Metachromatic leukodystrophy (MLD) is a rare leukoencephalopathy caused by pathogenic mutations in the ARSA gene. It manifests as severe motor symptoms, mental problems, and sometimes, seizures. We aimed to investigate the phenotypic manifestations and genetic causes of MLD in an Iranian family. We present the case of a 3-year-old girl who presented with hypotonia, muscular atrophy, and seizures. Neurological and neuromuscular examinations were performed to evaluate clinical characteristics. Whole exome sequencing (WES) was used to detect disease-causing variants. In silico analysis was performed to predict the pathogenicity of this variant. GROMACS software was utilized for molecular dynamic simulation (MDS). Neurological studies revealed marked slowing of motor conduction velocities and an increased motor unit action potential duration. Brain MRI scan revealed white matter abnormalities. By applying WES, we identified a novel homozygous missense variant (NM_000487.6, c.938G > C, p.R313P) in ARSA. Direct sequencing identified this homozygous variant in her asymptomatic younger sister, whereas both parents carried a heterozygous variant. This mutation has not been reported in genetic databases or in literature. In silico analysis predicted that any variation in this DNA position would cause disease, as it is highly conserved. The c.938G > C variant was classified as a pathogenic variant according to ACMG/AMP guidelines. MDS analysis indicated that c.938G > C had a significant impact on both the structure and stabilization of ARSA, ultimately resulting in impaired protein function. The identification of this variant expands the spectrum of ARSA gene mutations associated with MLD and highlights the importance of genetic testing for the diagnosis of MLD.
{"title":"Identification of a Novel ARSA Gene Mutation Through High-Throughput Molecular Diagnosis Method in Two Girls with Late Infantile Metachromatic Leukodystrophy.","authors":"Abolfazl Yari, Farzane Vafaeie, Zahra Miri Karam, Mahya Hosseini, Hassan Hashemzade, Maryam Sadat Rahimi, Alireza Ehsanbakhsh, Ebrahim Miri-Moghaddam","doi":"10.1007/s12017-023-08757-y","DOIUrl":"10.1007/s12017-023-08757-y","url":null,"abstract":"<p><p>Metachromatic leukodystrophy (MLD) is a rare leukoencephalopathy caused by pathogenic mutations in the ARSA gene. It manifests as severe motor symptoms, mental problems, and sometimes, seizures. We aimed to investigate the phenotypic manifestations and genetic causes of MLD in an Iranian family. We present the case of a 3-year-old girl who presented with hypotonia, muscular atrophy, and seizures. Neurological and neuromuscular examinations were performed to evaluate clinical characteristics. Whole exome sequencing (WES) was used to detect disease-causing variants. In silico analysis was performed to predict the pathogenicity of this variant. GROMACS software was utilized for molecular dynamic simulation (MDS). Neurological studies revealed marked slowing of motor conduction velocities and an increased motor unit action potential duration. Brain MRI scan revealed white matter abnormalities. By applying WES, we identified a novel homozygous missense variant (NM_000487.6, c.938G > C, p.R313P) in ARSA. Direct sequencing identified this homozygous variant in her asymptomatic younger sister, whereas both parents carried a heterozygous variant. This mutation has not been reported in genetic databases or in literature. In silico analysis predicted that any variation in this DNA position would cause disease, as it is highly conserved. The c.938G > C variant was classified as a pathogenic variant according to ACMG/AMP guidelines. MDS analysis indicated that c.938G > C had a significant impact on both the structure and stabilization of ARSA, ultimately resulting in impaired protein function. The identification of this variant expands the spectrum of ARSA gene mutations associated with MLD and highlights the importance of genetic testing for the diagnosis of MLD.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10553907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-09-12DOI: 10.1007/s12017-023-08752-3
Jaisan Islam, Elina Kc, Soochong Kim, Moon Young Chung, Ki Seok Park, Hyong Kyu Kim, Young Seok Park
In individuals with chronic neuropathic pain, the posterior insular cortex (PIC) has been found to exhibit increased glutamatergic activity, and the dysgranular portion of PIC (DPIC) has been investigated as a novel cortical target for pain modulation. However, the role of DPIC glutamatergic neurons (DPICg) in trigeminal neuropathic pain (TNP) remains unclear. Here, we examined the outcomes of DPICg inhibition in a rat model of chronic constriction injury of the infraorbital nerve (CCI-ION). Animals were randomly divided into TNP, sham, and control groups. TNP animals underwent CCI-ION surgery. Either optogenetic or null viruses were delivered to the contralateral DPICg of TNP and sham animals. In vivo single-unit extracellular recordings from the ipsilateral spinal trigeminal nucleus caudalis (TNC) and contralateral ventral posteromedial (VPM) thalamus were obtained under both "ON" and "OFF" stimulation states. Behavioral responses during the stimulation-OFF and stimulation-ON phases were examined. Expression of c-Fos, pERK, and CREB immunopositive neurons were also observed. Optogenetic inhibition of contralateral DPICg decreased the neural firing rate in both TNC and VPM thalamus, the expression of sensory-responsive cell bodies, and transcriptional factors in the DPIC of TNP group. Improvements in hyperalgesia, allodynia, and anxiety-like responses in TNP animals were also observed during stimulation-ON condition. In fine, descending pain processing is influenced by neuroanatomical projections from the DPIC to the pain matrix areas, and DPICg could play a necessary role in this neural circuitry. Therefore, the antinociceptive effect of DPICg inhibition in this study may provide evidence for the therapeutic potential of DPICg in TNP.
