Pub Date : 2024-08-20DOI: 10.12122/j.issn.1673-4254.2024.08.09
X Chen, Q Liu, Y Li, X Zhong, Q Fan, K Ma, L Luo, D Guan, Z Zhu
Objective: To analyze the core functional component groups (CFCG) in Yinchenhao Decoction (YCHD) and their possible pathways for treating hepatic fibrosis based on network pharmacology.
Methods: PPI data were extracted from DisGeNET, Genecards, CMGRN and PTHGRN to construct a weighted network using Cytoscape 3.9.1. The data of the chemical components in YCHD were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the potential active components and targets were selected using PreADMET Web server and SwissTargetPrediction. A fusion model was constructed to obtain the functional effect space and evaluate the effective proteins to identify the CFCG followed by GO and KEGG pathway enrichment analyses for all the targets. In cultured human hepatic stellate cells (LX-2 cells), the cytotoxicity of different compounds in YCHD was tested using CCK-8 assay; the effects of these compounds on collagen α1 (Col1a1) mRNA expression and the pathways in 20 ng/mL TGF-β1-stimulated cells were analyzed using RT-qPCR and Western blotting.
Results: A total of 1005 pathogenic genes, 226 potential active components and 1529 potential targets in YCHD and 52 potential targets of CFCG were obtained. Benzyl acetate, vanillic acid, clorius, polydatin, lauric acid and ferulic acid were selected for CCK-8 verification, and they all showed minimal cytotoxicity below the concentration of 200 μmol/L. Clorius, polydatin, lauric acid and ferulic acid all effectively inhibited TGF-β1-induced LX-2 cell activation. At the concentration of 200 μmol/L, all these 4 components inhibited PI3K, p-PI3K, AKT, p-AKT, ERK, p-ERK, P38 MAPK and p-P38 MAPK expressions in TGF-β1-induced LX-2 cells.
Conclusion: The therapeutic effect of YCHD on hepatic fibrosis is probably mediated by its core functional components including benzyl acetate, vanillic acid, clorius, polydatin, lauric acid and ferulic acid, which inhibit the PI3K-AKT and MAPK pathways in hepatic stellate cells.
{"title":"[Analysis of core functional components in <i>Yinchenhao</i> Decoction and their pathways for treating liver fibrosis].","authors":"X Chen, Q Liu, Y Li, X Zhong, Q Fan, K Ma, L Luo, D Guan, Z Zhu","doi":"10.12122/j.issn.1673-4254.2024.08.09","DOIUrl":"https://doi.org/10.12122/j.issn.1673-4254.2024.08.09","url":null,"abstract":"<p><strong>Objective: </strong>To analyze the core functional component groups (CFCG) in <i>Yinchenhao</i> Decoction (YCHD) and their possible pathways for treating hepatic fibrosis based on network pharmacology.</p><p><strong>Methods: </strong>PPI data were extracted from DisGeNET, Genecards, CMGRN and PTHGRN to construct a weighted network using Cytoscape 3.9.1. The data of the chemical components in YCHD were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the potential active components and targets were selected using PreADMET Web server and SwissTargetPrediction. A fusion model was constructed to obtain the functional effect space and evaluate the effective proteins to identify the CFCG followed by GO and KEGG pathway enrichment analyses for all the targets. In cultured human hepatic stellate cells (LX-2 cells), the cytotoxicity of different compounds in YCHD was tested using CCK-8 assay; the effects of these compounds on collagen α1 (Col1a1) mRNA expression and the pathways in 20 ng/mL TGF-β1-stimulated cells were analyzed using RT-qPCR and Western blotting.</p><p><strong>Results: </strong>A total of 1005 pathogenic genes, 226 potential active components and 1529 potential targets in YCHD and 52 potential targets of CFCG were obtained. Benzyl acetate, vanillic acid, clorius, polydatin, lauric acid and ferulic acid were selected for CCK-8 verification, and they all showed minimal cytotoxicity below the concentration of 200 μmol/L. Clorius, polydatin, lauric acid and ferulic acid all effectively inhibited TGF-β1-induced LX-2 cell activation. At the concentration of 200 μmol/L, all these 4 components inhibited PI3K, p-PI3K, AKT, p-AKT, ERK, p-ERK, P38 MAPK and p-P38 MAPK expressions in TGF-β1-induced LX-2 cells.</p><p><strong>Conclusion: </strong>The therapeutic effect of YCHD on hepatic fibrosis is probably mediated by its core functional components including benzyl acetate, vanillic acid, clorius, polydatin, lauric acid and ferulic acid, which inhibit the PI3K-AKT and MAPK pathways in hepatic stellate cells.</p>","PeriodicalId":18962,"journal":{"name":"Nan fang yi ke da xue xue bao = Journal of Southern Medical University","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.12122/j.issn.1673-4254.2024.08.10
S Zhang, Q Cai, J Qi, K Yin, C He, Z Gao, L Zhang, J Chu
Objective: To elucidate the therapeutic mechanism of Qingxin Jieyu Granule (QXJYG) against atherosclerosis (AS) based on network pharmacology.
Methods: The major targets and pathways of QXJYG against AS were analyzed using network pharmacology. Rat models of AS established by high-fat feeding combined with intraperitoneal vitamin D3 injection were treated daily with normal saline, atorvastatin (13.15 mg/kg), or QXJYG at 0.99, 1.98, and 3.96 g/kg for 8 weeks (n=6). Ultrasound and HE staining were used to assess the function and pathologies of the abdominal aorta. Blood lipids and serum levels of Ang Ⅱ, ET-1, TXA2, PGI2, and ox-LDL of the rats were detected using an automatic biochemical analyzer or ELISA. The expressions of LOX-1, PPARγ, RXRα, p-P65, VCAM-1 and ICAM-1 in the abdominal aorta were detected with immunohistochemistry.
