Pub Date : 2023-06-13eCollection Date: 2023-09-01DOI: 10.1093/narcan/zcad029
Jan Benada, Daria Bulanova, Violette Azzoni, Valdemaras Petrosius, Saba Ghazanfar, Krister Wennerberg, Claus Storgaard Sørensen
Ovarian cancer is driven by genetic alterations that necessitate protective DNA damage and replication stress responses through cell cycle control and genome maintenance. This creates specific vulnerabilities that may be exploited therapeutically. WEE1 kinase is a key cell cycle control kinase, and it has emerged as a promising cancer therapy target. However, adverse effects have limited its clinical progress, especially when tested in combination with chemotherapies. A strong genetic interaction between WEE1 and PKMYT1 led us to hypothesize that a multiple low-dose approach utilizing joint WEE1 and PKMYT1 inhibition would allow exploitation of the synthetic lethality. We found that the combination of WEE1 and PKMYT1 inhibition exhibited synergistic effects in eradicating ovarian cancer cells and organoid models at a low dose. The WEE1 and PKMYT1 inhibition synergistically promoted CDK activation. Furthermore, the combined treatment exacerbated DNA replication stress and replication catastrophe, leading to increase of the genomic instability and inflammatory STAT1 signalling activation. These findings suggest a new multiple low-dose approach to harness the potency of WEE1 inhibition through the synthetic lethal interaction with PKMYT1 that may contribute to the development of new treatments for ovarian cancer.
卵巢癌是由基因改变驱动的,这种改变需要通过细胞周期控制和基因组维护来做出保护性 DNA 损伤和复制应激反应。这就造成了一些可被治疗利用的特殊弱点。WEE1 激酶是一种关键的细胞周期控制激酶,已成为一种很有前景的癌症治疗靶点。然而,不良反应限制了其临床进展,尤其是在与化疗药物联合使用时。WEE1和PKMYT1之间存在很强的遗传相互作用,这使我们假设,利用联合抑制WEE1和PKMYT1的多重低剂量方法可以利用合成致死性。我们发现,WEE1 和 PKMYT1 联合抑制在低剂量根除卵巢癌细胞和类器官模型方面表现出协同效应。WEE1和PKMYT1抑制剂协同促进CDK活化。此外,联合治疗会加剧 DNA 复制应激和复制灾难,导致基因组不稳定性增加和 STAT1 信号激活。这些研究结果表明,通过与PKMYT1的合成致死相互作用,一种新的多重低剂量方法可利用WEE1的抑制作用,这可能有助于开发治疗卵巢癌的新疗法。
{"title":"Synthetic lethal interaction between WEE1 and PKMYT1 is a target for multiple low-dose treatment of high-grade serous ovarian carcinoma.","authors":"Jan Benada, Daria Bulanova, Violette Azzoni, Valdemaras Petrosius, Saba Ghazanfar, Krister Wennerberg, Claus Storgaard Sørensen","doi":"10.1093/narcan/zcad029","DOIUrl":"10.1093/narcan/zcad029","url":null,"abstract":"<p><p>Ovarian cancer is driven by genetic alterations that necessitate protective DNA damage and replication stress responses through cell cycle control and genome maintenance. This creates specific vulnerabilities that may be exploited therapeutically. WEE1 kinase is a key cell cycle control kinase, and it has emerged as a promising cancer therapy target. However, adverse effects have limited its clinical progress, especially when tested in combination with chemotherapies. A strong genetic interaction between WEE1 and PKMYT1 led us to hypothesize that a multiple low-dose approach utilizing joint WEE1 and PKMYT1 inhibition would allow exploitation of the synthetic lethality. We found that the combination of WEE1 and PKMYT1 inhibition exhibited synergistic effects in eradicating ovarian cancer cells and organoid models at a low dose. The WEE1 and PKMYT1 inhibition synergistically promoted CDK activation. Furthermore, the combined treatment exacerbated DNA replication stress and replication catastrophe, leading to increase of the genomic instability and inflammatory STAT1 signalling activation. These findings suggest a new multiple low-dose approach to harness the potency of WEE1 inhibition through the synthetic lethal interaction with PKMYT1 that may contribute to the development of new treatments for ovarian cancer.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":"5 3","pages":"zcad029"},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9657339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-13eCollection Date: 2023-09-01DOI: 10.1093/narcan/zcad031
Junhong Guan, Guo-Min Li
Tumors defective in DNA mismatch repair (dMMR) exhibit microsatellite instability (MSI). Currently, patients with dMMR tumors are benefitted from anti-PD-1/PDL1-based immune checkpoint inhibitor (ICI) therapy. Over the past several years, great progress has been made in understanding the mechanisms by which dMMR tumors respond to ICI, including the identification of mutator phenotype-generated neoantigens, cytosolic DNA-mediated activation of the cGAS-STING pathway, type-I interferon signaling and high tumor-infiltration of lymphocytes in dMMR tumors. Although ICI therapy shows great clinical benefits, ∼50% of dMMR tumors are eventually not responsive. Here we review the discovery, development and molecular basis of dMMR-mediated immunotherapy, as well as tumor resistant problems and potential therapeutic interventions to overcome the resistance.
