The primary deficiency underlying metabolic syndrome is insulin resistance, in which insulin-responsive peripheral tissues fail to maintain glucose homeostasis. Because skeletal muscle is the major site for insulin-induced glucose uptake, impairments in skeletal muscle’s insulin responsiveness play a major role in the development of insulin resistance and type 2 diabetes. For example, skeletal muscle of type 2 diabetes patients and their offspring exhibit reduced ratios of slow oxidative muscle. These observations suggest the possibility of applying muscle remodeling to recover insulin sensitivity in metabolic syndrome. Skeletal muscle is highly adaptive to external stimulations such as exercise; however, in practice it is often not practical or possible to enforce the necessary intensity to obtain measurable benefits to the metabolic syndrome patient population. Therefore, identifying molecular targets for inducing muscle remodeling would provide new approaches to treat metabolic syndrome. In this review, the physiological properties of skeletal muscle, genetic analysis of metabolic syndrome in human populations and model organisms, and genetically engineered mouse models will be discussed in regard to the prospect of applying skeletal muscle remodeling as possible therapy for metabolic syndrome.
{"title":"Genetic Dissection of the Physiological Role of Skeletal Muscle in Metabolic Syndrome","authors":"N. Hagiwara","doi":"10.1155/2014/635146","DOIUrl":"https://doi.org/10.1155/2014/635146","url":null,"abstract":"The primary deficiency underlying metabolic syndrome is insulin resistance, in which insulin-responsive peripheral tissues fail to maintain glucose homeostasis. Because skeletal muscle is the major site for insulin-induced glucose uptake, impairments in skeletal muscle’s insulin responsiveness play a major role in the development of insulin resistance and type 2 diabetes. For example, skeletal muscle of type 2 diabetes patients and their offspring exhibit reduced ratios of slow oxidative muscle. These observations suggest the possibility of applying muscle remodeling to recover insulin sensitivity in metabolic syndrome. Skeletal muscle is highly adaptive to external stimulations such as exercise; however, in practice it is often not practical or possible to enforce the necessary intensity to obtain measurable benefits to the metabolic syndrome patient population. Therefore, identifying molecular targets for inducing muscle remodeling would provide new approaches to treat metabolic syndrome. In this review, the physiological properties of skeletal muscle, genetic analysis of metabolic syndrome in human populations and model organisms, and genetically engineered mouse models will be discussed in regard to the prospect of applying skeletal muscle remodeling as possible therapy for metabolic syndrome.","PeriodicalId":19156,"journal":{"name":"New Journal of Science","volume":"57 1","pages":"1-21"},"PeriodicalIF":0.0,"publicationDate":"2014-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84573263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, our thinking of how the initiation of protein synthesis occurs has changed dramatically. Initiation was thought to involve only events occurring at or near the 5′-cap structure, which serves as the binding site for the cap-binding complex, a group of translation initiation factors (eIFs) that facilitate the binding of the 40 S ribosomal subunit to an mRNA. Because the poly(A)-binding protein (PABP) binds the poly(A) tail present at the 3′-terminus of an mRNA, it was long thought to play no role in translation initiation. In this review, I present evidence from my laboratory that has contributed to the paradigm shift in how we think of mRNAs during translation. The depiction of mRNAs as straight molecules in which the poly(A) tail is far from events occurring at the 5′-end has now been replaced by the concept of a circular mRNA where the interaction between PABP and the cap-binding complex bridges the termini of an mRNA and promotes translation initiation. The research from my laboratory supports the new paradigm that translation of most mRNAs requires a functional and physical interaction between the termini of an mRNA.