Results: The rat models of AS showed obvious abdominal aorta wall thickening, increased pulse wave velocity and pulse index, decreased inner diameter of the abdominal aorta, elevated levels of TC, LDL-C, Ang Ⅱ, ET-1 and TXA2, and lowered levels of HDL-C and PGI2. QXJYG and atorvastatin treatment of the rat models significantly alleviated histopathological changes of the abdominal aorta, decreased serum levels of TC, LDL-C, Ang Ⅱ, ET-1 and TXA2, and increased the levels of HDL-C and PGI2. Network pharmacology study suggested the therapeutic effect of QXJYG against AS was mediated by regulating lipid metabolism, PPAR and NF-κB pathways. Consistently, treatments with QXJYG were found to significantly decrease ox-LDL level and LOX-1, P-P65, VCAM-1 and ICAM-1 protein expressions while increasing PPARγ and RXRα expressions in the aorta of AS rats.
Conclusion: QXJYG alleviates lipid metabolism disorder and improves histopathological changes of the abdominal aorta of AS rats possibly by lowering ox-LDL level, reducing LOX-1 expression, activating PPARγ and RXRα, and inhibiting P65 phosphorylation to reduce VCAM-1 and ICAM-1 expression in the aorta.
{"title":"[Pharmacodynamics of <i>Qingxin Jieyu</i> Granules for treatment of atherosclerosis and its regulatory mechanism for lipid metabolism].","authors":"S Zhang, Q Cai, J Qi, K Yin, C He, Z Gao, L Zhang, J Chu","doi":"10.12122/j.issn.1673-4254.2024.08.10","DOIUrl":"https://doi.org/10.12122/j.issn.1673-4254.2024.08.10","url":null,"abstract":"<p><strong>Objective: </strong>To elucidate the therapeutic mechanism of <i>Qingxin Jieyu</i> Granule (QXJYG) against atherosclerosis (AS) based on network pharmacology.</p><p><strong>Methods: </strong>The major targets and pathways of QXJYG against AS were analyzed using network pharmacology. Rat models of AS established by high-fat feeding combined with intraperitoneal vitamin D3 injection were treated daily with normal saline, atorvastatin (13.15 mg/kg), or QXJYG at 0.99, 1.98, and 3.96 g/kg for 8 weeks (<i>n</i>=6). Ultrasound and HE staining were used to assess the function and pathologies of the abdominal aorta. Blood lipids and serum levels of Ang Ⅱ, ET-1, TXA2, PGI2, and ox-LDL of the rats were detected using an automatic biochemical analyzer or ELISA. The expressions of LOX-1, PPARγ, RXRα, p-P65, VCAM-1 and ICAM-1 in the abdominal aorta were detected with immunohistochemistry.</p><p><strong>Results: </strong>The rat models of AS showed obvious abdominal aorta wall thickening, increased pulse wave velocity and pulse index, decreased inner diameter of the abdominal aorta, elevated levels of TC, LDL-C, Ang Ⅱ, ET-1 and TXA2, and lowered levels of HDL-C and PGI2. QXJYG and atorvastatin treatment of the rat models significantly alleviated histopathological changes of the abdominal aorta, decreased serum levels of TC, LDL-C, Ang Ⅱ, ET-1 and TXA2, and increased the levels of HDL-C and PGI2. Network pharmacology study suggested the therapeutic effect of QXJYG against AS was mediated by regulating lipid metabolism, PPAR and NF-κB pathways. Consistently, treatments with QXJYG were found to significantly decrease ox-LDL level and LOX-1, P-P65, VCAM-1 and ICAM-1 protein expressions while increasing PPARγ and RXRα expressions in the aorta of AS rats.</p><p><strong>Conclusion: </strong>QXJYG alleviates lipid metabolism disorder and improves histopathological changes of the abdominal aorta of AS rats possibly by lowering ox-LDL level, reducing LOX-1 expression, activating PPAR<i>γ</i> and RXR<i>α</i>, and inhibiting P65 phosphorylation to reduce VCAM-1 and ICAM-1 expression in the aorta.</p>","PeriodicalId":18962,"journal":{"name":"Nan fang yi ke da xue xue bao = Journal of Southern Medical University","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378045/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.12122/j.issn.1673-4254.2024.08.19
X Wen, S Huang, X Liu, K Li, Y Guan
Objective: To investigate the expressions of glycolysis-related factors and changes in Notch1 signaling in endometrial tissues of adenomyosis (AM) and Ishikawa cells to explore the pathogenesis of AM.
Methods: Eutopic endometrial tissues were collected from 8 patients with AM and 8 patients with uterine fibroids matched for clinical characteristics (control group). The expressions of Notch1 signaling proteins and glycolysis-related factors in the collected tissues were detected using qRT-PCR and Western blotting, and the levels of glucose and lactic acid were determined. An Ishikawa cell model with lentivirus-mediated stable Notch1 overexpression was established for assessing cell survival rate with CCK-8 assay, cell migration and invasion abilities with Transwell migration and invasion assays, and glycolytic capacity by determining the extracellular acidification rate.
Results: Compared with those in the control group, the endometrial tissues in AM group showed significantly increased expression level of carbohydrate antigen 125 (CA125), increased mRNA expression levels of Notch1, HK2 and PDHA and protein expressions of Notch1, GLUT1, HK2, PKM and PDHA, lowered glucose level and increased lactate level. The Ishikawa cell models with stable Notch1 overexpression exhibited significantly increased cell survival rate with attenuated cell migration and invasion abilities and decreased glycolysis capacity and reserve.
Conclusion: The Notch1 signaling pathway participates in the pathogenesis of AM possibly by regulating the proliferation, migration, invasion and glycolysis of endometrial cells.
