Pub Date : 2023-05-11DOI: 10.1186/s42466-023-00244-w
Frederike A Straeten, Stephanie van Zyl, Bastian Maus, Jochen Bauer, Heiner Raum, Catharina C Gross, Sabine Bruchmann, Nils C Landmeyer, Cornelius Faber, Jens Minnerup, Antje Schmidt-Pogoda
Introduction: Motor impairments are the objectively most striking sequelae after stroke, but non-motor consequences represent a high burden for stroke survivors as well. Depression is reported in one third of patients, the fatigue prevalence ranges from 23 to 75% due to heterogenous definitions and assessments. Cognitive impairment is found in one third of stroke patients 3-12 months after stroke and the risk for dementia is doubled by the event. Aerobic exercise has been shown to reduce depressive symptoms, counteract fatigue, and improve cognitive functions in non-stroke patients. Furthermore, exercise is known to strengthen the immune system. It is unknown, though, if aerobic exercise can counteract poststroke depression, fatigue, poststroke dementia and poststroke immunosuppression. Therefore, we aim to analyse the effect of aerobic exercise on functional recovery, cognition, emotional well-being, and the immune system. Reorganization of topological networks of the brain shall be visualized by diffusion MRI fibre tracking.
Methods: Adults with mild to moderate stroke impairment (initial NIHSS or NIHSS determined at the moment of maximal deterioration 1-18) are recruited within two weeks of stroke onset. Study participants must be able to walk independently without risk of falling. All patients are equipped with wearable devices (smartwatches) measuring the heart rate and daily step count. The optimal heart rate zone is determined by lactate ergometry at baseline. Patients are randomized to the control or the intervention group, the latter performing a heart rate-controlled walking training on own initiative 5 times a week for 45 min. All patients receive medical care and stroke rehabilitation to the usual standard of care. The following assessments are conducted at baseline and after 90 days: Fugl Meyer-assessment for the upper and lower extremity, 6 min-walk test, neuropsychological assessment (cognition: MoCA, SDMT; fatigue and depression: FSMC, HADS-D, participation: WHODAS 2.0 12-items), blood testing (i.e. immune profiling to obtain insights into phenotype and functional features of distinct immune-cell subsets) and cranial magnetic resonance imaging (MRI) with grid-sampled diffusion weighted imaging, white matter fibre tracking and MR spectroscopy.
Perspective: This study investigates the effect of smartwatch-controlled aerobic exercise on functional recovery, cognition, emotional well-being, the immune system, and neuronal network reorganization in stroke patients. Trial registration ClinicalTrials.gov NCT Number: NCT05690165. First posted19 January 2023. Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT05690165.
{"title":"EXERTION: a pilot trial on the effect of aerobic, smartwatch-controlled exercise on stroke recovery: effects on motor function, structural repair, cognition, mental well-being, and the immune system.","authors":"Frederike A Straeten, Stephanie van Zyl, Bastian Maus, Jochen Bauer, Heiner Raum, Catharina C Gross, Sabine Bruchmann, Nils C Landmeyer, Cornelius Faber, Jens Minnerup, Antje Schmidt-Pogoda","doi":"10.1186/s42466-023-00244-w","DOIUrl":"https://doi.org/10.1186/s42466-023-00244-w","url":null,"abstract":"<p><strong>Introduction: </strong>Motor impairments are the objectively most striking sequelae after stroke, but non-motor consequences represent a high burden for stroke survivors as well. Depression is reported in one third of patients, the fatigue prevalence ranges from 23 to 75% due to heterogenous definitions and assessments. Cognitive impairment is found in one third of stroke patients 3-12 months after stroke and the risk for dementia is doubled by the event. Aerobic exercise has been shown to reduce depressive symptoms, counteract fatigue, and improve cognitive functions in non-stroke patients. Furthermore, exercise is known to strengthen the immune system. It is unknown, though, if aerobic exercise can counteract poststroke depression, fatigue, poststroke dementia and poststroke immunosuppression. Therefore, we aim to analyse the effect of aerobic exercise on functional recovery, cognition, emotional well-being, and the immune system. Reorganization of topological networks of the brain shall be visualized by diffusion MRI fibre tracking.