{"title":"Optogenetic Inhibition of Glutamatergic Neurons in the Dysgranular Posterior Insular Cortex Modulates Trigeminal Neuropathic Pain in CCI-ION Rat.","authors":"Jaisan Islam, Elina Kc, Soochong Kim, Moon Young Chung, Ki Seok Park, Hyong Kyu Kim, Young Seok Park","doi":"10.1007/s12017-023-08752-3","DOIUrl":"10.1007/s12017-023-08752-3","url":null,"abstract":"<p><p>In individuals with chronic neuropathic pain, the posterior insular cortex (PIC) has been found to exhibit increased glutamatergic activity, and the dysgranular portion of PIC (DPIC) has been investigated as a novel cortical target for pain modulation. However, the role of DPIC glutamatergic neurons (DPICg) in trigeminal neuropathic pain (TNP) remains unclear. Here, we examined the outcomes of DPICg inhibition in a rat model of chronic constriction injury of the infraorbital nerve (CCI-ION). Animals were randomly divided into TNP, sham, and control groups. TNP animals underwent CCI-ION surgery. Either optogenetic or null viruses were delivered to the contralateral DPICg of TNP and sham animals. In vivo single-unit extracellular recordings from the ipsilateral spinal trigeminal nucleus caudalis (TNC) and contralateral ventral posteromedial (VPM) thalamus were obtained under both \"ON\" and \"OFF\" stimulation states. Behavioral responses during the stimulation-OFF and stimulation-ON phases were examined. Expression of c-Fos, pERK, and CREB immunopositive neurons were also observed. Optogenetic inhibition of contralateral DPICg decreased the neural firing rate in both TNC and VPM thalamus, the expression of sensory-responsive cell bodies, and transcriptional factors in the DPIC of TNP group. Improvements in hyperalgesia, allodynia, and anxiety-like responses in TNP animals were also observed during stimulation-ON condition. In fine, descending pain processing is influenced by neuroanatomical projections from the DPIC to the pain matrix areas, and DPICg could play a necessary role in this neural circuitry. Therefore, the antinociceptive effect of DPICg inhibition in this study may provide evidence for the therapeutic potential of DPICg in TNP.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10572161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-09-08DOI: 10.1007/s12017-023-08754-1
Kagistia Hana Utami, Nur Amirah Binte Muhammed Yusof, Marta Garcia-Miralles, Niels Henning Skotte, Srikanth Nama, Prabha Sampath, Sarah R Langley, Mahmoud A Pouladi
Transcriptional and proteomics analyses in human fragile X syndrome (FXS) neurons identified markedly reduced expression of COMT, a key enzyme involved in the metabolism of catecholamines, including dopamine, epinephrine and norepinephrine. FXS is the most common genetic cause of intellectual disability and autism spectrum disorders. COMT encodes for catechol-o-methyltransferase and its association with neuropsychiatric disorders and cognitive function has been extensively studied. We observed a significantly reduced level of COMT in in FXS human neural progenitors and neurons, as well as hippocampal neurons from Fmr1 null mice. We show that deficits in COMT were associated with an altered response in an assay of dopaminergic activity in Fmr1 null mice. These findings demonstrate that loss of FMRP downregulates COMT expression and affects dopamine signaling in FXS, and supports the notion that targeting catecholamine metabolism may be useful in regulating certain neuropsychiatric aspects of FXS.