{"title":"[Role of Notch 1 signaling and glycolysis in the pathogenic mechanism of adenomyosis].","authors":"X Wen, S Huang, X Liu, K Li, Y Guan","doi":"10.12122/j.issn.1673-4254.2024.08.19","DOIUrl":"10.12122/j.issn.1673-4254.2024.08.19","url":null,"abstract":"<p><strong>Objective: </strong>To investigate the expressions of glycolysis-related factors and changes in Notch1 signaling in endometrial tissues of adenomyosis (AM) and Ishikawa cells to explore the pathogenesis of AM.</p><p><strong>Methods: </strong>Eutopic endometrial tissues were collected from 8 patients with AM and 8 patients with uterine fibroids matched for clinical characteristics (control group). The expressions of Notch1 signaling proteins and glycolysis-related factors in the collected tissues were detected using qRT-PCR and Western blotting, and the levels of glucose and lactic acid were determined. An Ishikawa cell model with lentivirus-mediated stable Notch1 overexpression was established for assessing cell survival rate with CCK-8 assay, cell migration and invasion abilities with Transwell migration and invasion assays, and glycolytic capacity by determining the extracellular acidification rate.</p><p><strong>Results: </strong>Compared with those in the control group, the endometrial tissues in AM group showed significantly increased expression level of carbohydrate antigen 125 (CA125), increased mRNA expression levels of Notch1, HK2 and PDHA and protein expressions of Notch1, GLUT1, HK2, PKM and PDHA, lowered glucose level and increased lactate level. The Ishikawa cell models with stable Notch1 overexpression exhibited significantly increased cell survival rate with attenuated cell migration and invasion abilities and decreased glycolysis capacity and reserve.</p><p><strong>Conclusion: </strong>The Notch1 signaling pathway participates in the pathogenesis of AM possibly by regulating the proliferation, migration, invasion and glycolysis of endometrial cells.</p>","PeriodicalId":18962,"journal":{"name":"Nan fang yi ke da xue xue bao = Journal of Southern Medical University","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.12122/j.issn.1673-4254.2024.08.17
S Xiang, Z Zhang, L Jiang, D Liu, W Li, Z Bao, R Tian, D Cheng, L Yuan
Objective: To investigate the therapeutic mechanism of Tujia medicine Toddalia asiatica alcohol extract (TAAE) for synovial pannus formation in rats with college-induced arthritis (CIA).
Methods: Sixty male SD rats were randomized into normal control group, CIA model group, TGT group, 3 TAAE treatment groups at low, medium and high doses (n=10). Except for those in the normal control group, all the rats were subjected to CIA modeling using a secondary immunization method and treatment with saline, TGT or TAAE by gavage once daily for 35 days. The severity of arthritis was assessed using arthritis index (AI) score, and knee joint synovium pathologies were examined with HE staining. Serum levels of TNF-α, IL-6, and IL-1β were detected with ELISA; the protein expressions of PI3K, Akt, p-PI3K, p-Akt, VEGF, endostatin, HIF-1α, MMP1, MMP3, and MMP9 in knee joint synovial tissues were determined using Western blotting, and the mRNA expressions of TNF‑α, IL-6, IL-1β, VEGF, HIF-1α, PI3K, and Akt were detected with RT-PCR.
Results: Treatment of CIA rat models with TAAE and TGT significantly alleviated paw swelling, lowered AI scores, and reduced knee joint pathology, neoangiogenesis, and serum levels of inflammatory factors. TAAE treatment obviously increased endostatin protein expression, downregulated p-PI3K, p-Akt, MMP1, MMP3, MMP9, VEGF, and HIF-1α proteins, and reduced TNF‑α, IL-6, IL-1β, PI3K, Akt, VEGF, and HIF-1α mRNA levels in the synovial tissues, and these changes were comparable between high-dose TAAE group and TGT group.
Conclusion: TAAE can improve joint symptoms and inhibit synovial pannus formation in CIA rats by regulating the expressions of HIF-1α, VEGF, endostatin, MMP1, MMP3, and MMP9 via the PI3K/Akt signalling pathway.
{"title":"[Tujia medicine <i>Toddalia asiatica</i> improves synovial pannus in rats with collagen-induced arthritis through the PI3K/Akt signaling pathway].","authors":"S Xiang, Z Zhang, L Jiang, D Liu, W Li, Z Bao, R Tian, D Cheng, L Yuan","doi":"10.12122/j.issn.1673-4254.2024.08.17","DOIUrl":"10.12122/j.issn.1673-4254.2024.08.17","url":null,"abstract":"<p><strong>Objective: </strong>To investigate the therapeutic mechanism of Tujia medicine <i>Toddalia asiatica</i> alcohol extract (TAAE) for synovial pannus formation in rats with college-induced arthritis (CIA).</p><p><strong>Methods: </strong>Sixty male SD rats were randomized into normal control group, CIA model group, TGT group, 3 TAAE treatment groups at low, medium and high doses (<i>n</i>=10). Except for those in the normal control group, all the rats were subjected to CIA modeling using a secondary immunization method and treatment with saline, TGT or TAAE by gavage once daily for 35 days. The severity of arthritis was assessed using arthritis index (AI) score, and knee joint synovium pathologies were examined with HE staining. Serum levels of TNF-α, IL-6, and IL-1β were detected with ELISA; the protein expressions of PI3K, Akt, p-PI3K, p-Akt, VEGF, endostatin, HIF-1α, MMP1, MMP3, and MMP9 in knee joint synovial tissues were determined using Western blotting, and the mRNA expressions of TNF‑α, IL-6, IL-1β, VEGF, HIF-1α, PI3K, and Akt were detected with RT-PCR.</p><p><strong>Results: </strong>Treatment of CIA rat models with TAAE and TGT significantly alleviated paw swelling, lowered AI scores, and reduced knee joint pathology, neoangiogenesis, and serum levels of inflammatory factors. TAAE treatment obviously increased endostatin protein expression, downregulated p-PI3K, p-Akt, MMP1, MMP3, MMP9, VEGF, and HIF-1α proteins, and reduced TNF‑α, IL-6, IL-1β, PI3K, Akt, VEGF, and HIF-1α mRNA levels in the synovial tissues, and these changes were comparable between high-dose TAAE group and TGT group.</p><p><strong>Conclusion: </strong>TAAE can improve joint symptoms and inhibit synovial pannus formation in CIA rats by regulating the expressions of HIF-1α, VEGF, endostatin, MMP1, MMP3, and MMP9 via the PI3K/Akt signalling pathway.</p>","PeriodicalId":18962,"journal":{"name":"Nan fang yi ke da xue xue bao = Journal of Southern Medical University","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.12122/j.issn.1673-4254.2024.08.13
S Liu, J Li, X Wu
Objective: To investigate the mechanism by which swertiamarin (STM) ameliorates CD-like colitis in mice.