</p><p><strong>Methods: </strong>Adults with mild to moderate stroke impairment (initial NIHSS or NIHSS determined at the moment of maximal deterioration 1-18) are recruited within two weeks of stroke onset. Study participants must be able to walk independently without risk of falling. All patients are equipped with wearable devices (smartwatches) measuring the heart rate and daily step count. The optimal heart rate zone is determined by lactate ergometry at baseline. Patients are randomized to the control or the intervention group, the latter performing a heart rate-controlled walking training on own initiative 5 times a week for 45 min. All patients receive medical care and stroke rehabilitation to the usual standard of care. The following assessments are conducted at baseline and after 90 days: Fugl Meyer-assessment for the upper and lower extremity, 6 min-walk test, neuropsychological assessment (cognition: MoCA, SDMT; fatigue and depression: FSMC, HADS-D, participation: WHODAS 2.0 12-items), blood testing (i.e. immune profiling to obtain insights into phenotype and functional features of distinct immune-cell subsets) and cranial magnetic resonance imaging (MRI) with grid-sampled diffusion weighted imaging, white matter fibre tracking and MR spectroscopy.</p><p><strong>Perspective: </strong>This study investigates the effect of smartwatch-controlled aerobic exercise on functional recovery, cognition, emotional well-being, the immune system, and neuronal network reorganization in stroke patients. Trial registration ClinicalTrials.gov NCT Number: NCT05690165. First posted19 January 2023. Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT05690165.</p>","PeriodicalId":19169,"journal":{"name":"Neurological Research and Practice","volume":"5 1","pages":"18"},"PeriodicalIF":0.0,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173484/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9806961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-04DOI: 10.1186/s42466-023-00243-x
Marcel Seungsu Woo, Christina Mayer, Marlene Fischer, Stefan Kluge, Kevin Roedl, Christian Gerloff, Patrick Czorlich, Götz Thomalla, Julian Schulze Zur Wiesch, Nils Schweingruber
Background: Unpredictable vegetative deteriorations made the treatment of patients with acute COVID-19 on intensive care unit particularly challenging during the first waves of the pandemic. Clinical correlates of dysautonomia and their impact on the disease course in critically ill COVID-19 patients are unknown.
Methods: We retrospectively analyzed data collected during a single-center observational study (March 2020-November 2021) which was performed at the University Medical Center Hamburg-Eppendorf, a large tertiary medical center in Germany. All patients admitted to ICU due to acute COVID-19 disease during the study period were included (n = 361). Heart rate variability (HRV) and blood pressure variability (BPV) per day were used as clinical surrogates of dysautonomia and compared between survivors and non-survivors at different time points after admission. Intraindividual correlation of vital signs with laboratory parameters were calculated and corrected for age, sex and disease severity.
Results: Patients who deceased in ICU had a longer stay (median days ± IQR, survivors 11.0 ± 27.3, non-survivors 14.1 ± 18.7, P = 0.85), in contrast time spent under invasive ventilation was not significantly different (median hours ± IQR, survivors 322 ± 782, non-survivors 286 ± 434, P = 0.29). Reduced HRV and BPV predicted lethal outcome in patients staying on ICU longer than 10 days after adjustment for age, sex, and disease severity. Accordingly, HRV was significantly less correlated with inflammatory markers (e.g. CRP and Procalcitonin) and blood carbon dioxide in non-survivors in comparison to survivors indicating uncoupling between autonomic function and inflammation in non-survivors.
Conclusions: Our study suggests autonomic dysfunction as a contributor to mortality in critically ill COVID-19 patients during the first waves of the pandemic. Serving as a surrogate for disease progression, these findings could contribute to the clinical management of COVID-19 patients admitted to the ICU. Furthermore, the suggested measure of dysautonomia and correlation with other laboratory parameters is non-invasive, simple, and cost-effective and should be evaluated as an additional outcome parameter in septic patients treated in the ICU in the future.