DNA 错配修复(dMMR)缺陷肿瘤表现出微卫星不稳定性(MSI)。目前,dMMR肿瘤患者可从基于抗PD-1/PDL1的免疫检查点抑制剂(ICI)疗法中获益。在过去几年中,人们在了解 dMMR 肿瘤对 ICI 的反应机制方面取得了重大进展,包括确定了突变体表型产生的新抗原、细胞膜 DNA 介导的 cGAS-STING 通路激活、I 型干扰素信号转导以及 dMMR 肿瘤中淋巴细胞的高肿瘤浸润。尽管 ICI 疗法显示出巨大的临床疗效,但仍有 50% 的 dMMR 肿瘤最终没有反应。在此,我们回顾了dMMR介导的免疫疗法的发现、发展和分子基础,以及肿瘤耐药性问题和克服耐药性的潜在治疗干预措施。
{"title":"DNA mismatch repair in cancer immunotherapy.","authors":"Junhong Guan, Guo-Min Li","doi":"10.1093/narcan/zcad031","DOIUrl":"10.1093/narcan/zcad031","url":null,"abstract":"<p><p>Tumors defective in DNA mismatch repair (dMMR) exhibit microsatellite instability (MSI). Currently, patients with dMMR tumors are benefitted from anti-PD-1/PDL1-based immune checkpoint inhibitor (ICI) therapy. Over the past several years, great progress has been made in understanding the mechanisms by which dMMR tumors respond to ICI, including the identification of mutator phenotype-generated neoantigens, cytosolic DNA-mediated activation of the cGAS-STING pathway, type-I interferon signaling and high tumor-infiltration of lymphocytes in dMMR tumors. Although ICI therapy shows great clinical benefits, ∼50% of dMMR tumors are eventually not responsive. Here we review the discovery, development and molecular basis of dMMR-mediated immunotherapy, as well as tumor resistant problems and potential therapeutic interventions to overcome the resistance.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":"5 3","pages":"zcad031"},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5f/a6/zcad031.PMC10262306.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9657336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-09eCollection Date: 2023-09-01DOI: 10.1093/narcan/zcad025
Si Hoi Kou, Jiaheng Li, Benjamin Tam, Huijun Lei, Bojin Zhao, Fengxia Xiao, San Ming Wang
TP53 is crucial for maintaining genome stability and preventing oncogenesis. Germline pathogenic variation in TP53 damages its function, causing genome instability and increased cancer risk. Despite extensive study in TP53, the evolutionary origin of the human TP53 germline pathogenic variants remains largely unclear. In this study, we applied phylogenetic and archaeological approaches to identify the evolutionary origin of TP53 germline pathogenic variants in modern humans. In the phylogenic analysis, we searched 406 human TP53 germline pathogenic variants in 99 vertebrates distributed in eight clades of Primate, Euarchontoglires, Laurasiatheria, Afrotheria, Mammal, Aves, Sarcopterygii and Fish, but we observed no direct evidence for the cross-species conservation as the origin; in the archaeological analysis, we searched the variants in 5031 ancient human genomes dated between 45045 and 100 years before present, and identified 45 pathogenic variants in 62 ancient humans dated mostly within the last 8000 years; we also identified 6 pathogenic variants in 3 Neanderthals dated 44000 to 38515 years before present and 1 Denisovan dated 158 550 years before present. Our study reveals that TP53 germline pathogenic variants in modern humans were likely originated in recent human history and partially inherited from the extinct Neanderthals and Denisovans.