Methods: A Caco-2 cell model of TNF-α-stimulated apoptosis was established and divided into three groups: Con, TNF-α and STM, and the effects of STM on apoptosis and barrier function were assessed by Tunel staining, western blotting, immunofluorescence, and transepithelial electric resistance (TEER). A mouse model of 2, 4, 6-trinitrobenzenesulfonic acid (TNBS) -induced CD-like colitis was established to assess the effects of STM on colitis, intestinal barrier function and epithelial cell apoptosis. The regulatory role of the PI3K/AKT pathway in STM-induced resistance to intestinal epithelial cell apoptosis was investigated in both the cell model and mouse models.
Results: TUNEL staining showed that in Caco-2 cells with TNF-α stimulation, STM treatment significantly reduced the percentage of TUNEL-stained cells (P<0.05). STM obviously reduced TNF-α-induced enhancement of cleaved-caspase 3 and Bax expressions (P<0.05), increased Bcl-2 expression (P<0.05), protected intestinal barrier integrity and function by restoring transepithelial electrical resistance (TEER) of the cells, promoted normal localization and expressions of the tight junction proteins (ZO1 and claudin 1) (P<0.05), and inhibited the expression of pro-inflammatory factors (IL-6 and CCL3) (P<0.05) in TNF-α-stimulated Caco-2 cells. In the mouse models, STM significantly alleviated TNBS-induced CD-like colitis and intestinal barrier dysfunction (P<0.05) as shown by improved weight loss, lowered Disease Activity Index (DAI) score and inflammation score, reduction of IL-6 and CCL3 release, and restoration of intestinal barrier permeability, colonic TEER, bacterial translocation, and localization and expressions of the tight junction proteins. Mechanistically, STM inhibited the expressions of p-PI3K and p-AKT in both the cell model and mouse model(P<0.05), and treatment with 740Y-P (a PI3K/AKT pathway activator) significantly attenuated the inhibitory effect of STM on TNF-α-induced apoptosis in Caco-2 cells (P<0.05).
Conclusion: STM inhibits intestinal epithelial cell apoptosis at least in part by suppressing activation of the PI3K/AKT pathway to ameliorate intestinal barrier dysfunction and colitis in mice.
{"title":"[Swertiamarin ameliorates 2, 4, 6-trinitrobenzenesulfonic acid-induced colitis in mice by inhibiting intestinal epithelial cell apoptosis].","authors":"S Liu, J Li, X Wu","doi":"10.12122/j.issn.1673-4254.2024.08.13","DOIUrl":"https://doi.org/10.12122/j.issn.1673-4254.2024.08.13","url":null,"abstract":"<p><strong>Objective: </strong>To investigate the mechanism by which swertiamarin (STM) ameliorates CD-like colitis in mice.</p><p><strong>Methods: </strong>A Caco-2 cell model of TNF-<i>α</i>-stimulated apoptosis was established and divided into three groups: Con, TNF-<i>α</i> and STM, and the effects of STM on apoptosis and barrier function were assessed by Tunel staining, western blotting, immunofluorescence, and transepithelial electric resistance (TEER). A mouse model of 2, 4, 6-trinitrobenzenesulfonic acid (TNBS) -induced CD-like colitis was established to assess the effects of STM on colitis, intestinal barrier function and epithelial cell apoptosis. The regulatory role of the PI3K/AKT pathway in STM-induced resistance to intestinal epithelial cell apoptosis was investigated in both the cell model and mouse models.</p><p><strong>Results: </strong>TUNEL staining showed that in Caco-2 cells with TNF-<i>α</i> stimulation, STM treatment significantly reduced the percentage of TUNEL-stained cells (<i>P</i><0.05). STM obviously reduced TNF-<i>α</i>-induced enhancement of cleaved-caspase 3 and Bax expressions (<i>P</i><0.05), increased Bcl-2 expression (<i>P</i><0.05), protected intestinal barrier integrity and function by restoring transepithelial electrical resistance (TEER) of the cells, promoted normal localization and expressions of the tight junction proteins (ZO1 and claudin 1) (<i>P</i><0.05), and inhibited the expression of pro-inflammatory factors (IL-6 and CCL3) (<i>P</i><0.05) in TNF-<i>α</i>-stimulated Caco-2 cells. In the mouse models, STM significantly alleviated TNBS-induced CD-like colitis and intestinal barrier dysfunction (<i>P</i><0.05) as shown by improved weight loss, lowered Disease Activity Index (DAI) score and inflammation score, reduction of IL-6 and CCL3 release, and restoration of intestinal barrier permeability, colonic TEER, bacterial translocation, and localization and expressions of the tight junction proteins. Mechanistically, STM inhibited the expressions of p-PI3K and p-AKT in both the cell model and mouse model(<i>P</i><0.05), and treatment with 740Y-P (a PI3K/AKT pathway activator) significantly attenuated the inhibitory effect of STM on TNF-<i>α</i>-induced apoptosis in Caco-2 cells (<i>P</i><0.05).</p><p><strong>Conclusion: </strong>STM inhibits intestinal epithelial cell apoptosis at least in part by suppressing activation of the PI3K/AKT pathway to ameliorate intestinal barrier dysfunction and colitis in mice.</p>","PeriodicalId":18962,"journal":{"name":"Nan fang yi ke da xue xue bao = Journal of Southern Medical University","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.12122/j.issn.1673-4254.2024.08.18
L Xiao, T Duan, Y Xia, Y Chen, Y Sun, Y Xu, L Xu, X Yan, J Hu
Objective: To investigate the mechanism underlying the neuroprotective effect of linarin (LIN) against microglia activation-mediated inflammation and neuronal apoptosis following spinal cord injury (SCI).
Methods: Fifty C57BL/6J mice (8- 10 weeks old) were randomized to receive sham operation, SCI and linarin treatment at 12.5, 25, and 50 mg/kg following SCI (n=10). Locomotor function recovery of the SCI mice was assessed using the Basso Mouse Scale, inclined plane test, and footprint analysis, and spinal cord tissue damage and myelination were evaluated using HE and LFB staining. Nissl staining, immunofluorescence assay and Western blotting were used to observe surviving anterior horn motor neurons in injured spinal cord tissue. In cultured BV2 cells, the effects of linarin against lipopolysaccharide (LPS)‑induced microglia activation, inflammatory factor release and signaling pathway changes were assessed with immunofluorescence staining, Western blotting, RT-qPCR, and ELISA. In a BV2 and HT22 cell co-culture system, Western blotting was performed to examine the effect of linarin against HT22 cell apoptosis mediated by LPS-induced microglia activation.