{"title":"Clinical surrogates of dysautonomia predict lethal outcome in COVID-19 on intensive care unit.","authors":"Marcel Seungsu Woo, Christina Mayer, Marlene Fischer, Stefan Kluge, Kevin Roedl, Christian Gerloff, Patrick Czorlich, Götz Thomalla, Julian Schulze Zur Wiesch, Nils Schweingruber","doi":"10.1186/s42466-023-00243-x","DOIUrl":"10.1186/s42466-023-00243-x","url":null,"abstract":"<p><strong>Background: </strong>Unpredictable vegetative deteriorations made the treatment of patients with acute COVID-19 on intensive care unit particularly challenging during the first waves of the pandemic. Clinical correlates of dysautonomia and their impact on the disease course in critically ill COVID-19 patients are unknown.</p><p><strong>Methods: </strong>We retrospectively analyzed data collected during a single-center observational study (March 2020-November 2021) which was performed at the University Medical Center Hamburg-Eppendorf, a large tertiary medical center in Germany. All patients admitted to ICU due to acute COVID-19 disease during the study period were included (n = 361). Heart rate variability (HRV) and blood pressure variability (BPV) per day were used as clinical surrogates of dysautonomia and compared between survivors and non-survivors at different time points after admission. Intraindividual correlation of vital signs with laboratory parameters were calculated and corrected for age, sex and disease severity.</p><p><strong>Results: </strong>Patients who deceased in ICU had a longer stay (median days ± IQR, survivors 11.0 ± 27.3, non-survivors 14.1 ± 18.7, P = 0.85), in contrast time spent under invasive ventilation was not significantly different (median hours ± IQR, survivors 322 ± 782, non-survivors 286 ± 434, P = 0.29). Reduced HRV and BPV predicted lethal outcome in patients staying on ICU longer than 10 days after adjustment for age, sex, and disease severity. Accordingly, HRV was significantly less correlated with inflammatory markers (e.g. CRP and Procalcitonin) and blood carbon dioxide in non-survivors in comparison to survivors indicating uncoupling between autonomic function and inflammation in non-survivors.</p><p><strong>Conclusions: </strong>Our study suggests autonomic dysfunction as a contributor to mortality in critically ill COVID-19 patients during the first waves of the pandemic. Serving as a surrogate for disease progression, these findings could contribute to the clinical management of COVID-19 patients admitted to the ICU. Furthermore, the suggested measure of dysautonomia and correlation with other laboratory parameters is non-invasive, simple, and cost-effective and should be evaluated as an additional outcome parameter in septic patients treated in the ICU in the future.</p>","PeriodicalId":19169,"journal":{"name":"Neurological Research and Practice","volume":"5 1","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9470435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-25DOI: 10.1186/s42466-023-00242-y
{"title":"Correction to Competing Interests.","authors":"","doi":"10.1186/s42466-023-00242-y","DOIUrl":"https://doi.org/10.1186/s42466-023-00242-y","url":null,"abstract":"","PeriodicalId":19169,"journal":{"name":"Neurological Research and Practice","volume":"5 1","pages":"16"},"PeriodicalIF":0.0,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127355/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9706927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-20DOI: 10.1186/s42466-023-00240-0
Dirk Sander, Thorsten Bartsch, Florian Connolly, Christian Enzinger, Urs Fischer, Nils Nellessen, Holger Poppert, Kristina Szabo, Helge Topka
Introduction: In 2022 the DGN (Deutsche Gesellschaft für Neurologie) published an updated Transient Global Amnesia (TGA) guideline. TGA is characterized by a sudden onset of retrograde and anterograde amnesia for a period of one to a maximum of 24 h (with an average of 6 to 8 h). The incidence is estimated between 3 and 8 per 100,000 population/year. TGA is a disorder that occurs predominantly between 50 and 70 years.
Recommendations: The diagnosis of TGA should be made clinically. In case of an atypical clinical presentation or suspicion of a possible differential diagnosis, further diagnostics should be performed immediately. The detection of typical unilateral or bilateral punctate DWI/T2 lesions in the hippocampus (especially the CA1 region) in a proportion of patients proves TGA. The sensitivity of MRI is considered higher when performed between 24 and 72 h after onset. If additional DWI changes occur outside the hippocampus, a vascular etiology should be considered, and prompt sonographic and cardiac diagnostics should be performed EEG may help to differentiate TGA from rare amnestic epileptic attacks, especially in recurrent amnestic attacks. TGA in patients < 50 years of age is a rarity, therefore it is mandatory to rapidly search for other causes in particular in younger patients. The cause of TGA is still unknown. Numerous findings in recent years point to a multifactorial genesis. Because the pathomechanism of TGA is not yet clearly known, no evidence-based therapeutic or prophylactic recommendations can be made.