{"title":"Insights from a Paradigm Shift: How the Poly(A)-Binding Protein Brings Translating mRNAs Full Circle","authors":"D. Gallie","doi":"10.1155/2014/873084","DOIUrl":"https://doi.org/10.1155/2014/873084","url":null,"abstract":"In recent years, our thinking of how the initiation of protein synthesis occurs has changed dramatically. Initiation was thought to involve only events occurring at or near the 5′-cap structure, which serves as the binding site for the cap-binding complex, a group of translation initiation factors (eIFs) that facilitate the binding of the 40 S ribosomal subunit to an mRNA. Because the poly(A)-binding protein (PABP) binds the poly(A) tail present at the 3′-terminus of an mRNA, it was long thought to play no role in translation initiation. In this review, I present evidence from my laboratory that has contributed to the paradigm shift in how we think of mRNAs during translation. The depiction of mRNAs as straight molecules in which the poly(A) tail is far from events occurring at the 5′-end has now been replaced by the concept of a circular mRNA where the interaction between PABP and the cap-binding complex bridges the termini of an mRNA and promotes translation initiation. The research from my laboratory supports the new paradigm that translation of most mRNAs requires a functional and physical interaction between the termini of an mRNA.","PeriodicalId":19156,"journal":{"name":"New Journal of Science","volume":"54 1","pages":"1-16"},"PeriodicalIF":0.0,"publicationDate":"2014-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78182987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The tumor microenvironment is a well-recognized framework, in which myeloid cells play important roles in cancer development from tumor initiation to metastasis. Immune cells present in the tumor microenvironment can promote or inhibit cancer formation and development. Diversity and plasticity are hallmarks of cells of the monocyte-macrophage lineage. In response to distinct signals the cells of the monocyte-macrophage lineage have the ability to display a wide spectrum of activation states; classical Ml or alternative M2 macrophages represent extremes of a continuum of this activation. Tumor-associated macrophages generally acquire an M2-like phenotype that is relevant for their participation in tumor growth and progression. There is now evidence that also neutrophils can be driven towards distinct phenotypes in response to microenvironmental signals. In fact they can interact with distinct cell populations and produce a wide number of cytokines and effector molecules. Therefore, macrophages and neutrophils are both integrated in the regulation of the innate and adaptive immune responses in various inflammatory situations, including cancer. These findings have triggered efforts to target tumor-associated macrophages and neutrophils. In particular, “reeducation” to activate their antitumor potential or elimination of tumor promoting cells is a new strategy undergoing preclinical and clinical evaluation.
{"title":"Macrophages, Neutrophils, and Cancer: A Double Edged Sword","authors":"A. Mantovani","doi":"10.1155/2014/271940","DOIUrl":"https://doi.org/10.1155/2014/271940","url":null,"abstract":"The tumor microenvironment is a well-recognized framework, in which myeloid cells play important roles in cancer development from tumor initiation to metastasis. Immune cells present in the tumor microenvironment can promote or inhibit cancer formation and development. Diversity and plasticity are hallmarks of cells of the monocyte-macrophage lineage. In response to distinct signals the cells of the monocyte-macrophage lineage have the ability to display a wide spectrum of activation states; classical Ml or alternative M2 macrophages represent extremes of a continuum of this activation. Tumor-associated macrophages generally acquire an M2-like phenotype that is relevant for their participation in tumor growth and progression. There is now evidence that also neutrophils can be driven towards distinct phenotypes in response to microenvironmental signals. In fact they can interact with distinct cell populations and produce a wide number of cytokines and effector molecules. Therefore, macrophages and neutrophils are both integrated in the regulation of the innate and adaptive immune responses in various inflammatory situations, including cancer. These findings have triggered efforts to target tumor-associated macrophages and neutrophils. In particular, “reeducation” to activate their antitumor potential or elimination of tumor promoting cells is a new strategy undergoing preclinical and clinical evaluation.","PeriodicalId":19156,"journal":{"name":"New Journal of Science","volume":"1 1","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2014-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85001623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Zulkafli, Z. Zainun, M. Hassan, W. Rahman, Nurul Azhan Othman, S. Ghazali, R. Hassan
Introduction. FLT3 is a tyrosine kinase receptor involved in the proliferation and differentiation of hematopoietic stem cells. There are two types of common FLT3 gene mutation, internal tandem duplication and the D835 mutation, which are known to be associated with a poor clinical outcome in acute leukemia patients. Methods. This study evaluates the incidence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) in 38 pediatric patients diagnosed with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) in Hospital Universiti Sains Malaysia. DNA extraction was done from archive bone marrow samples to determine FLT3-ITD mutations using polymerase chain reaction. Results. In this pediatric series, the age ranges were 2–14 years. However, no FLT3-ITD mutations were detected in any of the samples. Conclusion. This preliminary study suggested that the incidence of FLT3 gene mutation most probably was very low in pediatrics patients diagnosed with acute leukemia. A further study with larger number of patient samples is necessary to confirm the findings and to further appreciate the prognostic value of FLT3-ITD mutation among pediatrics patients.