Results: Linarin treatment significantly improved locomotor function (P < 0.05), reduced spinal cord damage area, increased spinal cord myelination, and increased the number of motor neurons in the anterior horn of the SCI mice (P < 0.05). In both SCI mice and cultured BV2 cells, linarin effectively inhibited glial cell activation and suppressed the release of iNOS, COX-2, TNF-α, IL-6, and IL-1β, resulting also in reduced neuronal apoptosis in SCI mice (P < 0.05). Western blotting suggested that linarin-induced microglial activation inhibition was mediated by inhibition of the TLR4/NF- κB signaling pathway. In the cell co-culture experiments, linarin treatment significantly decreased inflammation-mediated apoptosis of HT22 cells (P < 0.05).
Conclusion: The neuroprotective effect of linarin is medicated by inhibition of microglia activation via suppressing the TLR4/NF‑κB signaling pathway, which mitigates neural inflammation and reduce neuronal apoptosis to enhance motor function of the SCI mice.
{"title":"[Linarin inhibits microglia activation-mediated neuroinflammation and neuronal apoptosis in mouse spinal cord injury by inhibiting the TLR4/NF-κB pathway].","authors":"L Xiao, T Duan, Y Xia, Y Chen, Y Sun, Y Xu, L Xu, X Yan, J Hu","doi":"10.12122/j.issn.1673-4254.2024.08.18","DOIUrl":"10.12122/j.issn.1673-4254.2024.08.18","url":null,"abstract":"<p><strong>Objective: </strong>To investigate the mechanism underlying the neuroprotective effect of linarin (LIN) against microglia activation-mediated inflammation and neuronal apoptosis following spinal cord injury (SCI).</p><p><strong>Methods: </strong>Fifty C57BL/6J mice (8- 10 weeks old) were randomized to receive sham operation, SCI and linarin treatment at 12.5, 25, and 50 mg/kg following SCI (<i>n</i>=10). Locomotor function recovery of the SCI mice was assessed using the Basso Mouse Scale, inclined plane test, and footprint analysis, and spinal cord tissue damage and myelination were evaluated using HE and LFB staining. Nissl staining, immunofluorescence assay and Western blotting were used to observe surviving anterior horn motor neurons in injured spinal cord tissue. In cultured BV2 cells, the effects of linarin against lipopolysaccharide (LPS)‑induced microglia activation, inflammatory factor release and signaling pathway changes were assessed with immunofluorescence staining, Western blotting, RT-qPCR, and ELISA. In a BV2 and HT22 cell co-culture system, Western blotting was performed to examine the effect of linarin against HT22 cell apoptosis mediated by LPS-induced microglia activation.</p><p><strong>Results: </strong>Linarin treatment significantly improved locomotor function (<i>P</i> < 0.05), reduced spinal cord damage area, increased spinal cord myelination, and increased the number of motor neurons in the anterior horn of the SCI mice (<i>P</i> < 0.05). In both SCI mice and cultured BV2 cells, linarin effectively inhibited glial cell activation and suppressed the release of iNOS, COX-2, TNF-α, IL-6, and IL-1β, resulting also in reduced neuronal apoptosis in SCI mice (<i>P</i> < 0.05). Western blotting suggested that linarin-induced microglial activation inhibition was mediated by inhibition of the TLR4/NF- κB signaling pathway. In the cell co-culture experiments, linarin treatment significantly decreased inflammation-mediated apoptosis of HT22 cells (<i>P</i> < 0.05).</p><p><strong>Conclusion: </strong>The neuroprotective effect of linarin is medicated by inhibition of microglia activation <i>via</i> suppressing the TLR4/NF‑κB signaling pathway, which mitigates neural inflammation and reduce neuronal apoptosis to enhance motor function of the SCI mice.</p>","PeriodicalId":18962,"journal":{"name":"Nan fang yi ke da xue xue bao = Journal of Southern Medical University","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378057/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.12122/j.issn.1673-4254.2024.07.02
Z Ke, Z Huang, R He, Q Zhang, S Chen, Z K Cui, J Ding
Objective: To investigate the role of high-mobility group AT-hook 2 (HMGA2) in osteogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs) and the effect of Hmga2 knockdown for promoting bone defect repair.
Methods: Bioinformatics studies using the GEO database and Rstudio software identified HMGA2 as a key factor in adipogenic-osteogenic differentiation balance of ADSCs. The protein-protein interaction network of HMGA2 in osteogenic differentiation was mapped using String and visualized with Cytoscape to predict the downstream targets of HMGA2. Primary mouse ADSCs (mADSCs) were transfected with Hmga2 siRNA, and the changes in osteogenic differentiation of the cells were evaluated using alkaline phosphatase staining and Alizarin red S staining. The expressions of osteogenic markers Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcein (OCN) in the transfected cells were detected using RT-qPCR and Western blotting. In a mouse model of critical-sized calvarial defects, mADSCs with Hmga2-knockdown were transplanted into the defect, and bone repair was evaluated 6 weeks later using micro-CT scanning and histological staining.
Results: GEO database analysis showed that HMGA2 expression was upregulated during adipogenic differentiation of ADSCs. Protein-protein interaction network analysis suggested that the potential HMGA2 targets in osteogenic differentiation of ADSCs included SMAD7, CDH1, CDH2, SNAI1, SMAD9, IGF2BP3, and ALDH1A1. In mADSCs, Hmga2 knockdown significantly upregulated the expressions of RUNX2, OPN, and OCN and increased cellular alkaline phosphatase activity and calcium deposition. In a critical-sized calvarial defect model, transplantation of mADSCs with Hmga2 knockdown significantly promoted new bone formation.
Conclusion: HMGA2 is a crucial regulator of osteogenic differentiation in ADSCs, and Hmga2 knockdown significantly promotes osteogenic differentiation of ADSCs and accelerates ADSCs-mediated bone defect repair in mice.
