Mutations in NHE6 (also termed SLC9A6) cause the X-linked neurological disorder Christianson syndrome (CS) in males. The purpose of this study was to examine the phenotypic spectrum of female carriers of NHE6 mutations. Twenty female carriers from 9 pedigrees were enrolled, ranging from approximately age 2 to 65. A subset of female carriers was assessed using standardized neuropsychological measures. Also, the association of NHE6 expression with markers of brain age was evaluated using 740 participants in the Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP). A majority, but not all, female carriers demonstrated a deficit in at least one neurocognitive domain (85%). A recognizable neuropsychological profile emerged, revealing impairments in visuospatial function, attention, and executive function. Common neuropsychiatric diagnoses included: intellectual disability/developmental delay (20%), learning difficulties (31%), speech/language delays (30%), and attention-deficit/hyperactivity disorder (20%). Notable neurological diagnoses in aging CS female carriers include corticobasal degeneration and atypical parkinsonism. In postmortem brains from the ROS/MAP dataset of normal and pathological aging, decreased NHE6 expression was correlated with greater tau deposition. Our study provides an examination of the phenotypic range in female carriers of NHE6 mutations. The findings indicate that NHE6-related disease in females represents a new neurogenetic condition.
Electroconvulsive therapy (ECT) is a remarkably effective treatment for major depressive disorder, but is less commonly utilized for treatment of psychotic disorders. Recent literature indicates that ECT can be a useful strategy for a wide range of psychotic disorders, including treatment-resistant schizophrenia. The purpose of this review is to examine the extant literature on ECT in schizophrenia with a primary focus on its efficacy, its impact on cognitive function, the role of maintenance ECT, and the potential role of neuroimaging biomarkers to provide more precise ECT treatment strategies. We evaluated the available literature, with a particular focus on prospective, randomized trials. Our review suggests that ECT can be an effective treatment strategy in this severely ill patient population. Studies suggest that while ECT in schizophrenia is a safe treatment modality, the potential for cognitive impairment must always be carefully weighed. The use and investigation of new biomarker strategies for the pharmacological treatment of schizophrenia, and the extension of these approaches to ECT are also discussed.
Bipolar disorder (BD) is characterized by recurrent mood episodes, and circadian rhythm disturbances. Past studies have identified calcium channel genes as risk loci for BD. CACNA1C encodes an L-type calcium channel (LTCC) involved in the entrainment of circadian rhythms to light. Another calcium channel, i.e., the ryanodine receptor (RYR), is involved in -circadian phase delays. It is unknown whether variants in CACNA1C or other calcium channels contribute to the circadian phenotype in BD. We hypothesized that, by using temperature cycles, we could model circadian entrainment in fibroblasts from BD patients and controls to interrogate the circadian functions of LTCCs. Using Per2-luc, a bioluminescent reporter, we verified that cells entrain to temperature rhythms in vitro. Under constant temperature conditions, the LTCC antagonist verapamil shortened the circadian period, and the RYR antagonist dantrolene lengthened the period. However, neither drug affected temperature entrainment. Fibroblasts from BD patients and controls also entrained to temperature. In cells from BD patients, the rhythm amplitude was lower under entrained, but not constant, conditions. Temperature entrainment was otherwise similar between BD and control cells. However, the CACNA1C genotype among BD cells predicted the degree to which cells entrained. We conclude that assessment of rhythms under entrained conditions reveals additional rhythm abnormalities in BD that are not observable under constant temperature conditions.