{"title":"<i>TP53</i> germline pathogenic variants in modern humans were likely originated during recent human history.","authors":"Si Hoi Kou, Jiaheng Li, Benjamin Tam, Huijun Lei, Bojin Zhao, Fengxia Xiao, San Ming Wang","doi":"10.1093/narcan/zcad025","DOIUrl":"10.1093/narcan/zcad025","url":null,"abstract":"<p><p><i>TP53</i> is crucial for maintaining genome stability and preventing oncogenesis. Germline pathogenic variation in <i>TP53</i> damages its function, causing genome instability and increased cancer risk. Despite extensive study in <i>TP53</i>, the evolutionary origin of the human <i>TP53</i> germline pathogenic variants remains largely unclear. In this study, we applied phylogenetic and archaeological approaches to identify the evolutionary origin of <i>TP53</i> germline pathogenic variants in modern humans. In the phylogenic analysis, we searched 406 human <i>TP53</i> germline pathogenic variants in 99 vertebrates distributed in eight clades of Primate, Euarchontoglires, Laurasiatheria, Afrotheria, Mammal, Aves, Sarcopterygii and Fish, but we observed no direct evidence for the cross-species conservation as the origin; in the archaeological analysis, we searched the variants in 5031 ancient human genomes dated between 45045 and 100 years before present, and identified 45 pathogenic variants in 62 ancient humans dated mostly within the last 8000 years; we also identified 6 pathogenic variants in 3 Neanderthals dated 44000 to 38515 years before present and 1 Denisovan dated 158 550 years before present. Our study reveals that <i>TP53</i> germline pathogenic variants in modern humans were likely originated in recent human history and partially inherited from the extinct Neanderthals and Denisovans.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":"5 3","pages":"zcad025"},"PeriodicalIF":0.0,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/83/a4/zcad025.PMC10251638.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9620780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raphaël Teboul, Michalina Grabias, Jessica Zucman-Rossi, Eric Letouzé
Somatic mutations can disrupt splicing regulatory elements and have dramatic effects on cancer genes, yet the functional consequences of mutations located in extended splice regions is difficult to predict. Here, we use a deep neural network (SpliceAI) to characterize the landscape of splice-altering mutations in cancer. In our in-house series of 401 liver cancers, SpliceAI uncovers 1244 cryptic splice mutations, located outside essential splice sites, that validate at a high rate (66%) in matched RNA-seq data. We then extend the analysis to a large pan-cancer cohort of 17 714 tumors, revealing >100 000 cryptic splice mutations. Taking into account these mutations increases the power of driver gene discovery, revealing 126 new candidate driver genes. It also reveals new driver mutations in known cancer genes, doubling the frequency of splice alterations in tumor suppressor genes. Mutational signature analysis suggests mutational processes that could give rise preferentially to splice mutations in each cancer type, with an enrichment of signatures related to clock-like processes and DNA repair deficiency. Altogether, this work sheds light on the causes and impact of cryptic splice mutations in cancer, and highlights the power of deep learning approaches to better annotate the functional consequences of mutations in oncology.