目的研究高迁移率基团AT-钩2(HMGA2)在脂肪间充质干细胞(ADSCs)成骨分化中的作用,以及敲除Hmga2对促进骨缺损修复的影响:方法:利用GEO数据库和Rstudio软件进行生物信息学研究,发现HMGA2是影响ADSCs成脂-成骨分化平衡的关键因素。利用String绘制了HMGA2在成骨分化过程中的蛋白-蛋白相互作用网络,并利用Cytoscape将其可视化,以预测HMGA2的下游靶标。用Hmga2 siRNA转染原代小鼠ADSCs(mADSCs),并用碱性磷酸酶染色和茜素红S染色评估细胞成骨分化的变化。用 RT-qPCR 和 Western 印迹法检测了转染细胞中成骨标志物 Runt 相关转录因子 2(RUNX2)、骨生成素(OPN)和骨钙素(OCN)的表达。在小鼠临界大小腓骨缺损模型中,将Hmga2-敲除的mADSCs移植到缺损处,6周后使用显微CT扫描和组织学染色评估骨修复情况:结果:GEO数据库分析表明,HMGA2在ADSCs的成脂分化过程中表达上调。蛋白-蛋白相互作用网络分析表明,HMGA2在ADSCs成骨分化过程中的潜在靶点包括SMAD7、CDH1、CDH2、SNAI1、SMAD9、IGF2BP3和ALDH1A1。在mADSCs中,敲除Hmga2会显著上调RUNX2、OPN和OCN的表达,并增加细胞碱性磷酸酶活性和钙沉积。在临界大小的腓骨缺损模型中,移植敲除Hmga2的mADSCs能明显促进新骨形成:结论:HMGA2是ADSCs成骨分化的关键调节因子,敲除Hmga2能明显促进ADSCs的成骨分化,加速ADSCs介导的小鼠骨缺损修复。
{"title":"[<i>Hmga2</i> knockdown enhances osteogenic differentiation of adipose-derived mesenchymal stem cells and accelerates bone defect healing in mice].","authors":"Z Ke, Z Huang, R He, Q Zhang, S Chen, Z K Cui, J Ding","doi":"10.12122/j.issn.1673-4254.2024.07.02","DOIUrl":"10.12122/j.issn.1673-4254.2024.07.02","url":null,"abstract":"<p><strong>Objective: </strong>To investigate the role of high-mobility group AT-hook 2 (HMGA2) in osteogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs) and the effect of <i>Hmga2</i> knockdown for promoting bone defect repair.</p><p><strong>Methods: </strong>Bioinformatics studies using the GEO database and Rstudio software identified HMGA2 as a key factor in adipogenic-osteogenic differentiation balance of ADSCs. The protein-protein interaction network of HMGA2 in osteogenic differentiation was mapped using String and visualized with Cytoscape to predict the downstream targets of HMGA2. Primary mouse ADSCs (mADSCs) were transfected with <i>Hmga2</i> siRNA, and the changes in osteogenic differentiation of the cells were evaluated using alkaline phosphatase staining and Alizarin red S staining. The expressions of osteogenic markers Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcein (OCN) in the transfected cells were detected using RT-qPCR and Western blotting. In a mouse model of critical-sized calvarial defects, mADSCs with <i>Hmga2-</i>knockdown were transplanted into the defect, and bone repair was evaluated 6 weeks later using micro-CT scanning and histological staining.</p><p><strong>Results: </strong>GEO database analysis showed that <i>HMGA2</i> expression was upregulated during adipogenic differentiation of ADSCs. Protein-protein interaction network analysis suggested that the potential HMGA2 targets in osteogenic differentiation of ADSCs included SMAD7, CDH1, CDH2, SNAI1, SMAD9, IGF2BP3, and ALDH1A1. In mADSCs, <i>Hmga2</i> knockdown significantly upregulated the expressions of RUNX2, OPN, and OCN and increased cellular alkaline phosphatase activity and calcium deposition. In a critical-sized calvarial defect model, transplantation of mADSCs with <i>Hmga2</i> knockdown significantly promoted new bone formation.</p><p><strong>Conclusion: </strong>HMGA2 is a crucial regulator of osteogenic differentiation in ADSCs, and <i>Hmga2</i> knockdown significantly promotes osteogenic differentiation of ADSCs and accelerates ADSCs-mediated bone defect repair in mice.</p>","PeriodicalId":18962,"journal":{"name":"Nan fang yi ke da xue xue bao = Journal of Southern Medical University","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270651/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.12122/j.issn.1673-4254.2024.07.16
H Li, G Li, X Zhang, Y Wang
Objective: To explore the causal relationship between inflammatory protein markers and the risk of colorectal cancer using a Mendelian randomization (MR) approach.
Methods: We obtained data pertaining to colorectal cancer from Genome-Wide Association Study (GWAS) datasets and used 91 inflammatory protein markers as the exposure variables. A two-sample MR analysis model was used to assess the causal link between the inflammatory markers and colorectal cancer risk. The robustness of the results was evaluated through heterogeneity, pleiotropy, and sensitivity analyses using 5 MR models: Inverse Variance Weighted (IVW), Weighted Median, MR Egger, Simple Mode, and Weighted Mode. We examined the mRNA expressions of PD-L1, AXIN1, and β-NGF using RT-qPCR in 86 untreated patients with colorectal adenocarcinoma admitted in Nanfang Hospital between December, 2021 and December 2023, and analyzed their correlation with the clinical characteristics of the patients.
Results: Using the IVW model, MR analysis revealed significant causal associations between a reduced risk of colorectal cancer and lowered expressions of AXIN1 (OR=0.866, 95% CI: 0.754-0.994, P=0.040), β-NGF (OR=0.914, 95% CI: 0.843-0.990, P=0.028; OR=0.884, 95% CI: 0.784-0.998, P=0.047 using Weighted Median model), and PD-L1 (OR=0.903, 95% CI: 0.824- 0.989, P=0.028). No significant heterogeneity or pleiotropy was observed, indicating good stability of the results. Sensitivity analysis confirmed the reliability of the findings. The clinical study demonstrated a significant correlation between PD-L1 expression and TNM staging, particularly in stage Ⅳ patients (P=0.007). AXIN1 and β -NGF expression levels were significantly correlated with the degree of tumor differentiation, and their expressions were higher in poorly differentiated samples (P<0.001).