Conclusions: There is no evidence for chronic sequelae of TGA with respect to cerebral ischemia, chronic memory impairment, or the onset of dementia-related syndromes.
{"title":"Guideline \"Transient Global Amnesia (TGA)\" of the German Society of Neurology (Deutsche Gesellschaft für Neurologie): S1-guideline.","authors":"Dirk Sander, Thorsten Bartsch, Florian Connolly, Christian Enzinger, Urs Fischer, Nils Nellessen, Holger Poppert, Kristina Szabo, Helge Topka","doi":"10.1186/s42466-023-00240-0","DOIUrl":"10.1186/s42466-023-00240-0","url":null,"abstract":"<p><strong>Introduction: </strong>In 2022 the DGN (Deutsche Gesellschaft für Neurologie) published an updated Transient Global Amnesia (TGA) guideline. TGA is characterized by a sudden onset of retrograde and anterograde amnesia for a period of one to a maximum of 24 h (with an average of 6 to 8 h). The incidence is estimated between 3 and 8 per 100,000 population/year. TGA is a disorder that occurs predominantly between 50 and 70 years.</p><p><strong>Recommendations: </strong>The diagnosis of TGA should be made clinically. In case of an atypical clinical presentation or suspicion of a possible differential diagnosis, further diagnostics should be performed immediately. The detection of typical unilateral or bilateral punctate DWI/T2 lesions in the hippocampus (especially the CA1 region) in a proportion of patients proves TGA. The sensitivity of MRI is considered higher when performed between 24 and 72 h after onset. If additional DWI changes occur outside the hippocampus, a vascular etiology should be considered, and prompt sonographic and cardiac diagnostics should be performed EEG may help to differentiate TGA from rare amnestic epileptic attacks, especially in recurrent amnestic attacks. TGA in patients < 50 years of age is a rarity, therefore it is mandatory to rapidly search for other causes in particular in younger patients. The cause of TGA is still unknown. Numerous findings in recent years point to a multifactorial genesis. Because the pathomechanism of TGA is not yet clearly known, no evidence-based therapeutic or prophylactic recommendations can be made.</p><p><strong>Conclusions: </strong>There is no evidence for chronic sequelae of TGA with respect to cerebral ischemia, chronic memory impairment, or the onset of dementia-related syndromes.</p>","PeriodicalId":19169,"journal":{"name":"Neurological Research and Practice","volume":"5 1","pages":"15"},"PeriodicalIF":0.0,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116751/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9422207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Epidural electrical epinal cord stimulation (ESCS) is an established therapeutic option in various chronic pain conditions. In the last decade, proof-of-concept studies have demonstrated that ESCS in combination with task-oriented rehabilitative interventions can partially restore motor function and neurological recovery after spinal cord injury (SCI). In addition to the ESCS applications for improvement of upper and lower extremity function, ESCS has been investigated for treatment of autonomic dysfunction after SCI such as orthostatic hypotension. The aim of this overview is to present the background of ESCS, emerging concepts and its readiness to become a routine therapy in SCI beyond treatment of chronic pain conditions.