{"title":"FLT3 Gene Mutation in Childhood Acute Leukemia: A Preliminary Study","authors":"Z. Zulkafli, Z. Zainun, M. Hassan, W. Rahman, Nurul Azhan Othman, S. Ghazali, R. Hassan","doi":"10.1155/2014/735453","DOIUrl":"https://doi.org/10.1155/2014/735453","url":null,"abstract":"Introduction. FLT3 is a tyrosine kinase receptor involved in the proliferation and differentiation of hematopoietic stem cells. There are two types of common FLT3 gene mutation, internal tandem duplication and the D835 mutation, which are known to be associated with a poor clinical outcome in acute leukemia patients. Methods. This study evaluates the incidence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) in 38 pediatric patients diagnosed with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) in Hospital Universiti Sains Malaysia. DNA extraction was done from archive bone marrow samples to determine FLT3-ITD mutations using polymerase chain reaction. Results. In this pediatric series, the age ranges were 2–14 years. However, no FLT3-ITD mutations were detected in any of the samples. Conclusion. This preliminary study suggested that the incidence of FLT3 gene mutation most probably was very low in pediatrics patients diagnosed with acute leukemia. A further study with larger number of patient samples is necessary to confirm the findings and to further appreciate the prognostic value of FLT3-ITD mutation among pediatrics patients.","PeriodicalId":19156,"journal":{"name":"New Journal of Science","volume":"44 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2014-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85885021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The 2011 report of the World Health Organization General Assembly on noncommunicable diseases identified chronic kidney disease as a worldwide health issue posing a heavy economic burden. Hepatitis C virus infection, which is responsible for over 1 million deaths resulting from cirrhosis and liver cancer, is linked to chronic kidney disease in several ways; some forms of renal disease are precipitated by hepatitis C and patients with end-stage chronic renal disease are at increased risk for acquiring HCV. The aim of this review is to update the evidence on the relationship between hepatitis C infection and chronic kidney disease. Information has been accumulated in the last decade indicating that HCV plays an adverse effect on the incidence and progression of chronic kidney disease; a novel meta-analysis of observational studies (seven longitudinal studies; 890,560 unique individuals) found a relationship between hepatitis C seropositivity and incidence of reduced estimated glomerular filtration rate (adjusted relative risk, 1.70; 95% CI, 1.20; 2.39; ) in the adult general population. In addition to conventional risk factors, hepatitis C may be an additional factor for the development of chronic kidney disease, and an atheromasic activity of hepatitis C virus has been mentioned. The link between hepatitis C and atherosclerosis could also explain the excess risk of cardiovascular mortality that has been observed among hepatitis C virus seropositive patients undergoing maintenance dialysis. A number of biologically plausible mechanisms related to hepatitis C virus have been hypothesized to contribute to atherosclerosis. Implementation of effective treatment intervention towards hepatitis C is required to decrease the healthcare burden of hepatitis C and to prevent the progression of chronic renal disease.
{"title":"The Unravelled Link between Chronic Kidney Disease and Hepatitis C Infection","authors":"F. Fabrizi, P. Messa, Paul L. Martin","doi":"10.1155/2014/180203","DOIUrl":"https://doi.org/10.1155/2014/180203","url":null,"abstract":"The 2011 report of the World Health Organization General Assembly on noncommunicable diseases identified chronic kidney disease as a worldwide health issue posing a heavy economic burden. Hepatitis C virus infection, which is responsible for over 1 million deaths resulting from cirrhosis and liver cancer, is linked to chronic kidney disease in several ways; some forms of renal disease are precipitated by hepatitis C and patients with end-stage chronic renal disease are at increased risk for acquiring HCV. The aim of this review is to update the evidence on the relationship between hepatitis C infection and chronic kidney disease. Information has been accumulated in the last decade indicating that HCV plays an adverse effect on the incidence and progression of chronic kidney disease; a novel meta-analysis of observational studies (seven longitudinal studies; 890,560 unique individuals) found a relationship between hepatitis C seropositivity and incidence of reduced estimated glomerular filtration rate (adjusted relative risk, 1.70; 95% CI, 1.20; 2.39; ) in the adult general population. In addition to conventional risk factors, hepatitis C may be an additional factor for the development of chronic kidney disease, and an atheromasic activity of hepatitis C virus has been mentioned. The link between hepatitis C and atherosclerosis could also explain the excess risk of cardiovascular mortality that has been observed among hepatitis C virus seropositive patients undergoing maintenance dialysis. A number of biologically plausible mechanisms related to hepatitis C virus have been hypothesized to contribute to atherosclerosis. Implementation of effective treatment intervention towards hepatitis C is required to decrease the healthcare burden of hepatitis C and to prevent the progression of chronic renal disease.","PeriodicalId":19156,"journal":{"name":"New Journal of Science","volume":"41 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2014-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86441697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Induced pluripotent stem cells (iPSCs) can be generated by reprogramming of adult/somatic cells. The somatic cell reprogramming technology offers a promising strategy for patient-specific cardiac regenerative medicine, disease modeling, and drug discovery. iPSCs are an ideal potential option for an autologous cell source, as compared to other stem/progenitor cells, because they can be propagated indefinitely and are able to generate a large number of functional cardiovascular cells. However, there are concerns about the specificity, efficiency, immunogenicity, and safety of iPSCs which are major challenges in current translational studies. In order to bring iPSC technology closer to clinical use, fundamental changes in this technique are required to ensure that therapeutic progenies are functional and nontumorigenic. It is therefore critical to understand and investigate the biology, genetic, and epigenetic mechanisms of iPSCs generation and differentiation. In this spotlight paper the discovery, history, and relative mechanisms of iPSC generation are summarized. The current technological improvements and potential applications are highlighted along with the important challenges and perspectives. Finally, emerging technologies are presented in which improvements to iPSC generation and differentiation approaches might warrant further investigation, such as integration-free approaches, direct reprogramming, and the development of iPSC banking.