Conclusion: Lowered expressions of inflammatory protein markers AXIN1, β-NGF, and PD-L1 are causally correlated with a reduced risk of colorectal cancer and their expression levels are associated with TNM staging and tumor differentiation. These markers may thus serve as potential targets for colorectal cancer treatment and prevention.
{"title":"[Genetic drivers for inflammatory protein markers in colorectal cancer: a Mendelian randomization approach to clinical prognosis study].","authors":"H Li, G Li, X Zhang, Y Wang","doi":"10.12122/j.issn.1673-4254.2024.07.16","DOIUrl":"10.12122/j.issn.1673-4254.2024.07.16","url":null,"abstract":"<p><strong>Objective: </strong>To explore the causal relationship between inflammatory protein markers and the risk of colorectal cancer using a Mendelian randomization (MR) approach.</p><p><strong>Methods: </strong>We obtained data pertaining to colorectal cancer from Genome-Wide Association Study (GWAS) datasets and used 91 inflammatory protein markers as the exposure variables. A two-sample MR analysis model was used to assess the causal link between the inflammatory markers and colorectal cancer risk. The robustness of the results was evaluated through heterogeneity, pleiotropy, and sensitivity analyses using 5 MR models: Inverse Variance Weighted (IVW), Weighted Median, MR Egger, Simple Mode, and Weighted Mode. We examined the mRNA expressions of <i>PD</i>-<i>L1</i>, <i>AXIN1</i>, and <i>β</i>-<i>NGF</i> using RT-qPCR in 86 untreated patients with colorectal adenocarcinoma admitted in Nanfang Hospital between December, 2021 and December 2023, and analyzed their correlation with the clinical characteristics of the patients.</p><p><strong>Results: </strong>Using the IVW model, MR analysis revealed significant causal associations between a reduced risk of colorectal cancer and lowered expressions of AXIN1 (OR=0.866, 95% <i>CI</i>: 0.754-0.994, <i>P</i>=0.040), β-NGF (OR=0.914, 95% <i>CI</i>: 0.843-0.990, <i>P</i>=0.028; OR=0.884, 95% <i>CI</i>: 0.784-0.998, <i>P</i>=0.047 using Weighted Median model), and PD-L1 (OR=0.903, 95% <i>CI</i>: 0.824- 0.989, <i>P</i>=0.028). No significant heterogeneity or pleiotropy was observed, indicating good stability of the results. Sensitivity analysis confirmed the reliability of the findings. The clinical study demonstrated a significant correlation between PD-L1 expression and TNM staging, particularly in stage Ⅳ patients (<i>P</i>=0.007). AXIN1 and β -NGF expression levels were significantly correlated with the degree of tumor differentiation, and their expressions were higher in poorly differentiated samples (<i>P</i><0.001).</p><p><strong>Conclusion: </strong>Lowered expressions of inflammatory protein markers AXIN1, β-NGF, and PD-L1 are causally correlated with a reduced risk of colorectal cancer and their expression levels are associated with TNM staging and tumor differentiation. These markers may thus serve as potential targets for colorectal cancer treatment and prevention.</p>","PeriodicalId":18962,"journal":{"name":"Nan fang yi ke da xue xue bao = Journal of Southern Medical University","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.12122/j.issn.1673-4254.2024.07.11
Y Zhang, Y Zhang, X Shen, G Wang, L Zhu
Objective: To explore the neuroprotective role of Rab10 gene in depression and the mechanism mediating its effect.
Methods: Forty-eight male SD rats were randomized into a control group and 3 chronic unpredictable mild stress (CUMS) groups (n=12). The rats in the latter 3 groups were subjected to injections of normal saline, an adeno-associated viral (AAV) vector, or a Rab10-overexpressing AAV vector in the lateral ventricle after CUMS modeling. The depressive behavioral changes of the rats were assessed using behavioral tests. The TargetScan database was used to predict the miRNA interacting with Rab10 and the binding sites. The interaction between miRNA-103-3p and Rab10 was investigated using dual-luciferase and radioimmunoprecipitation (RIP) assay. The effect of corticosterone treatment on PC12 cell viability was assessed with CCK-8 assay. In corticosterone-stimulated PC12 cells, the changes in BDNF, CREB, p62, Beclin-1, Wnt3a, Gsk3β, phosphorylated (p)-Gsk3β, and β-catenin protein expressions following transfection with the Rab10-overexpressing AAV vector and a miRNA-103-3p inhibitor, alone or in combination, were analyzed using qRT-PCR and Western blotting.
Results: Injection of Rab10-overexpressing AVV vector into the lateral ventricle significantly improved depressive behaviors of CUMS rats. The mRNA and proteins expression of Rab10 were significantly down-regulated in the hippocampus of CUMS rats and in corticosteronestimulated PC12 cells. Bioinformatics analysis and the results of double luciferase and RIP experiments confirmed the targeting relationship between miRNA-103-3p and Rab10. In PC12 cells, overexpression of Rab10 or silencing miRNA-103-3p activated the Wnt/β-catenin signaling pathway, up-regulated the expressions of BDNF, CREB and Beclin-1, and down-regulated the expression of p62 protein; silencing Rab10 obviously blocked the effect of miRNA-103-3p inhibitor.
Conclusion: In mouse models of depression, miRNA-103-3p activates Wnt/β-catenin signaling via targeting rab10 to improve neural plasticity and promotes neural cell autophagy.