{"title":"Discovering cryptic splice mutations in cancers via a deep neural network framework.","authors":"Raphaël Teboul, Michalina Grabias, Jessica Zucman-Rossi, Eric Letouzé","doi":"10.1093/narcan/zcad014","DOIUrl":"https://doi.org/10.1093/narcan/zcad014","url":null,"abstract":"<p><p>Somatic mutations can disrupt splicing regulatory elements and have dramatic effects on cancer genes, yet the functional consequences of mutations located in extended splice regions is difficult to predict. Here, we use a deep neural network (SpliceAI) to characterize the landscape of splice-altering mutations in cancer. In our in-house series of 401 liver cancers, SpliceAI uncovers 1244 cryptic splice mutations, located outside essential splice sites, that validate at a high rate (66%) in matched RNA-seq data. We then extend the analysis to a large pan-cancer cohort of 17 714 tumors, revealing >100 000 cryptic splice mutations. Taking into account these mutations increases the power of driver gene discovery, revealing 126 new candidate driver genes. It also reveals new driver mutations in known cancer genes, doubling the frequency of splice alterations in tumor suppressor genes. Mutational signature analysis suggests mutational processes that could give rise preferentially to splice mutations in each cancer type, with an enrichment of signatures related to clock-like processes and DNA repair deficiency. Altogether, this work sheds light on the causes and impact of cryptic splice mutations in cancer, and highlights the power of deep learning approaches to better annotate the functional consequences of mutations in oncology.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":"5 2","pages":"zcad014"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015341/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9200572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Spencer Arnesen, Jacob T Polaski, Zannel Blanchard, Kyle S Osborne, Alana L Welm, Ryan M O'Connell, Jason Gertz
Estrogen receptor α (ER) mutations occur in up to 30% of metastatic ER-positive breast cancers. Recent data has shown that ER mutations impact the expression of thousands of genes not typically regulated by wildtype ER. While the majority of these altered genes can be explained by constant activity of mutant ER or genomic changes such as altered ER binding and chromatin accessibility, as much as 33% remain unexplained, indicating the potential for post-transcriptional effects. Here, we explored the role of microRNAs in mutant ER-driven gene regulation and identified several microRNAs that are dysregulated in ER mutant cells. These differentially regulated microRNAs target a significant portion of mutant-specific genes involved in key cellular processes. When the activity of microRNAs is altered using mimics or inhibitors, significant changes are observed in gene expression and cellular proliferation related to mutant ER. An in-depth evaluation of miR-301b led us to discover an important role for PRKD3 in the proliferation of ER mutant cells. Our findings show that microRNAs contribute to mutant ER gene regulation and cellular effects in breast cancer cells.
雌激素受体α(ER)突变发生在高达30%的ER阳性转移性乳腺癌中。最新数据显示,ER突变会影响数千个基因的表达,而这些基因通常不受野生型ER的调控。虽然这些改变的基因大部分可以用突变ER的持续活性或基因组变化(如ER结合和染色质可及性的改变)来解释,但仍有多达33%的基因无法解释,这表明可能存在转录后效应。在这里,我们探索了微RNA在突变ER驱动的基因调控中的作用,并确定了几种在ER突变细胞中调控失调的微RNA。这些受到不同调控的 microRNA 靶向了很大一部分参与关键细胞过程的突变特异性基因。当使用模拟物或抑制剂改变微RNA的活性时,就能观察到与突变ER相关的基因表达和细胞增殖发生了显著变化。对miR-301b的深入评估使我们发现了PRKD3在ER突变细胞增殖中的重要作用。我们的研究结果表明,microRNA 对乳腺癌细胞中突变 ER 基因的调控和细胞效应做出了贡献。
{"title":"Estrogen receptor alpha mutations regulate gene expression and cell growth in breast cancer through microRNAs.","authors":"Spencer Arnesen, Jacob T Polaski, Zannel Blanchard, Kyle S Osborne, Alana L Welm, Ryan M O'Connell, Jason Gertz","doi":"10.1093/narcan/zcad027","DOIUrl":"10.1093/narcan/zcad027","url":null,"abstract":"<p><p>Estrogen receptor α (ER) mutations occur in up to 30% of metastatic ER-positive breast cancers. Recent data has shown that ER mutations impact the expression of thousands of genes not typically regulated by wildtype ER. While the majority of these altered genes can be explained by constant activity of mutant ER or genomic changes such as altered ER binding and chromatin accessibility, as much as 33% remain unexplained, indicating the potential for post-transcriptional effects. Here, we explored the role of microRNAs in mutant ER-driven gene regulation and identified several microRNAs that are dysregulated in ER mutant cells. These differentially regulated microRNAs target a significant portion of mutant-specific genes involved in key cellular processes. When the activity of microRNAs is altered using mimics or inhibitors, significant changes are observed in gene expression and cellular proliferation related to mutant ER. An in-depth evaluation of miR-301b led us to discover an important role for <i>PRKD3</i> in the proliferation of ER mutant cells. Our findings show that microRNAs contribute to mutant ER gene regulation and cellular effects in breast cancer cells.