{"title":"Dysregulated COMT Expression in Fragile X Syndrome.","authors":"Kagistia Hana Utami, Nur Amirah Binte Muhammed Yusof, Marta Garcia-Miralles, Niels Henning Skotte, Srikanth Nama, Prabha Sampath, Sarah R Langley, Mahmoud A Pouladi","doi":"10.1007/s12017-023-08754-1","DOIUrl":"10.1007/s12017-023-08754-1","url":null,"abstract":"<p><p>Transcriptional and proteomics analyses in human fragile X syndrome (FXS) neurons identified markedly reduced expression of COMT, a key enzyme involved in the metabolism of catecholamines, including dopamine, epinephrine and norepinephrine. FXS is the most common genetic cause of intellectual disability and autism spectrum disorders. COMT encodes for catechol-o-methyltransferase and its association with neuropsychiatric disorders and cognitive function has been extensively studied. We observed a significantly reduced level of COMT in in FXS human neural progenitors and neurons, as well as hippocampal neurons from Fmr1 null mice. We show that deficits in COMT were associated with an altered response in an assay of dopaminergic activity in Fmr1 null mice. These findings demonstrate that loss of FMRP downregulates COMT expression and affects dopamine signaling in FXS, and supports the notion that targeting catecholamine metabolism may be useful in regulating certain neuropsychiatric aspects of FXS.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10243590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The S100 proteins family is known to affect neuroinflammation and astrocyte activation, which have been suggested to be contributors to the pathogenesis of schizophrenia. We conducted a systematic meta-analysis of S100 genes differential expression in postmortem samples of patients with schizophrenia vs. healthy controls, following the commonly used Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Twelve microarray datasets met the inclusion criteria (overall 511 samples, 253 schizophrenia and 258 controls were analyzed). Nine out of 21 genes were significantly up-regulated or with tendency for up-regulation. A per-sample fold change analysis indicated that the S100 genes' up-regulation was concentrated in a subgroup of the patients. None of the genes have been found to be down-regulated. ANXA3, which encodes Annexin 3 protein and was associated with neuroinflammation, was up-regulated and positively correlated with the S100 genes' expression pattern. In addition, astrocytes and endothelial cell markers were significantly correlated with S100A8 expression. S100 correlation with ANXA3 and endothelial cell markers suggests that the up-regulation we detected reflects increased inflammation. However, it might also reflect astrocytes abundance or activation. The fact that S100 proteins were shown to be up-regulated in blood samples and other body fluids of patients with schizophrenia suggests a potential role as biomarkers, which might help disease subtyping, and the development of etiological treatments for immune dysregulation in schizophrenia.
{"title":"Up-Regulation of S100 Gene Family in Brain Samples of a Subgroup of Individuals with Schizophrenia: Meta-analysis.","authors":"Anat Shamir, Assif Yitzhaky, Aviv Segev, Vahram Haroutunian, Pavel Katsel, Libi Hertzberg","doi":"10.1007/s12017-023-08743-4","DOIUrl":"10.1007/s12017-023-08743-4","url":null,"abstract":"<p><p>The S100 proteins family is known to affect neuroinflammation and astrocyte activation, which have been suggested to be contributors to the pathogenesis of schizophrenia. We conducted a systematic meta-analysis of S100 genes differential expression in postmortem samples of patients with schizophrenia vs. healthy controls, following the commonly used Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Twelve microarray datasets met the inclusion criteria (overall 511 samples, 253 schizophrenia and 258 controls were analyzed). Nine out of 21 genes were significantly up-regulated or with tendency for up-regulation. A per-sample fold change analysis indicated that the S100 genes' up-regulation was concentrated in a subgroup of the patients. None of the genes have been found to be down-regulated. ANXA3, which encodes Annexin 3 protein and was associated with neuroinflammation, was up-regulated and positively correlated with the S100 genes' expression pattern. In addition, astrocytes and endothelial cell markers were significantly correlated with S100A8 expression. S100 correlation with ANXA3 and endothelial cell markers suggests that the up-regulation we detected reflects increased inflammation. However, it might also reflect astrocytes abundance or activation. The fact that S100 proteins were shown to be up-regulated in blood samples and other body fluids of patients with schizophrenia suggests a potential role as biomarkers, which might help disease subtyping, and the development of etiological treatments for immune dysregulation in schizophrenia.