{"title":"Beyond treatment of chronic pain: a scoping review about epidural electrical spinal cord stimulation to restore sensorimotor and autonomic function after spinal cord injury.","authors":"Antonia Luz, Rüdiger Rupp, Rezvan Ahmadi, Norbert Weidner","doi":"10.1186/s42466-023-00241-z","DOIUrl":"10.1186/s42466-023-00241-z","url":null,"abstract":"<p><p>Epidural electrical epinal cord stimulation (ESCS) is an established therapeutic option in various chronic pain conditions. In the last decade, proof-of-concept studies have demonstrated that ESCS in combination with task-oriented rehabilitative interventions can partially restore motor function and neurological recovery after spinal cord injury (SCI). In addition to the ESCS applications for improvement of upper and lower extremity function, ESCS has been investigated for treatment of autonomic dysfunction after SCI such as orthostatic hypotension. The aim of this overview is to present the background of ESCS, emerging concepts and its readiness to become a routine therapy in SCI beyond treatment of chronic pain conditions.</p>","PeriodicalId":19169,"journal":{"name":"Neurological Research and Practice","volume":"5 1","pages":"14"},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103526/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9309428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-06DOI: 10.1186/s42466-023-00239-7
L Nitsch, O Shirvani Samani, M Silaschi, M Schafigh, S Zimmer, G C Petzold, C Kindler, F J Bode
Background: Infective endocarditis (IE) is a serious condition with a high mortality, represents a rare cause of stroke and an increased risk of intracranial hemorrhage. In this single center study, we characterize stroke patients with IE. We were interested in risk factors for intracranial hemorrhage and outcome of patients with intracranial hemorrhage compared to patients with ischemic stroke.
Methods: Patients with IE and symptomatic ischemic stroke or intracranial hemorrhage admitted to our hospital between January 2019 and December 2022 were included in this retrospective study.
Results: 48 patients with IE and ischemic stroke or intracranial hemorrhage were identified. 37 patients were diagnosed with ischemic stroke, 11 patients were diagnosed with intracranial hemorrhage. The intracranial hemorrhage occurred within the first 12 days after admission. We identified Staphylococcus aureus detection and thrombocytopenia as risk factors for hemorrhagic complications. An increased in-hospital mortality in patients with intracranial hemorrhage (63.6% vs. 22%, p = 0.022) was found, whereas patients with ischemic stroke and patients with intracranial hemorrhage do not differ regarding favorable clinical outcome (27% vs. 27.3%, p = 1.0). 27.3% patients with intracranial hemorrhage and 43.2% patients with ischemic stroke underwent cardiac surgery. Overall, 15.7% new ischemic strokes occurred after valve reconstruction, whereas no new intracranial hemorrhage was observed.
Conclusions: We found an increased in-hospital mortality in patients with intracranial hemorrhage. Beside thrombocytopenia, we identified S. aureus detection as a risk factor for intracranial hemorrhage.
{"title":"Infective endocarditis and stroke: when does it bleed? A single center retrospective study.","authors":"L Nitsch, O Shirvani Samani, M Silaschi, M Schafigh, S Zimmer, G C Petzold, C Kindler, F J Bode","doi":"10.1186/s42466-023-00239-7","DOIUrl":"https://doi.org/10.1186/s42466-023-00239-7","url":null,"abstract":"<p><strong>Background: </strong>Infective endocarditis (IE) is a serious condition with a high mortality, represents a rare cause of stroke and an increased risk of intracranial hemorrhage. In this single center study, we characterize stroke patients with IE. We were interested in risk factors for intracranial hemorrhage and outcome of patients with intracranial hemorrhage compared to patients with ischemic stroke.</p><p><strong>Methods: </strong>Patients with IE and symptomatic ischemic stroke or intracranial hemorrhage admitted to our hospital between January 2019 and December 2022 were included in this retrospective study.</p><p><strong>Results: </strong>48 patients with IE and ischemic stroke or intracranial hemorrhage were identified. 37 patients were diagnosed with ischemic stroke, 11 patients were diagnosed with intracranial hemorrhage. The intracranial hemorrhage occurred within the first 12 days after admission. We identified Staphylococcus aureus detection and thrombocytopenia as risk factors for hemorrhagic complications. An increased in-hospital mortality in patients with intracranial hemorrhage (63.6% vs. 22%, p = 0.022) was found, whereas patients with ischemic stroke and patients with intracranial hemorrhage do not differ regarding favorable clinical outcome (27% vs. 27.3%, p = 1.0). 27.3% patients with intracranial hemorrhage and 43.2% patients with ischemic stroke underwent cardiac surgery. Overall, 15.7% new ischemic strokes occurred after valve reconstruction, whereas no new intracranial hemorrhage was observed.</p><p><strong>Conclusions: </strong>We found an increased in-hospital mortality in patients with intracranial hemorrhage. Beside thrombocytopenia, we identified S. aureus detection as a risk factor for intracranial hemorrhage.</p>","PeriodicalId":19169,"journal":{"name":"Neurological Research and Practice","volume":"5 1","pages":"13"},"PeriodicalIF":0.0,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9252993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-30DOI: 10.1186/s42466-023-00238-8