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":"5 2","pages":"zcad027"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233889/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10257360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Translated non-canonical proteins derived from noncoding regions or alternative open reading frames (ORFs) can contribute to critical and diverse cellular processes. In the context of cancer, they also represent an under-appreciated source of targets for cancer immunotherapy through their tumor-enriched expression or by harboring somatic mutations that produce neoantigens. Here, we introduce the largest integration and proteogenomic analysis of novel peptides to assess the prevalence of non-canonical ORFs (ncORFs) in more than 900 patient proteomes and 26 immunopeptidome datasets across 14 cancer types. The integrative proteogenomic analysis of whole-cell proteomes and immunopeptidomes revealed peptide support for a nonredundant set of 9760 upstream, downstream, and out-of-frame ncORFs in protein coding genes and 12811 in noncoding RNAs. Notably, 6486 ncORFs were derived from differentially expressed genes and 340 were ubiquitously translated across eight or more cancers. The analysis also led to the discovery of thirty-four epitopes and eight neoantigens from non-canonical proteins in two cohorts as novel cancer immunotargets. Collectively, our analysis integrated both bottom-up proteogenomic and targeted peptide validation to illustrate the prevalence of translated non-canonical proteins in cancer and to provide a resource for the prioritization of novel proteins supported by proteomic, immunopeptidomic, genomic and transcriptomic data, available at https://www.maherlab.com/crypticproteindb.
{"title":"CrypticProteinDB: an integrated database of proteome and immunopeptidome derived non-canonical cancer proteins.","authors":"Ghofran Othoum, Christopher A Maher","doi":"10.1093/narcan/zcad024","DOIUrl":"10.1093/narcan/zcad024","url":null,"abstract":"<p><p>Translated non-canonical proteins derived from noncoding regions or alternative open reading frames (ORFs) can contribute to critical and diverse cellular processes. In the context of cancer, they also represent an under-appreciated source of targets for cancer immunotherapy through their tumor-enriched expression or by harboring somatic mutations that produce neoantigens. Here, we introduce the largest integration and proteogenomic analysis of novel peptides to assess the prevalence of non-canonical ORFs (ncORFs) in more than 900 patient proteomes and 26 immunopeptidome datasets across 14 cancer types. The integrative proteogenomic analysis of whole-cell proteomes and immunopeptidomes revealed peptide support for a nonredundant set of 9760 upstream, downstream, and out-of-frame ncORFs in protein coding genes and 12811 in noncoding RNAs. Notably, 6486 ncORFs were derived from differentially expressed genes and 340 were ubiquitously translated across eight or more cancers. The analysis also led to the discovery of thirty-four epitopes and eight neoantigens from non-canonical proteins in two cohorts as novel cancer immunotargets. Collectively, our analysis integrated both bottom-up proteogenomic and targeted peptide validation to illustrate the prevalence of translated non-canonical proteins in cancer and to provide a resource for the prioritization of novel proteins supported by proteomic, immunopeptidomic, genomic and transcriptomic data, available at https://www.maherlab.com/crypticproteindb.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":"5 2","pages":"zcad024"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233886/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9584060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shannon Mendez Ruiz, Alistair M Chalk, Ankita Goradia, Jacki Heraud-Farlow, Carl R Walkley
Adenosine to inosine editing (A-to-I) in regions of double stranded RNA (dsRNA) is mediated by adenosine deaminase acting on RNA 1 (ADAR1) or ADAR2. ADAR1 and A-to-I editing levels are increased in many human cancers. Inhibition of ADAR1 has emerged as a high priority oncology target, however, whether ADAR1 overexpression enables cancer initiation or progression has not been directly tested. We established a series of in vivo models to allow overexpression of full-length ADAR1, or its individual isoforms, to test if increased ADAR1 expression was oncogenic. Widespread over-expression of ADAR1 or the p110 or p150 isoforms individually as sole lesions was well tolerated and did not result in cancer initiation. Therefore, ADAR1 overexpression alone is not sufficient to initiate cancer. We demonstrate that endogenous ADAR1 and A-to-I editing increased upon immortalization in murine cells, consistent with the observations from human cancers. We tested if ADAR1 over-expression could co-operate with cancer initiated by loss of tumour suppressors using a model of osteosarcoma. We did not see a disease potentiating or modifying effect of overexpressing ADAR1 or its isoforms in the models assessed. We conclude that increased ADAR1 expression and A-to-I editing in cancers is most likely a consequence of tumor formation.