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9227794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Exposure to cadmium, a heavy metal distributed in the environment is a cause of concern due to associated health effects in population around the world. Continuing with the leads demonstrating alterations in brain cholinergic signalling in cadmium induced cognitive deficits by us; the study is focussed to understand involvement of N-Methyl-D-aspartate receptor (NMDA-R) and its postsynaptic signalling and Nrf2-ARE pathways in hippocampus. Also, the protective potential of quercetin, a polyphenolic bioflavonoid, was assessed in cadmium induced alterations. Cadmium treatment (5 mg/kg, body weight, p.o., 28 days) decreased mRNA expression and protein levels of NMDA receptor subunits (NR1, NR2A) in rat hippocampus, compared to controls. Cadmium treated rats also exhibited decrease in levels of NMDA-R associated downstream signalling proteins (CaMKIIα, PSD-95, TrkB, BDNF, PI3K, AKT, Erk1/2, GSK3β, and CREB) and increase in levels of SynGap in hippocampus. Further, decrease in protein levels of Nrf2 and HO1 associated with increase in levels of Keap1 exhibits alterations in Nrf2/ARE signalling in hippocampus of cadmium treated rats. Degeneration of pyramidal neurons in hippocampus was also evident on cadmium treatment. Simultaneous treatment with quercetin (25 mg/kg body weight p.o., 28 days) was found to attenuate cadmium induced changes in hippocampus. The results provide novel evidence that cadmium exposure may disrupt integrity of NMDA receptors and its downstream signaling targets by affecting the Nrf2/ARE signaling pathway in hippocampus and these could contribute in cognitive deficits. It is further interesting that quercetin has the potential to protect cadmium induced changes by modulating Nrf2/ARE signaling which was effective to control NMDA-R and PI3K/AKT cell signaling pathways.
{"title":"Potential of Quercetin to Protect Cadmium Induced Cognitive Deficits in Rats by Modulating NMDA-R Mediated Downstream Signaling and PI3K/AKT-Nrf2/ARE Signaling Pathways in Hippocampus.","authors":"Anugya Srivastava, Anima Kumari, Pankaj Jagdale, Anjaneya Ayanur, Aditya Bhushan Pant, Vinay Kumar Khanna","doi":"10.1007/s12017-023-08747-0","DOIUrl":"10.1007/s12017-023-08747-0","url":null,"abstract":"<p><p>Exposure to cadmium, a heavy metal distributed in the environment is a cause of concern due to associated health effects in population around the world. Continuing with the leads demonstrating alterations in brain cholinergic signalling in cadmium induced cognitive deficits by us; the study is focussed to understand involvement of N-Methyl-D-aspartate receptor (NMDA-R) and its postsynaptic signalling and Nrf2-ARE pathways in hippocampus. Also, the protective potential of quercetin, a polyphenolic bioflavonoid, was assessed in cadmium induced alterations. Cadmium treatment (5 mg/kg, body weight, p.o., 28 days) decreased mRNA expression and protein levels of NMDA receptor subunits (NR1, NR2A) in rat hippocampus, compared to controls. Cadmium treated rats also exhibited decrease in levels of NMDA-R associated downstream signalling proteins (CaMKIIα, PSD-95, TrkB, BDNF, PI3K, AKT, Erk<sub>1/2</sub>, GSK3β, and CREB) and increase in levels of SynGap in hippocampus. Further, decrease in protein levels of Nrf2 and HO1 associated with increase in levels of Keap1 exhibits alterations in Nrf2/ARE signalling in hippocampus of cadmium treated rats. Degeneration of pyramidal neurons in hippocampus was also evident on cadmium treatment. Simultaneous treatment with quercetin (25 mg/kg body weight p.o., 28 days) was found to attenuate cadmium induced changes in hippocampus. The results provide novel evidence that cadmium exposure may disrupt integrity of NMDA receptors and its downstream signaling targets by affecting the Nrf2/ARE signaling pathway in hippocampus and these could contribute in cognitive deficits. It is further interesting that quercetin has the potential to protect cadmium induced changes by modulating Nrf2/ARE signaling which was effective to control NMDA-R and PI3K/AKT cell signaling pathways.