Michael De Georgia, Theodore Bowen, K Rose Duncan, Alex Bou Chebl
The relationship between presenting blood pressure in acute ischemic stroke patients and outcome is complex. Several studies have demonstrated a U-shaped curve with worse outcomes when blood pressure is high or low. The American Heart Association/American Stroke Association guidelines recommend values of blood pressure < 185/110 mmHg in patients treated with intravenous t-PA and "permissive hypertension" up to 220/120 mmHg in those not treated with intravenous t-PA. The optimal blood pressure target is less clear in patients undergoing mechanical thrombectomy. Before thrombectomy, the guidelines recommend a blood pressure < 185/110 mmHg though patients with even lower systolic blood pressures may have better outcomes. During and after thrombectomy, the guidelines recommend a blood pressure < 180/105 mmHg. However, several studies have suggested that during thrombectomy the primary goal should be to prevent significant low blood pressure (e.g., target systolic blood pressure > 140 mmHg or MAP > 70 mmHg). After thrombectomy, the primary goal should be to prevent high blood pressure (e.g., target systolic blood pressure < 160 mmHg or MAP < 90 mmHg). To make more specific recommendations, large, randomized-control studies are needed that address factors such as the baseline blood pressure, timing and degree of revascularization, status of collaterals, and estimated risk of reperfusion injury.
{"title":"Blood pressure management in ischemic stroke patients undergoing mechanical thrombectomy.","authors":"Michael De Georgia, Theodore Bowen, K Rose Duncan, Alex Bou Chebl","doi":"10.1186/s42466-023-00238-8","DOIUrl":"https://doi.org/10.1186/s42466-023-00238-8","url":null,"abstract":"<p><p>The relationship between presenting blood pressure in acute ischemic stroke patients and outcome is complex. Several studies have demonstrated a U-shaped curve with worse outcomes when blood pressure is high or low. The American Heart Association/American Stroke Association guidelines recommend values of blood pressure < 185/110 mmHg in patients treated with intravenous t-PA and \"permissive hypertension\" up to 220/120 mmHg in those not treated with intravenous t-PA. The optimal blood pressure target is less clear in patients undergoing mechanical thrombectomy. Before thrombectomy, the guidelines recommend a blood pressure < 185/110 mmHg though patients with even lower systolic blood pressures may have better outcomes. During and after thrombectomy, the guidelines recommend a blood pressure < 180/105 mmHg. However, several studies have suggested that during thrombectomy the primary goal should be to prevent significant low blood pressure (e.g., target systolic blood pressure > 140 mmHg or MAP > 70 mmHg). After thrombectomy, the primary goal should be to prevent high blood pressure (e.g., target systolic blood pressure < 160 mmHg or MAP < 90 mmHg). To make more specific recommendations, large, randomized-control studies are needed that address factors such as the baseline blood pressure, timing and degree of revascularization, status of collaterals, and estimated risk of reperfusion injury.</p>","PeriodicalId":19169,"journal":{"name":"Neurological Research and Practice","volume":"5 1","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9269264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-20DOI: 10.1186/s42466-023-00235-x
Josef Finsterer, Sounira Mehri
{"title":"Stroke thrombolysis or not for an intraventricular thrombus.","authors":"Josef Finsterer, Sounira Mehri","doi":"10.1186/s42466-023-00235-x","DOIUrl":"https://doi.org/10.1186/s42466-023-00235-x","url":null,"abstract":"","PeriodicalId":19169,"journal":{"name":"Neurological Research and Practice","volume":"5 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026408/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9524878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-20DOI: 10.1186/s42466-023-00236-w
Dimitrios Tsiptsios
{"title":"Author response to \"Stroke thrombolysis or not for an intraventricular thrombus\".","authors":"Dimitrios Tsiptsios","doi":"10.1186/s42466-023-00236-w","DOIUrl":"https://doi.org/10.1186/s42466-023-00236-w","url":null,"abstract":"","PeriodicalId":19169,"journal":{"name":"Neurological Research and Practice","volume":"5 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9524881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-03DOI: 10.1186/s42466-023-00237-9
Hans Worthmann, S Winzer, R Schuppner, C Gumbinger, J Barlinn
Background: Endovascular therapy (EVT) offers a highly effective therapy for patients with acute ischemic stroke due to large vessel occlusion. Comprehensive stroke centers (CSC) are required to provide permanent accessibility to EVT. However, when affected patients are not located in the immediate catchment area of a CSC, i.e. in rural or structurally weaker areas, access to EVT is not always ensured.