{"title":"Over-expression of ADAR1 in mice does not initiate or accelerate cancer formation <i>in vivo</i>.","authors":"Shannon Mendez Ruiz, Alistair M Chalk, Ankita Goradia, Jacki Heraud-Farlow, Carl R Walkley","doi":"10.1093/narcan/zcad023","DOIUrl":"https://doi.org/10.1093/narcan/zcad023","url":null,"abstract":"<p><p>Adenosine to inosine editing (A-to-I) in regions of double stranded RNA (dsRNA) is mediated by adenosine deaminase acting on RNA 1 (ADAR1) or ADAR2. ADAR1 and A-to-I editing levels are increased in many human cancers. Inhibition of ADAR1 has emerged as a high priority oncology target, however, whether ADAR1 overexpression enables cancer initiation or progression has not been directly tested. We established a series of <i>in vivo</i> models to allow overexpression of full-length ADAR1, or its individual isoforms, to test if increased ADAR1 expression was oncogenic. Widespread over-expression of ADAR1 or the p110 or p150 isoforms individually as sole lesions was well tolerated and did not result in cancer initiation. Therefore, ADAR1 overexpression alone is not sufficient to initiate cancer. We demonstrate that endogenous ADAR1 and A-to-I editing increased upon immortalization in murine cells, consistent with the observations from human cancers. We tested if ADAR1 over-expression could co-operate with cancer initiated by loss of tumour suppressors using a model of osteosarcoma. We did not see a disease potentiating or modifying effect of overexpressing ADAR1 or its isoforms in the models assessed. We conclude that increased ADAR1 expression and A-to-I editing in cancers is most likely a consequence of tumor formation.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":"5 2","pages":"zcad023"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9584063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-30eCollection Date: 2023-06-01DOI: 10.1093/narcan/zcad026
Chiara Barozzi, Federico Zacchini, Angelo Gianluca Corradini, Monica Morara, Margherita Serra, Veronica De Sanctis, Roberto Bertorelli, Erik Dassi, Lorenzo Montanaro
RNA modifications are key regulatory factors for several biological and pathological processes. They are abundantly represented on ribosomal RNA (rRNA), where they contribute to regulate ribosomal function in mRNA translation. Altered RNA modification pathways have been linked to tumorigenesis as well as to other human diseases. In this study we quantitatively evaluated the site-specific pseudouridylation pattern in rRNA in breast cancer samples exploiting the RBS-Seq technique involving RNA bisulfite treatment coupled with a new NGS approach. We found a wide variability among patients at different sites. The most dysregulated positions in tumors turned out to be hypermodified with respect to a reference RNA. As for 2'O-methylation level of rRNA modification, we detected variable and stable pseudouridine sites, with the most stable sites being the most evolutionary conserved. We also observed that pseudouridylation levels at specific sites are related to some clinical and bio-pathological tumor features and they are able to distinguish different patient clusters. This study is the first example of the contribution that newly available high-throughput approaches for site specific pseudouridine detection can provide to the understanding of the intrinsic ribosomal changes occurring in human tumors.