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9827456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anxiety is reportedly one of the most common mental changes after traumatic brain injury (TBI). Perineuronal nets (PNNs) produced by astrocytes in the lateral hypothalamus (LHA) that surround gamma-aminobutyric acid-ergic (GABAergic) neurons have been associated with anxiety. The potent anti-tumor effects of Spautin-1, a novel autophagy inhibitor, have been documented in malignant melanoma; moreover, the inhibition of autophagy is reported to mitigate anxiety disorders. However, little is known about the ability of spautin-1 to alleviate anxiety. In this study, we sought to investigate whether spautin-1 could alleviate anxiety-like behaviors post-TBI by reducing the loss of PNNs in the LHA. A mild TBI was established in mice through Feeney's weight-drop model. Then, Spautin-1 (20 mmol/2 μl) was immediately administered into the left lateral ventricle. Behavioral and pathological changes were assessed at 24 h, 7 days, 30 days, 31 days and 32 days after TBI by the neurological severity scores (NSS), open field test (OFT), elevated plus-maze (EPM) test, western blot, immunofluorescence assays and electron microscopy. Spautin-1 significantly reversed TBI-induced decreased time in the central zone during OFT and in the open-arm during the EPM test. Spautin-1 also increased PNNs around GABAergic neurons indicated by WFA- plus GAD2- positive A2-type astrocytes and attenuated M1-type microglia in the LHA 32 days after TBI compared to TBI alone. Moreover, compared to mice that only underwent TBI, spautin-1 downregulated autophagic vacuoles, abnormal organelles, the expression of Beclin 1, USP13, phospho-TBK1, and phospho-IRF3 and upregulated the levels of cleaved caspase-3, -7 and -9, but failed to increase TUNEL-positive cells in the LHA at 24 h. Spautin-1 alleviated anxiety-like behavior in mice exposed to mild TBI; this protective mechanism may be associated with decreased PNNs loss around GABAergic neurons via immunologically silent apoptosis induced by the caspase cascade.
{"title":"Spautin-1 Protects Against Mild TBI-Induced Anxiety-Like Behavior in Mice via Immunologically Silent Apoptosis.","authors":"Hui-Tao Miao, Rong-Xin Song, Yue Xin, Lu-Ying Wang, Jin-Meng Lv, Na-Na Liu, Zhi-You Wu, Wei Zhang, Yan Li, Dong-Xue Zhang, Li-Min Zhang","doi":"10.1007/s12017-023-08737-2","DOIUrl":"10.1007/s12017-023-08737-2","url":null,"abstract":"<p><p>Anxiety is reportedly one of the most common mental changes after traumatic brain injury (TBI). Perineuronal nets (PNNs) produced by astrocytes in the lateral hypothalamus (LHA) that surround gamma-aminobutyric acid-ergic (GABAergic) neurons have been associated with anxiety. The potent anti-tumor effects of Spautin-1, a novel autophagy inhibitor, have been documented in malignant melanoma; moreover, the inhibition of autophagy is reported to mitigate anxiety disorders. However, little is known about the ability of spautin-1 to alleviate anxiety. In this study, we sought to investigate whether spautin-1 could alleviate anxiety-like behaviors post-TBI by reducing the loss of PNNs in the LHA. A mild TBI was established in mice through Feeney's weight-drop model. Then, Spautin-1 (20 mmol/2 μl) was immediately administered into the left lateral ventricle. Behavioral and pathological changes were assessed at 24 h, 7 days, 30 days, 31 days and 32 days after TBI by the neurological severity scores (NSS), open field test (OFT), elevated plus-maze (EPM) test, western blot, immunofluorescence assays and electron microscopy. Spautin-1 significantly reversed TBI-induced decreased time in the central zone during OFT and in the open-arm during the EPM test. Spautin-1 also increased PNNs around GABAergic neurons indicated by WFA- plus GAD2- positive A2-type astrocytes and attenuated M1-type microglia in the LHA 32 days after TBI compared to TBI alone. Moreover, compared to mice that only underwent TBI, spautin-1 downregulated autophagic vacuoles, abnormal organelles, the expression of Beclin 1, USP13, phospho-TBK1, and phospho-IRF3 and upregulated the levels of cleaved caspase-3, -7 and -9, but failed to increase TUNEL-positive cells in the LHA at 24 h. Spautin-1 alleviated anxiety-like behavior in mice exposed to mild TBI; this protective mechanism may be associated with decreased PNNs loss around GABAergic neurons via immunologically silent apoptosis induced by the caspase cascade.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9205817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-08-23DOI: 10.1007/s12017-023-08749-y
Bianca Soares Carlotto, Patricia Trevisan, Valentina Oliveira Provenzi, Fabiano Pasqualotto Soares, Rafael Fabiano Machado Rosa, Marileila Varella-Garcia, Paulo Ricardo Gazzola Zen