{"title":"Myocardial Reprogramming Medicine: The Development, Application, and Challenge of Induced Pluripotent Stem Cells","authors":"Yigang Wang","doi":"10.1155/2014/756240","DOIUrl":"https://doi.org/10.1155/2014/756240","url":null,"abstract":"Induced pluripotent stem cells (iPSCs) can be generated by reprogramming of adult/somatic cells. The somatic cell reprogramming technology offers a promising strategy for patient-specific cardiac regenerative medicine, disease modeling, and drug discovery. iPSCs are an ideal potential option for an autologous cell source, as compared to other stem/progenitor cells, because they can be propagated indefinitely and are able to generate a large number of functional cardiovascular cells. However, there are concerns about the specificity, efficiency, immunogenicity, and safety of iPSCs which are major challenges in current translational studies. In order to bring iPSC technology closer to clinical use, fundamental changes in this technique are required to ensure that therapeutic progenies are functional and nontumorigenic. It is therefore critical to understand and investigate the biology, genetic, and epigenetic mechanisms of iPSCs generation and differentiation. In this spotlight paper the discovery, history, and relative mechanisms of iPSC generation are summarized. The current technological improvements and potential applications are highlighted along with the important challenges and perspectives. Finally, emerging technologies are presented in which improvements to iPSC generation and differentiation approaches might warrant further investigation, such as integration-free approaches, direct reprogramming, and the development of iPSC banking.","PeriodicalId":19156,"journal":{"name":"New Journal of Science","volume":"2007 1","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86197739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human cytomegalovirus (HCMV) is a human herpesvirus which causes little or no disease in the immunocompetent. However, in immunocompromised individuals, neonates, or patients on immune suppressive therapies, HCMV can cause significant morbidity and mortality in some patient groups. As with all herpesviruses, HCMV has two life cycle phases: a productive phase, where new virions are produced and a latent phase where there is a restricted gene transcription profile and no new virion production. Currently available antivirals target the productive phase of HCMV infection and, although these have greatly decreased the severity of HCMV-induced disease in immunocompromised or immunosuppressed individuals, they often have associated toxicities, routinely result in selection of drug resistant viral mutants, and, importantly, they do not target cells latently infected with virus. Thus, there is a real need to derive novel antiviral therapies which, not least, are also able to target latent infection. In this paper, we describe recent work which has begun to analyse changes in the cell associated with latent infection and the possibility that these latency-associated changes in cell phenotype could be targeted by novel chemo- or immunotherapeutic strategies in order to diminish, or even clear, latent infection at least in some specific clinical settings.