{"title":"Alterations of ribosomal RNA pseudouridylation in human breast cancer.","authors":"Chiara Barozzi, Federico Zacchini, Angelo Gianluca Corradini, Monica Morara, Margherita Serra, Veronica De Sanctis, Roberto Bertorelli, Erik Dassi, Lorenzo Montanaro","doi":"10.1093/narcan/zcad026","DOIUrl":"10.1093/narcan/zcad026","url":null,"abstract":"<p><p>RNA modifications are key regulatory factors for several biological and pathological processes. They are abundantly represented on ribosomal RNA (rRNA), where they contribute to regulate ribosomal function in mRNA translation. Altered RNA modification pathways have been linked to tumorigenesis as well as to other human diseases. In this study we quantitatively evaluated the site-specific pseudouridylation pattern in rRNA in breast cancer samples exploiting the RBS-Seq technique involving RNA bisulfite treatment coupled with a new NGS approach. We found a wide variability among patients at different sites. The most dysregulated positions in tumors turned out to be hypermodified with respect to a reference RNA. As for 2'O-methylation level of rRNA modification, we detected variable and stable pseudouridine sites, with the most stable sites being the most evolutionary conserved. We also observed that pseudouridylation levels at specific sites are related to some clinical and bio-pathological tumor features and they are able to distinguish different patient clusters. This study is the first example of the contribution that newly available high-throughput approaches for site specific pseudouridine detection can provide to the understanding of the intrinsic ribosomal changes occurring in human tumors.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":"5 2","pages":"zcad026"},"PeriodicalIF":0.0,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9570838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-19eCollection Date: 2023-06-01DOI: 10.1093/narcan/zcad021
Sidi Zhao, Amy Ly, Jacqueline L Mudd, Emily B Rozycki, Jace Webster, Emily Coonrod, Ghofran Othoum, Jingqin Luo, Ha X Dang, Ryan C Fields, Christopher A Maher
Colorectal cancer (CRC) is the most common gastrointestinal malignancy and a leading cause of cancer deaths in the United States. More than half of CRC patients develop metastatic disease (mCRC) with an average 5-year survival rate of 13%. Circular RNAs (circRNAs) have recently emerged as important tumorigenesis regulators; however, their role in mCRC progression remains poorly characterized. Further, little is known about their cell-type specificity to elucidate their functions in the tumor microenvironment (TME). To address this, we performed total RNA sequencing (RNA-seq) on 30 matched normal, primary and metastatic samples from 14 mCRC patients. Additionally, five CRC cell lines were sequenced to construct a circRNA catalog in CRC. We detected 47 869 circRNAs, with 51% previously unannotated in CRC and 14% novel candidates when compared to existing circRNA databases. We identified 362 circRNAs differentially expressed in primary and/or metastatic tissues, termed circular RNAs associated with metastasis (CRAMS). We performed cell-type deconvolution using published single-cell RNA-seq datasets and applied a non-negative least squares statistical model to estimate cell-type specific circRNA expression. This predicted 667 circRNAs as exclusively expressed in a single cell type. Collectively, this serves as a valuable resource, TMECircDB (accessible at https://www.maherlab.com/tmecircdb-overview), for functional characterization of circRNAs in mCRC, specifically in the TME.