Glioblastoma (GBM) is the most frequent tumor of the central nervous system, and its heterogeneity is a challenge in treatment. This study examined tumoral heterogeneity involving PDGFRA, KIT, and KDR gene amplification (GA) in 4q12 and its association with clinical parameters. Specimens from 22 GBM cases with GA for the 4q12 amplicon detected by FISH were investigated for homogeneous or heterogeneous coamplification patterns, diffuse or focal distribution of cells harboring GA throughout tumor sections, and pattern of clustering of fluorescence signals. Sixteen cases had homogenously amplification for all three genes (45.5%), for PDGFRA and KDR (22.7%), or only for PDGFRA (4.6%); six cases had heterogeneous GA patterns, with subpopulations including GA for all three genes and for two genes - PDGFRA and KDR (13.6%), or GA for all three and for only one gene - PDGFRA (9.1%) or KIT (4.6%). In 6 tumors (27.3%), GA was observed in focal tumor areas, while in the remaining 16 tumors (72.7%) it was diffusely distributed throughout the pathological specimen. Amplification was universally expressed as double minutes and homogenously stained regions. Coamplification of all three genes PDGFRA, KIT, and KDR, age ≥ 60 years, and total tumor resection were statistically associated with poor prognosis. FISH proved effective for detailed interpretation of molecular heterogeneity. The study uncovered an even more diverse range of amplification patterns involving the 4q12 oncogenes in GBM than previously described, thus highlighting a complex tumoral heterogeneity to be considered when devising more effective therapies.
{"title":"PDGFRA, KIT, and KDR Gene Amplification in Glioblastoma: Heterogeneity and Clinical Significance.","authors":"Bianca Soares Carlotto, Patricia Trevisan, Valentina Oliveira Provenzi, Fabiano Pasqualotto Soares, Rafael Fabiano Machado Rosa, Marileila Varella-Garcia, Paulo Ricardo Gazzola Zen","doi":"10.1007/s12017-023-08749-y","DOIUrl":"10.1007/s12017-023-08749-y","url":null,"abstract":"<p><p>Glioblastoma (GBM) is the most frequent tumor of the central nervous system, and its heterogeneity is a challenge in treatment. This study examined tumoral heterogeneity involving PDGFRA, KIT, and KDR gene amplification (GA) in 4q12 and its association with clinical parameters. Specimens from 22 GBM cases with GA for the 4q12 amplicon detected by FISH were investigated for homogeneous or heterogeneous coamplification patterns, diffuse or focal distribution of cells harboring GA throughout tumor sections, and pattern of clustering of fluorescence signals. Sixteen cases had homogenously amplification for all three genes (45.5%), for PDGFRA and KDR (22.7%), or only for PDGFRA (4.6%); six cases had heterogeneous GA patterns, with subpopulations including GA for all three genes and for two genes - PDGFRA and KDR (13.6%), or GA for all three and for only one gene - PDGFRA (9.1%) or KIT (4.6%). In 6 tumors (27.3%), GA was observed in focal tumor areas, while in the remaining 16 tumors (72.7%) it was diffusely distributed throughout the pathological specimen. Amplification was universally expressed as double minutes and homogenously stained regions. Coamplification of all three genes PDGFRA, KIT, and KDR, age ≥ 60 years, and total tumor resection were statistically associated with poor prognosis. FISH proved effective for detailed interpretation of molecular heterogeneity. The study uncovered an even more diverse range of amplification patterns involving the 4q12 oncogenes in GBM than previously described, thus highlighting a complex tumoral heterogeneity to be considered when devising more effective therapies.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10108642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-03-01DOI: 10.1007/s12017-023-08739-0
Julian Zimmermann, Louisa Nitsch, Marius Krauthausen, Marcus Müller
Interleukin-17A plays a crucial role in multiple sclerosis and other autoimmune diseases. Although the link between IL-17 and disease activity has been clearly demonstrated, the precise function of this cytokine remains elusive. Here, we investigated the function of astrocyte-targeted IL-17A production in GF/IL-17 transgenic mice during EAE. In particular, IL-17A is important during disease induction. In mice with transgenic IL-17A production, disease occurs earlier and peak disease is more severe, whereas remission is unimpaired. IL-17A synthesis is associated with increased infiltration of granulocytes into the CNS and microglial activation. Moreover, IL-17A synthesis allows induction of MOG-EAE without the additional administration of the co-adjuvant pertussis toxin. Examination of double transgenic GF/IL-17 2D2 mice revealed that, in addition, local IL-17A production facilitates spontaneous infiltration of immune cells into the CNS in mice expressing a MOG-specific T-cell receptor. Overall, we provide evidence for a crucial effect of IL-17A in the induction phase of EAE, facilitating the infiltration of granulocytes and autoreactive T-cells into the CNS.