{"title":"Human Cytomegalovirus Latency: Targeting Differences in the Latently Infected Cell with a View to Clearing Latent Infection","authors":"E. Poole, M. Wills, J. Sinclair","doi":"10.1155/2014/313761","DOIUrl":"https://doi.org/10.1155/2014/313761","url":null,"abstract":"Human cytomegalovirus (HCMV) is a human herpesvirus which causes little or no disease in the immunocompetent. However, in immunocompromised individuals, neonates, or patients on immune suppressive therapies, HCMV can cause significant morbidity and mortality in some patient groups. As with all herpesviruses, HCMV has two life cycle phases: a productive phase, where new virions are produced and a latent phase where there is a restricted gene transcription profile and no new virion production. Currently available antivirals target the productive phase of HCMV infection and, although these have greatly decreased the severity of HCMV-induced disease in immunocompromised or immunosuppressed individuals, they often have associated toxicities, routinely result in selection of drug resistant viral mutants, and, importantly, they do not target cells latently infected with virus. Thus, there is a real need to derive novel antiviral therapies which, not least, are also able to target latent infection. In this paper, we describe recent work which has begun to analyse changes in the cell associated with latent infection and the possibility that these latency-associated changes in cell phenotype could be targeted by novel chemo- or immunotherapeutic strategies in order to diminish, or even clear, latent infection at least in some specific clinical settings.","PeriodicalId":19156,"journal":{"name":"New Journal of Science","volume":"27 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83667962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monica L Courtney, Tamara I Rabe, P. Collombat, A. Mansouri
The development of the endocrine pancreas is under the control of highly orchestrated, cross-interacting transcription factors. Pancreas genesis is initiated by the emergence of a Pdx1/Ptf1a marked territory at the foregut/midgut junction. A small fraction of pancreatic fated cells activates the expression of the bHLH transcription factor Ngn3 triggering the endocrine cell program, thus giving rise to beta-, alpha-, delta-, PP-, and epsilon-cells, producing insulin, glucagon, somatostatin, pancreatic polypeptide, and ghrelin, respectively. Two transcription factors, Pax4 and Arx, play a crucial role in differential endocrine cell subtype specification. They were shown to be necessary and sufficient to endow endocrine progenitors with either a beta- or alpha-cell destiny. Interestingly, whereas the forced expression of Arx in beta-cells converts these into cells exhibiting alpha- and PP-cell characteristics, the sole expression of Pax4 in alpha-cells promotes alpha-cell-neogenesis and the acquisition of beta-cell features, the resulting beta-like cells being capable of counteracting chemically induced diabetes. Gaining new insights into the molecular mechanisms controlling Pax4 and Arx expression in the endocrine pancreas may therefore pave new avenues for the therapy of diabetes.
{"title":"Pax4 and Arx Represent Crucial Regulators of the Development of the Endocrine Pancreas","authors":"Monica L Courtney, Tamara I Rabe, P. Collombat, A. Mansouri","doi":"10.1155/2014/981569","DOIUrl":"https://doi.org/10.1155/2014/981569","url":null,"abstract":"The development of the endocrine pancreas is under the control of highly orchestrated, cross-interacting transcription factors. Pancreas genesis is initiated by the emergence of a Pdx1/Ptf1a marked territory at the foregut/midgut junction. A small fraction of pancreatic fated cells activates the expression of the bHLH transcription factor Ngn3 triggering the endocrine cell program, thus giving rise to beta-, alpha-, delta-, PP-, and epsilon-cells, producing insulin, glucagon, somatostatin, pancreatic polypeptide, and ghrelin, respectively. Two transcription factors, Pax4 and Arx, play a crucial role in differential endocrine cell subtype specification. They were shown to be necessary and sufficient to endow endocrine progenitors with either a beta- or alpha-cell destiny. Interestingly, whereas the forced expression of Arx in beta-cells converts these into cells exhibiting alpha- and PP-cell characteristics, the sole expression of Pax4 in alpha-cells promotes alpha-cell-neogenesis and the acquisition of beta-cell features, the resulting beta-like cells being capable of counteracting chemically induced diabetes. Gaining new insights into the molecular mechanisms controlling Pax4 and Arx expression in the endocrine pancreas may therefore pave new avenues for the therapy of diabetes.","PeriodicalId":19156,"journal":{"name":"New Journal of Science","volume":"54 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2014-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91074808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear pore complexes (NPCs) are the sole gateways between the nucleus and the cytoplasm of eukaryotic cells and they mediate all macromolecular trafficking between these cellular compartments. Nucleocytoplasmic transport is highly selective and precisely regulated and as such an important aspect of normal cellular function. Defects in this process or in its machinery have been linked to various human diseases, including cancer. Nucleoporins, which are about 30 proteins that built up NPCs, are critical players in nucleocytoplasmic transport and have also been shown to be key players in numerous other cellular processes, such as cell cycle control and gene expression regulation. This review will focus on the three nucleoporins Nup98, Nup214, and Nup358. Common to them is their significance in nucleocytoplasmic transport, their multiple other functions, and being targets for chromosomal translocations that lead to haematopoietic malignancies, in particular acute myeloid leukaemia. The underlying molecular mechanisms of nucleoporin-associated leukaemias are only poorly understood but share some characteristics and are distinguished by their poor prognosis and therapy outcome.