{"title":"[MiRNA-103-3p promotes neural cell autophagy by activating Wnt/β-catenin signaling <i>via</i> targeting rab10 in a rat model of depression].","authors":"Y Zhang, Y Zhang, X Shen, G Wang, L Zhu","doi":"10.12122/j.issn.1673-4254.2024.07.11","DOIUrl":"10.12122/j.issn.1673-4254.2024.07.11","url":null,"abstract":"<p><strong>Objective: </strong>To explore the neuroprotective role of Rab10 gene in depression and the mechanism mediating its effect.</p><p><strong>Methods: </strong>Forty-eight male SD rats were randomized into a control group and 3 chronic unpredictable mild stress (CUMS) groups (<i>n</i>=12). The rats in the latter 3 groups were subjected to injections of normal saline, an adeno-associated viral (AAV) vector, or a Rab10-overexpressing AAV vector in the lateral ventricle after CUMS modeling. The depressive behavioral changes of the rats were assessed using behavioral tests. The TargetScan database was used to predict the miRNA interacting with Rab10 and the binding sites. The interaction between miRNA-103-3p and Rab10 was investigated using dual-luciferase and radioimmunoprecipitation (RIP) assay. The effect of corticosterone treatment on PC12 cell viability was assessed with CCK-8 assay. In corticosterone-stimulated PC12 cells, the changes in BDNF, CREB, p62, Beclin-1, Wnt3a, Gsk3β, phosphorylated (p)-Gsk3β, and β-catenin protein expressions following transfection with the Rab10-overexpressing AAV vector and a miRNA-103-3p inhibitor, alone or in combination, were analyzed using qRT-PCR and Western blotting.</p><p><strong>Results: </strong>Injection of Rab10-overexpressing AVV vector into the lateral ventricle significantly improved depressive behaviors of CUMS rats. The mRNA and proteins expression of Rab10 were significantly down-regulated in the hippocampus of CUMS rats and in corticosteronestimulated PC12 cells. Bioinformatics analysis and the results of double luciferase and RIP experiments confirmed the targeting relationship between miRNA-103-3p and Rab10. In PC12 cells, overexpression of Rab10 or silencing miRNA-103-3p activated the Wnt/β-catenin signaling pathway, up-regulated the expressions of BDNF, CREB and Beclin-1, and down-regulated the expression of p62 protein; silencing Rab10 obviously blocked the effect of miRNA-103-3p inhibitor.</p><p><strong>Conclusion: </strong>In mouse models of depression, miRNA-103-3p activates Wnt/β-catenin signaling via targeting rab10 to improve neural plasticity and promotes neural cell autophagy.</p>","PeriodicalId":18962,"journal":{"name":"Nan fang yi ke da xue xue bao = Journal of Southern Medical University","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.12122/j.issn.1673-4254.2024.07.18
G Chen, X Xiang, Z Zeng, R Huang, S Jin, M Xiao, C Song
Objective: To evaluate the regulatory effect of Diwu Yanggan (DWYG) Decoction on lysoglycerophospholipids (Lyso-GPLs) in circulating exosomes in a mouse model of nonalcoholic fatty liver disease (NAFLD).
Methods: Circulating exosomes isolated from mouse serum by size exclusion chromatography were morphologically characterized using transmission electron microscope and examined for surface markers CD9, CD63 and TSG101 using Western blotting. Twenty-four male Kunming mice were randomized into 3 groups for normal feeding (control, n=8) or high-fat diet feeding for 1 week to induce NAFLD, after which the latter mice were given DWYG decoction (treatment group, n=8) or normal saline (model group, n=8) by gavage for 4 weeks. After the last treatment, blood samples were collected from the mice for testing serum TC, HDL-C, LDL-C, ALT and AST levels and isolating circulating exosomes. Using multivariate statistical analysis based on targeted metabolomics strategy, the potential biomarkers for Lyso-GPLs in the exosomes were screened.
Results: The isolated exosomes about 100 nm in size had a typical saucer-like structure with distinct double-layer membranes and a mean particle size of 137.5 nm and expressed the specific surface marker proteins CD9, CD63 and TSG101. The mouse models of NAFLD had significantly increased serum levels of TC, HDL-C, LDL-C and AST and lowered serum ALT level. A total of 43 Lyso-GPLs with significant reduction after DWYG Decoction treatment were identified in NAFLD mice.
Conclusion: DWYG Decoction can regulate Lyso-GPLs in circulating exosomes in NAFLD mice, which provides a new clue for studying the therapeutic mechanism of DWYG Decoction for liver disease.
{"title":"[Regulatory effect of <i>Diwu Yanggan</i> Decoction on lysoglycerophospholipids in circulating exosomes in a mouse model of nonalcoholic fatty liver disease].","authors":"G Chen, X Xiang, Z Zeng, R Huang, S Jin, M Xiao, C Song","doi":"10.12122/j.issn.1673-4254.2024.07.18","DOIUrl":"10.12122/j.issn.1673-4254.2024.07.18","url":null,"abstract":"<p><strong>Objective: </strong>To evaluate the regulatory effect of <i>Diwu Yanggan</i> (DWYG) Decoction on lysoglycerophospholipids (Lyso-GPLs) in circulating exosomes in a mouse model of nonalcoholic fatty liver disease (NAFLD).</p><p><strong>Methods: </strong>Circulating exosomes isolated from mouse serum by size exclusion chromatography were morphologically characterized using transmission electron microscope and examined for surface markers CD9, CD63 and TSG101 using Western blotting. Twenty-four male Kunming mice were randomized into 3 groups for normal feeding (control, <i>n</i>=8) or high-fat diet feeding for 1 week to induce NAFLD, after which the latter mice were given DWYG decoction (treatment group, <i>n</i>=8) or normal saline (model group, <i>n</i>=8) by gavage for 4 weeks. After the last treatment, blood samples were collected from the mice for testing serum TC, HDL-C, LDL-C, ALT and AST levels and isolating circulating exosomes. Using multivariate statistical analysis based on targeted metabolomics strategy, the potential biomarkers for Lyso-GPLs in the exosomes were screened.</p><p><strong>Results: </strong>The isolated exosomes about 100 nm in size had a typical saucer-like structure with distinct double-layer membranes and a mean particle size of 137.5 nm and expressed the specific surface marker proteins CD9, CD63 and TSG101. The mouse models of NAFLD had significantly increased serum levels of TC, HDL-C, LDL-C and AST and lowered serum ALT level. A total of 43 Lyso-GPLs with significant reduction after DWYG Decoction treatment were identified in NAFLD mice.</p><p><strong>Conclusion: </strong>DWYG Decoction can regulate Lyso-GPLs in circulating exosomes in NAFLD mice, which provides a new clue for studying the therapeutic mechanism of DWYG Decoction for liver disease.</p>","PeriodicalId":18962,"journal":{"name":"Nan fang yi ke da xue xue bao = Journal of Southern Medical University","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270654/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}