{"title":"IL-17A Facilitates Entry of Autoreactive T-Cells and Granulocytes into the CNS During EAE.","authors":"Julian Zimmermann, Louisa Nitsch, Marius Krauthausen, Marcus Müller","doi":"10.1007/s12017-023-08739-0","DOIUrl":"10.1007/s12017-023-08739-0","url":null,"abstract":"<p><p>Interleukin-17A plays a crucial role in multiple sclerosis and other autoimmune diseases. Although the link between IL-17 and disease activity has been clearly demonstrated, the precise function of this cytokine remains elusive. Here, we investigated the function of astrocyte-targeted IL-17A production in GF/IL-17 transgenic mice during EAE. In particular, IL-17A is important during disease induction. In mice with transgenic IL-17A production, disease occurs earlier and peak disease is more severe, whereas remission is unimpaired. IL-17A synthesis is associated with increased infiltration of granulocytes into the CNS and microglial activation. Moreover, IL-17A synthesis allows induction of MOG-EAE without the additional administration of the co-adjuvant pertussis toxin. Examination of double transgenic GF/IL-17 2D2 mice revealed that, in addition, local IL-17A production facilitates spontaneous infiltration of immune cells into the CNS in mice expressing a MOG-specific T-cell receptor. Overall, we provide evidence for a crucial effect of IL-17A in the induction phase of EAE, facilitating the infiltration of granulocytes and autoreactive T-cells into the CNS.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514131/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10803050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-03-27DOI: 10.1007/s12017-023-08742-5
Qi-Min Zheng, Zi-Rui Zhou, Xin-Yu Hou, Ning Lv, Yu-Qiu Zhang, Hong Cao
The medial prefrontal cortex (mPFC) is critical for both the sensory and emotional/cognitive components of pain. However, the underlying mechanism remains largely unknown. Here, we examined changes in the transcriptomic profiles in the mPFC of mice with chronic pain using RNA sequencing (RNA-seq) technology. A mouse model of peripheral neuropathic pain was established via chronic constriction injury (CCI) of the sciatic nerve. CCI mice developed sustained mechanical allodynia and thermal hyperalgesia, as well as cognitive impairment four weeks after surgery. RNA-seq was conducted 4 weeks after CCI surgery. Compared with contral group, RNA-seq identified a total 309 and 222 differentially expressed genes (DEGs) in the ipsilateral and contralateral mPFC of CCI model mice, respectively. GO analysis indicated that the functions of these genes were mainly enriched in immune- and inflammation-related processes such as interferon-gamma production and cytokine secretion. KEGG analysis further showed the enrichment of genes involved in the neuroactive ligand-receptor interaction signaling pathway and Parkinson disease pathway that have been reported to be importantly involved in chronic neuralgia and cognitive dysfunction. Our study may provide insights into the possible mechanisms underlying neuropathic pain and pain-related comorbidities.
