. α-farnesene, known for its antibacterial, antiviral, and anti-inflammatory properties gave the highest binding energy of - 8.003 kcal/mol. The molecular dynamic simulation studies of α-farnesene-aldose reductase-NADPH ternary complex, aldose reductase-NADPH binary complex, and apo-aldose reductase revealed similar RMSD values with respect to time during the simulation trajectory indicating stable interaction of the compound with the enzyme. DFT analysis showed high reactivity of α-farnesene which favours its utilization as a drug for specific target protein. Therefore, this study provides an efficient natural aldose reductase inhibitor α-farnesene that can be further explored for its potential to develop an effective natural drug to treat diabetes.
{"title":"Study of Pineapple Bioactive Compounds Targeting Aldose Reductase: A Natural Intervention for Diabetes Mellitus Pathologies.","authors":"Anand Kumar Pandey, Shalja Verma, Rupanjali Singh","doi":"10.1007/s12033-025-01380-1","DOIUrl":"https://doi.org/10.1007/s12033-025-01380-1","url":null,"abstract":"<p><p>Aldose reductase is a reduced monomeric enzyme that utilizes NADPH as a cofactor to mediate the glucose reduction to sorbitol in the polyol pathway. Overexpression of aldose reductase has been observed to mediate pathologies associated with diabetes mellitus. Inhibition of aldose reductase thus seems promising to deal with these pathologies. Pineapple and its extract have been identified for its anti-diabetic effect due to the presence of effective bioactive agents. In the present study, the major bioactive compounds of pineapple have been studied for their potential to structurally inhibit aldose reductase. The ADMET analysis of lead bioactive compounds including myrcene, palmitic acid, limonene, n-decanal, beta-carophyllene, 1-cyclohexane-1-caboxaldehyde, and α-farnesene showed most of the compounds were non-toxic and have druglike properties with LD50 values of greater than 2000 mg/kg. Molecular docking of these compounds at the substrate binding site of the aldose reductase-NADPH complex disclosed effective binding with binding energy values of - 5.025 to - 8.003 kcal/mol. α-farnesene, known for its antibacterial, antiviral, and anti-inflammatory properties gave the highest binding energy of - 8.003 kcal/mol. The molecular dynamic simulation studies of α-farnesene-aldose reductase-NADPH ternary complex, aldose reductase-NADPH binary complex, and apo-aldose reductase revealed similar RMSD values with respect to time during the simulation trajectory indicating stable interaction of the compound with the enzyme. DFT analysis showed high reactivity of α-farnesene which favours its utilization as a drug for specific target protein. Therefore, this study provides an efficient natural aldose reductase inhibitor α-farnesene that can be further explored for its potential to develop an effective natural drug to treat diabetes.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143074864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-02-23DOI: 10.1007/s12033-024-01069-x
Asmita Kamble, Rajkumar Singh, Harinder Singh
Phytate, also known as myoinositol hexakisphosphate, exhibits anti-nutritional properties and possesses a negative environmental impact. Phytase enzymes break down phytate, showing potential in various industries, necessitating thorough biochemical and computational characterizations. The present study focuses on Obesumbacterium proteus phytase (OPP), indicating its similarities with known phytases and its potential through computational analyses. Structure, functional, and docking results shed light on OPP's features, structural stability, strong and stable interaction, and dynamic conformation, with flexible sidechains that could adapt to different temperatures or specific functions. Root Mean Square fluctuation (RMSF) highlighted fluctuating regions in OPP, indicating potential sites for stability enhancement through mutagenesis. The systematic approach developed here could aid in enhancing enzyme properties via a rational engineering approach. Computational analysis expedites enzyme discovery and engineering, complementing the traditional biochemical methods to accelerate the quest for superior enzymes for industrial applications.
植酸又称肌醇六磷酸,具有抗营养特性,对环境有负面影响。植酸酶能分解植酸,在各行各业中显示出潜力,因此有必要对其进行全面的生物化学和计算表征。本研究以 Obesumbacterium proteus 植酸酶(OPP)为重点,通过计算分析指出其与已知植酸酶的相似性及其潜力。结构、功能和对接结果揭示了 OPP 的特征、结构稳定性、强而稳定的相互作用以及动态构象,其灵活的侧链可适应不同温度或特定功能。均方根波动(RMSF)突出了OPP的波动区域,表明了通过诱变增强稳定性的潜在位点。这里开发的系统方法有助于通过合理的工程方法增强酶的特性。计算分析加速了酶的发现和工程化,补充了传统的生物化学方法,加快了工业应用中对优质酶的追求。
{"title":"Structural and Functional Characterization of Obesumbacterium proteus Phytase: A Comprehensive In-Silico Study.","authors":"Asmita Kamble, Rajkumar Singh, Harinder Singh","doi":"10.1007/s12033-024-01069-x","DOIUrl":"10.1007/s12033-024-01069-x","url":null,"abstract":"<p><p>Phytate, also known as myoinositol hexakisphosphate, exhibits anti-nutritional properties and possesses a negative environmental impact. Phytase enzymes break down phytate, showing potential in various industries, necessitating thorough biochemical and computational characterizations. The present study focuses on Obesumbacterium proteus phytase (OPP), indicating its similarities with known phytases and its potential through computational analyses. Structure, functional, and docking results shed light on OPP's features, structural stability, strong and stable interaction, and dynamic conformation, with flexible sidechains that could adapt to different temperatures or specific functions. Root Mean Square fluctuation (RMSF) highlighted fluctuating regions in OPP, indicating potential sites for stability enhancement through mutagenesis. The systematic approach developed here could aid in enhancing enzyme properties via a rational engineering approach. Computational analysis expedites enzyme discovery and engineering, complementing the traditional biochemical methods to accelerate the quest for superior enzymes for industrial applications.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"588-616"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139932066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}