Main body: Telestroke networks play a crucial role in closing this healthcare coverage gap and thereby support specialized stroke treatment. The aim of this narrative review is to elaborate the concepts for the indication and transfer of EVT candidates via telestroke networks in acute stroke care. The targeted readership includes both comprehensive stroke centers and peripheral hospitals. The review is intended to identify ways to design care beyond those areas with narrow access to stroke unit care to provide the indicated highly effective acute therapies on a region-wide basis. Here, the two different models of care: "mothership" and "drip-and-ship" concerning rates of EVT and its complications as well as outcomes are compared. Decisively, forward-looking new model approaches such as a third model the "flying/driving interentionalists" are introduced and discussed, as far as few clinical trials have investigated these approaches. Diagnostic criteria used by the telestroke networks to enable appropriate patient selection for secondary intrahospital emergency transfers are displayed, which need to meet the criteria in terms of speed, quality and safety.
Conclusion: The few findings from the studies with telestroke networks are neutral for comparison in the drip-and-ship and mothership models. Supporting spoke centres through telestroke networks currently seems to be the best option for offering EVT to a population in structurally weaker regions without direct access to a CSC. Here, it is essential to map the individual reality of care depending on the regional circumstances.
{"title":"Telestroke networks for area-wide access to endovascular stroke treatment.","authors":"Hans Worthmann, S Winzer, R Schuppner, C Gumbinger, J Barlinn","doi":"10.1186/s42466-023-00237-9","DOIUrl":"10.1186/s42466-023-00237-9","url":null,"abstract":"<p><strong>Background: </strong>Endovascular therapy (EVT) offers a highly effective therapy for patients with acute ischemic stroke due to large vessel occlusion. Comprehensive stroke centers (CSC) are required to provide permanent accessibility to EVT. However, when affected patients are not located in the immediate catchment area of a CSC, i.e. in rural or structurally weaker areas, access to EVT is not always ensured.</p><p><strong>Main body: </strong>Telestroke networks play a crucial role in closing this healthcare coverage gap and thereby support specialized stroke treatment. The aim of this narrative review is to elaborate the concepts for the indication and transfer of EVT candidates via telestroke networks in acute stroke care. The targeted readership includes both comprehensive stroke centers and peripheral hospitals. The review is intended to identify ways to design care beyond those areas with narrow access to stroke unit care to provide the indicated highly effective acute therapies on a region-wide basis. Here, the two different models of care: \"mothership\" and \"drip-and-ship\" concerning rates of EVT and its complications as well as outcomes are compared. Decisively, forward-looking new model approaches such as a third model the \"flying/driving interentionalists\" are introduced and discussed, as far as few clinical trials have investigated these approaches. Diagnostic criteria used by the telestroke networks to enable appropriate patient selection for secondary intrahospital emergency transfers are displayed, which need to meet the criteria in terms of speed, quality and safety.</p><p><strong>Conclusion: </strong>The few findings from the studies with telestroke networks are neutral for comparison in the drip-and-ship and mothership models. Supporting spoke centres through telestroke networks currently seems to be the best option for offering EVT to a population in structurally weaker regions without direct access to a CSC. Here, it is essential to map the individual reality of care depending on the regional circumstances.</p>","PeriodicalId":19169,"journal":{"name":"Neurological Research and Practice","volume":"5 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983226/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10820740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}