{"title":"Transcriptome Analysis of the Mouse Medial Prefrontal Cortex in a Chronic Constriction Injury Model.","authors":"Qi-Min Zheng, Zi-Rui Zhou, Xin-Yu Hou, Ning Lv, Yu-Qiu Zhang, Hong Cao","doi":"10.1007/s12017-023-08742-5","DOIUrl":"10.1007/s12017-023-08742-5","url":null,"abstract":"<p><p>The medial prefrontal cortex (mPFC) is critical for both the sensory and emotional/cognitive components of pain. However, the underlying mechanism remains largely unknown. Here, we examined changes in the transcriptomic profiles in the mPFC of mice with chronic pain using RNA sequencing (RNA-seq) technology. A mouse model of peripheral neuropathic pain was established via chronic constriction injury (CCI) of the sciatic nerve. CCI mice developed sustained mechanical allodynia and thermal hyperalgesia, as well as cognitive impairment four weeks after surgery. RNA-seq was conducted 4 weeks after CCI surgery. Compared with contral group, RNA-seq identified a total 309 and 222 differentially expressed genes (DEGs) in the ipsilateral and contralateral mPFC of CCI model mice, respectively. GO analysis indicated that the functions of these genes were mainly enriched in immune- and inflammation-related processes such as interferon-gamma production and cytokine secretion. KEGG analysis further showed the enrichment of genes involved in the neuroactive ligand-receptor interaction signaling pathway and Parkinson disease pathway that have been reported to be importantly involved in chronic neuralgia and cognitive dysfunction. Our study may provide insights into the possible mechanisms underlying neuropathic pain and pain-related comorbidities.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9229123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-02-05DOI: 10.1007/s12017-023-08738-1
Kumar Suresh, Michael Mattern, Matthew S Goldberg, Tauseef R Butt
Parkinson's disease (PD) is the most common neurodegenerative movement disorder. There are no available therapeutics that slow or halt the progressive loss of dopamine-producing neurons, which underlies the primary clinical symptoms. Currently approved PD drugs can provide symptomatic relief by increasing brain dopamine content or activity; however, the alleviation is temporary, and the effectiveness diminishes with the inevitable progression of neurodegeneration. Discovery and development of disease-modifying neuroprotective therapies has been hampered by insufficient understanding of the root cause of PD-related neurodegeneration. The etiology of PD involves a combination of genetic and environmental factors. Although a single cause has yet to emerge, genetic, cell biological and neuropathological evidence implicates mitochondrial dysfunction and protein aggregation. Postmortem PD brains show pathognomonic Lewy body intraneuronal inclusions composed of aggregated α-synuclein, indicative of failure to degrade misfolded protein. Mutations in the genes that code for α-synuclein, as well as the E3 ubiquitin ligase Parkin, cause rare inherited forms of PD. While many ubiquitin ligases label proteins with ubiquitin chains to mark proteins for degradation by the proteasome, Parkin has been shown to mark dysfunctional mitochondria for degradation by mitophagy. The ubiquitin proteasome system participates in several aspects of the cell's response to mitochondrial damage, affording numerous therapeutic opportunities to augment mitophagy and potentially stop PD progression. This review examines the role and therapeutic potential of such UPS modulators, exemplified by both ubiquitinating and deubiquitinating enzymes.
{"title":"The Ubiquitin Proteasome System as a Therapeutic Area in Parkinson's Disease.","authors":"Kumar Suresh, Michael Mattern, Matthew S Goldberg, Tauseef R Butt","doi":"10.1007/s12017-023-08738-1","DOIUrl":"10.1007/s12017-023-08738-1","url":null,"abstract":"<p><p>Parkinson's disease (PD) is the most common neurodegenerative movement disorder. There are no available therapeutics that slow or halt the progressive loss of dopamine-producing neurons, which underlies the primary clinical symptoms. Currently approved PD drugs can provide symptomatic relief by increasing brain dopamine content or activity; however, the alleviation is temporary, and the effectiveness diminishes with the inevitable progression of neurodegeneration. Discovery and development of disease-modifying neuroprotective therapies has been hampered by insufficient understanding of the root cause of PD-related neurodegeneration. The etiology of PD involves a combination of genetic and environmental factors. Although a single cause has yet to emerge, genetic, cell biological and neuropathological evidence implicates mitochondrial dysfunction and protein aggregation. Postmortem PD brains show pathognomonic Lewy body intraneuronal inclusions composed of aggregated α-synuclein, indicative of failure to degrade misfolded protein. Mutations in the genes that code for α-synuclein, as well as the E3 ubiquitin ligase Parkin, cause rare inherited forms of PD. While many ubiquitin ligases label proteins with ubiquitin chains to mark proteins for degradation by the proteasome, Parkin has been shown to mark dysfunctional mitochondria for degradation by mitophagy. The ubiquitin proteasome system participates in several aspects of the cell's response to mitochondrial damage, affording numerous therapeutic opportunities to augment mitophagy and potentially stop PD progression. This review examines the role and therapeutic potential of such UPS modulators, exemplified by both ubiquitinating and deubiquitinating enzymes.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10647784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}