{"title":"Characterization of cell-type specific circular RNAs associated with colorectal cancer metastasis.","authors":"Sidi Zhao, Amy Ly, Jacqueline L Mudd, Emily B Rozycki, Jace Webster, Emily Coonrod, Ghofran Othoum, Jingqin Luo, Ha X Dang, Ryan C Fields, Christopher A Maher","doi":"10.1093/narcan/zcad021","DOIUrl":"10.1093/narcan/zcad021","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is the most common gastrointestinal malignancy and a leading cause of cancer deaths in the United States. More than half of CRC patients develop metastatic disease (mCRC) with an average 5-year survival rate of 13%. Circular RNAs (circRNAs) have recently emerged as important tumorigenesis regulators; however, their role in mCRC progression remains poorly characterized. Further, little is known about their cell-type specificity to elucidate their functions in the tumor microenvironment (TME). To address this, we performed total RNA sequencing (RNA-seq) on 30 matched normal, primary and metastatic samples from 14 mCRC patients. Additionally, five CRC cell lines were sequenced to construct a circRNA catalog in CRC. We detected 47 869 circRNAs, with 51% previously unannotated in CRC and 14% novel candidates when compared to existing circRNA databases. We identified 362 circRNAs differentially expressed in primary and/or metastatic tissues, termed circular RNAs associated with metastasis (CRAMS). We performed cell-type deconvolution using published single-cell RNA-seq datasets and applied a non-negative least squares statistical model to estimate cell-type specific circRNA expression. This predicted 667 circRNAs as exclusively expressed in a single cell type. Collectively, this serves as a valuable resource, TMECircDB (accessible at https://www.maherlab.com/tmecircdb-overview), for functional characterization of circRNAs in mCRC, specifically in the TME.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":"5 2","pages":"zcad021"},"PeriodicalIF":0.0,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10305723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-19eCollection Date: 2023-06-01DOI: 10.1093/narcan/zcad020
Monita Muralidharan, Nevan J Krogan, Mehdi Bouhaddou, Minkyu Kim
The DNA damage response (DDR) entails reorganization of proteins and protein complexes involved in DNA repair. The coordinated regulation of these proteomic changes maintains genome stability. Traditionally, regulators and mediators of DDR have been investigated individually. However, recent advances in mass spectrometry (MS)-based proteomics enable us to globally quantify changes in protein abundance, post-translational modifications (PTMs), protein localization, and protein-protein interactions (PPIs) in cells. Furthermore, structural proteomics approaches, such as crosslinking MS (XL-MS), hydrogen/deuterium exchange MS (H/DX-MS), Native MS (nMS), provide large structural information of proteins and protein complexes, complementary to the data collected from conventional methods, and promote integrated structural modeling. In this review, we will overview the current cutting-edge functional and structural proteomics techniques that are being actively utilized and developed to help interrogate proteomic changes that regulate the DDR.
DNA 损伤应答(DDR)需要重组参与 DNA 修复的蛋白质和蛋白质复合物。这些蛋白质组变化的协调调控可维持基因组的稳定性。传统上,DDR 的调节因子和介导因子都是单独研究的。然而,基于质谱(MS)的蛋白质组学的最新进展使我们能够全面量化细胞中蛋白质丰度、翻译后修饰(PTMs)、蛋白质定位和蛋白质-蛋白质相互作用(PPIs)的变化。此外,交联质谱(XL-MS)、氢/氘交换质谱(H/DX-MS)、原生质谱(nMS)等结构蛋白质组学方法提供了大量蛋白质和蛋白质复合物的结构信息,与传统方法收集的数据相辅相成,促进了综合结构建模的发展。在本综述中,我们将概述目前正在积极利用和开发的前沿功能和结构蛋白质组学技术,以帮助研究调控 DDR 的蛋白质组变化。
{"title":"Current proteomics methods applicable to dissecting the DNA damage response.","authors":"Monita Muralidharan, Nevan J Krogan, Mehdi Bouhaddou, Minkyu Kim","doi":"10.1093/narcan/zcad020","DOIUrl":"10.1093/narcan/zcad020","url":null,"abstract":"<p><p>The DNA damage response (DDR) entails reorganization of proteins and protein complexes involved in DNA repair. The coordinated regulation of these proteomic changes maintains genome stability. Traditionally, regulators and mediators of DDR have been investigated individually. However, recent advances in mass spectrometry (MS)-based proteomics enable us to globally quantify changes in protein abundance, post-translational modifications (PTMs), protein localization, and protein-protein interactions (PPIs) in cells. Furthermore, structural proteomics approaches, such as crosslinking MS (XL-MS), hydrogen/deuterium exchange MS (H/DX-MS), Native MS (nMS), provide large structural information of proteins and protein complexes, complementary to the data collected from conventional methods, and promote integrated structural modeling. In this review, we will overview the current cutting-edge functional and structural proteomics techniques that are being actively utilized and developed to help interrogate proteomic changes that regulate the DDR.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":"5 2","pages":"zcad020"},"PeriodicalIF":0.0,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/59/zcad020.PMC10198729.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9901367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}