{"title":"Nucleoporin Gene Fusions and Hematopoietic Malignancies","authors":"B. Fahrenkrog","doi":"10.1155/2014/468306","DOIUrl":"https://doi.org/10.1155/2014/468306","url":null,"abstract":"Nuclear pore complexes (NPCs) are the sole gateways between the nucleus and the cytoplasm of eukaryotic cells and they mediate all macromolecular trafficking between these cellular compartments. Nucleocytoplasmic transport is highly selective and precisely regulated and as such an important aspect of normal cellular function. Defects in this process or in its machinery have been linked to various human diseases, including cancer. Nucleoporins, which are about 30 proteins that built up NPCs, are critical players in nucleocytoplasmic transport and have also been shown to be key players in numerous other cellular processes, such as cell cycle control and gene expression regulation. This review will focus on the three nucleoporins Nup98, Nup214, and Nup358. Common to them is their significance in nucleocytoplasmic transport, their multiple other functions, and being targets for chromosomal translocations that lead to haematopoietic malignancies, in particular acute myeloid leukaemia. The underlying molecular mechanisms of nucleoporin-associated leukaemias are only poorly understood but share some characteristics and are distinguished by their poor prognosis and therapy outcome.","PeriodicalId":19156,"journal":{"name":"New Journal of Science","volume":"15 1","pages":"18"},"PeriodicalIF":0.0,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78341049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multidrug resistance (MDR) in cancer cells is a phenotype whereby cells display reduced sensitivity to anticancer drugs, based on a variety of mechanisms, including an increase in drug efflux, the reduction of drug uptake, the activation of cell growth and survival signaling, the promotion of DNA repair, and the inhibition of apoptosis signaling. Increased expression of the plasma membrane drug efflux pumps, the ATP-binding cassette (ABC) transporters, is involved in MDR. P-Glycoprotein/ABCB1 is a member of the ABC transporter family, and facilitates the efflux of various anticancer drugs, including anthracyclines, vinca alkaloids, epipodophyllotoxins, taxanes, and kinase inhibitors, from cells. P-Glycoprotein is also expressed in normal tissues and cells, including the kidney, liver, colon, and adrenal gland, to transport and/or secrete substrates and at the blood-brain, blood-placenta, and blood-testis barriers to protect these tissues from toxic substances. To understand the mechanistic functions of P-glycoprotein and to overcome MDR, investigators have identified the substrates and competitive inhibitors of P-glycoprotein. Recently, we and other groups reported associations between cellular signaling pathways and the expression, stability, degradation, localization, and activity of P-glycoprotein. The present review summarizes the currently available information about the transcriptional and posttranslational regulation of P-glycoprotein expression and function.
{"title":"Regulations of P-Glycoprotein/ABCB1/MDR1 in Human Cancer Cells","authors":"K. Katayama, K. Noguchi, Y. Sugimoto","doi":"10.1155/2014/476974","DOIUrl":"https://doi.org/10.1155/2014/476974","url":null,"abstract":"Multidrug resistance (MDR) in cancer cells is a phenotype whereby cells display reduced sensitivity to anticancer drugs, based on a variety of mechanisms, including an increase in drug efflux, the reduction of drug uptake, the activation of cell growth and survival signaling, the promotion of DNA repair, and the inhibition of apoptosis signaling. Increased expression of the plasma membrane drug efflux pumps, the ATP-binding cassette (ABC) transporters, is involved in MDR. P-Glycoprotein/ABCB1 is a member of the ABC transporter family, and facilitates the efflux of various anticancer drugs, including anthracyclines, vinca alkaloids, epipodophyllotoxins, taxanes, and kinase inhibitors, from cells. P-Glycoprotein is also expressed in normal tissues and cells, including the kidney, liver, colon, and adrenal gland, to transport and/or secrete substrates and at the blood-brain, blood-placenta, and blood-testis barriers to protect these tissues from toxic substances. To understand the mechanistic functions of P-glycoprotein and to overcome MDR, investigators have identified the substrates and competitive inhibitors of P-glycoprotein. Recently, we and other groups reported associations between cellular signaling pathways and the expression, stability, degradation, localization, and activity of P-glycoprotein. The present review summarizes the currently available information about the transcriptional and posttranslational regulation of P-glycoprotein expression and function.","PeriodicalId":19156,"journal":{"name":"New Journal of Science","volume":"25 2 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77818089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}