Introduction: Immunosenescence is a natural process of immune system aging, which leads to significant changes in the functioning of both innate and adaptive immunity. Alterations in T and B lymphocytes can significantly impact the progression of neurological diseases including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS).
State of the art: Immunosenescence affects T and B cell subsets, reducing their proliferative capacity and altering cytokine profiles. In MS, these changes promote disease progression and diminish responses to immunomodulatory therapies. In AD and PD, dysfunctional T and B cells contribute to sustained neuroinflammation, exacerbating neurodegeneration. ALS is similarly associated with altered adaptive immunity.
Clinical implications: Recognizing how immunosenescent T and B cells contribute to disease in older adults is crucial for refining treatment strategies. These age-related immune changes may explain varied responses to therapies and highlight the need for novel approaches targeting the aged immune system in neurodegenerative diseases.
Future directions: Future research should focus on identifying the mechanisms by which immunosenescent lymphocytes modulate neuroinflammation and neurodegeneration in aging populations. Novel biomarkers and immunomodulatory therapies tailored to older adults could significantly improve outcomes in patients with neurological diseases.
扫码关注我们
求助内容:
应助结果提醒方式:
