首页 > 最新文献

Ocean Science最新文献

英文 中文
Observations of strong turbulence and mixing impacting water exchange between two basins in the Baltic Sea 对波罗的海两个流域之间影响水交换的强湍流和混合现象的观测
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-12-20 DOI: 10.5194/os-19-1809-2023
J. Muchowski, M. Jakobsson, L. Umlauf, L. Arneborg, B. Gustafsson, P. Holtermann, C. Humborg, C. Stranne
Abstract. Turbulent diapycnal mixing is important for the estuarine circulation between basins of the Baltic Sea as well as for its local ecosystems, in particular with regard to eutrophication and anoxic conditions. While the interior of the basins is overall relatively calm, stratified flow over steep bathymetric features is known as a source of strong turbulent mixing. Yet, current in situ observations often cannot capture the spatio-temporal development of dynamic and intermittent turbulent mixing related to overflows over rough bathymetry. We present observational oceanographic data together with openly accessible high-resolution bathymetry from a prototypical sill and an adjacent deep channel in the sparsely sampled Southern Quark located in the Åland Sea, connecting the northern Baltic Proper with the Bothnian Sea. Our data were acquired during two 1-week cruises on R/V Electra in February–March 2019 and 2020. We collected high-resolution broadband acoustic observations of turbulent mixing together with in situ microstructure profiler measurements, and current velocities from acoustic Doppler current profilers. We found that a temporally reversing non-tidal stratified flow over the steep bathymetric sill created a dynamic and extremely energetic environment. The observed flow reversed during both cruises on timescales of a few days. Saltier, warmer, and less oxygenated deep water south of the sill was partly blocked, the reversing flow was at times hydraulically controlled with hydraulic jumps occurring on both sides of the sill, and high spatial variability occurred in the surface layer on small scales. Dissipation rates of turbulent kinetic energy, vertical turbulent diffusivities, and vertical salt flux rates were increased by 3–4 orders of magnitude in the entire water column in the vicinity of the sill compared to reference stations not directly influenced by the overflow with average dissipation rates near the sill between 10−7 and 10−6 W kg−1, average vertical diffusivities of 0.001 m2 s−1 in the halocline and up to 0.1 m2 s−1 below the halocline, and average vertical salt flux rates around 0.01 g m−2 s−1 in the halocline and between 0.1 and 1 g m−2 s−1 below the halocline. We suggest, based on acoustic observations and in situ measurements, that the underlying mechanism for the highly increased mixing across the halocline is a combination of shear and topographic lee waves breaking at the halocline interface. We anticipate that the resulting deep- and surface-water modification in the Southern Quark directly impacts exchange processes between the Bothnian Sea and the northern Baltic Proper and that the observed mixing is likely important for oxygen and nutrient conditions in the Bothnian Sea.
摘要湍流近岸混合对波罗的海盆地之间的河口环流以及当地生态系统都很重要,特别是在富营养化和缺氧条件方面。虽然盆地内部总体上相对平静,但陡峭水深特征上的分层流是众所周知的强湍流混合源。然而,目前的现场观测往往无法捕捉到与粗糙水深上的溢流有关的动态和间歇性湍流混合的时空发展。我们展示了位于奥兰海(连接波罗的海北部和波罗的海两侧)、取样稀少的南夸克(Southern Quark)的一个原型岩床和相邻深海峡的海洋观测数据,以及可公开获取的高分辨率水深测量数据。我们的数据是在 2019 年 2 月至 3 月和 2020 年 3 月两次为期一周的 R/V Electra 巡航中获得的。我们收集了湍流混合的高分辨率宽带声学观测数据、原位微结构剖面测量数据以及声学多普勒海流剖面仪的海流速度数据。我们发现,在陡峭的水深峭壁上的非潮汐分层流在时间上逆转,形成了一个动态的、极富能量的环境。在两次巡航中,观测到的水流在几天的时间尺度内发生了逆转。陡崖南侧较咸、较暖、含氧量较低的深层水部分受阻,反向流有时受水力控制,陡崖两侧出现水力跃迁,表层小尺度空间变化大。与未受溢流直接影响的参照站相比,溢流口附近整个水柱的湍流动能耗散率、垂直湍流扩散率和垂直盐通量率增加了 3-4 个数量级,溢流口附近的平均耗散率介于 10-7 和 10-6 W kg-1 之间,湍流口附近整个水柱的平均垂直扩散率介于 0.001 m2 s-1 和 0.001 m2 s-1 之间,湍流口附近整个水柱的平均湍流动能耗散率介于 10-7 和 10-6 W kg-1 之间,湍流口附近整个水柱的平均垂直扩散率介于 0.卤线内的平均垂直扩散率为 0.001 平方米/秒-1,卤线以下可达 0.1 平方米/秒-1,卤线内的平均垂直盐通量约为 0.01 克/米-2 秒-1,卤线以下为 0.1 至 1 克/米-2 秒-1。根据声学观测和现场测量结果,我们认为造成卤化层混合高度增加的根本原因是在卤化层界面断裂的剪切波和地形利波的共同作用。我们预计,由此产生的南夸克深层和表层水变化会直接影响波罗的海和波罗的海北部之间的交换过程,而且观测到的混合现象可能对波罗的海的氧气和营养物质状况非常重要。
{"title":"Observations of strong turbulence and mixing impacting water exchange between two basins in the Baltic Sea","authors":"J. Muchowski, M. Jakobsson, L. Umlauf, L. Arneborg, B. Gustafsson, P. Holtermann, C. Humborg, C. Stranne","doi":"10.5194/os-19-1809-2023","DOIUrl":"https://doi.org/10.5194/os-19-1809-2023","url":null,"abstract":"Abstract. Turbulent diapycnal mixing is important for the estuarine circulation between basins of the Baltic Sea as well as for its local ecosystems, in particular with regard to eutrophication and anoxic conditions. While the interior of the basins is overall relatively calm, stratified flow over steep bathymetric features is known as a source of strong turbulent mixing. Yet, current in situ observations often cannot capture the spatio-temporal development of dynamic and intermittent turbulent mixing related to overflows over rough bathymetry. We present observational oceanographic data together with openly accessible high-resolution bathymetry from a prototypical sill and an adjacent deep channel in the sparsely sampled Southern Quark located in the Åland Sea, connecting the northern Baltic Proper with the Bothnian Sea. Our data were acquired during two 1-week cruises on R/V Electra in February–March 2019 and 2020. We collected high-resolution broadband acoustic observations of turbulent mixing together with in situ microstructure profiler measurements, and current velocities from acoustic Doppler current profilers. We found that a temporally reversing non-tidal stratified flow over the steep bathymetric sill created a dynamic and extremely energetic environment. The observed flow reversed during both cruises on timescales of a few days. Saltier, warmer, and less oxygenated deep water south of the sill was partly blocked, the reversing flow was at times hydraulically controlled with hydraulic jumps occurring on both sides of the sill, and high spatial variability occurred in the surface layer on small scales. Dissipation rates of turbulent kinetic energy, vertical turbulent diffusivities, and vertical salt flux rates were increased by 3–4 orders of magnitude in the entire water column in the vicinity of the sill compared to reference stations not directly influenced by the overflow with average dissipation rates near the sill between 10−7 and 10−6 W kg−1, average vertical diffusivities of 0.001 m2 s−1 in the halocline and up to 0.1 m2 s−1 below the halocline, and average vertical salt flux rates around 0.01 g m−2 s−1 in the halocline and between 0.1 and 1 g m−2 s−1 below the halocline. We suggest, based on acoustic observations and in situ measurements, that the underlying mechanism for the highly increased mixing across the halocline is a combination of shear and topographic lee waves breaking at the halocline interface. We anticipate that the resulting deep- and surface-water modification in the Southern Quark directly impacts exchange processes between the Bothnian Sea and the northern Baltic Proper and that the observed mixing is likely important for oxygen and nutrient conditions in the Bothnian Sea.\u0000","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"24 26","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138955911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Southern Weddell Sea surface freshwater flux modulated by icescape and atmospheric forcing 南威德尔海表层淡水通量受冰景和大气胁迫的影响
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-12-14 DOI: 10.5194/os-19-1791-2023
L. Stulic, R. Timmermann, S. Paul, Rolf Zentek, G. Heinemann, T. Kanzow
Abstract. Sea ice formation dominates surface salt forcing in the southern Weddell Sea. Brine rejected in the process of sea ice production results in the production of High Salinity Shelf Water (HSSW) that feeds the global overturning circulation and fuels the basal melt of the adjacent ice shelf. The strongest sea ice production rates are found in coastal polynyas, where steady offshore winds promote divergent ice movement during the freezing season. We used the Finite Element Sea ice–ice shelf–Ocean Model (FESOM) forced by output from the regional atmospheric model COSMO-CLM (CCLM) with 14 km horizontal resolution to investigate the role of polynyas for the surface freshwater flux of the southern Weddell Sea (2002–2017). The presence of stationary icescape features (i.e., fast-ice areas and grounded icebergs) can influence the formation of polynyas and, therefore, impact sea ice production. The representation of the icescape in our model is included by prescribing the position, shape and temporal evolution of a largely immobile ice mélange formed between the Filchner–Ronne Ice Shelf (FRIS) and a major grounded iceberg based on satellite data. We find that 70 % of the ice produced on the continental shelf of the southern Weddell Sea is exported from the region. While coastal polynyas cover 2 % of the continental shelf area, sea ice production within the coastal polynyas accounts for 17 % of the overall annual sea ice production (1509 km3). The largest contributions come from the Ronne Ice Shelf and Brunt Ice Shelf polynyas and polynyas associated with the ice mélange. Furthermore, we investigate the sensitivity of the polynya-based ice production to the (i) representation of the icescape and (ii) regional atmospheric forcing. Although large-scale atmospheric fields determine the sea ice production outside polynyas, both the treatment of the icescape and the regional atmospheric forcing are important for the regional patterns of sea ice production in polynyas. The representation of the ice mélange is crucial for the simulation of polynyas westward/eastward of it, which are otherwise suppressed/overestimated. Compared to using ERA-Interim reanalysis as an atmospheric forcing data set, using CCLM output reduces polynya-based ice production over the eastern continental shelf due to weaker offshore winds, yielding a more realistic polynya representation. Our results show that the location and not just the strength of the sea ice production in polynyas is a relevant parameter in setting the properties of the HSSW produced on the continental shelf, which in turn affects the basal melting of the Filchner–Ronne Ice Shelf.
摘要海冰的形成主导了威德尔海南部的表层盐强迫。海冰形成过程中排出的盐水会产生高盐度大陆架水(HSSW),为全球翻转环流提供养分,并促进邻近冰架的基底融化。海冰生成率最高的地方是沿岸多冰带,那里稳定的离岸风在冰冻季节会促进冰的发散运动。我们利用有限元海冰-冰架-海洋模型(FESOM),并以 14 千米水平分辨率的区域大气模型 COSMO-CLM 的输出结果为强迫,研究了多冰带对威德尔海南部海面淡水通量的作用(2002-2017 年)。静止冰景特征(即快冰区和接地冰山)的存在会影响多冰带的形成,从而影响海冰的生成。在我们的模型中,冰景的表现形式包括根据卫星数据,规定菲尔希纳-罗纳冰架(FRIS)和一座主要接地冰山之间形成的基本不动的冰混杂区的位置、形状和时间演变。我们发现,威德尔海南部大陆架上生成的冰有 70%是从该地区出口的。虽然沿岸多冰带占大陆架面积的 2%,但沿岸多冰带的海冰产量占整个海冰年产量(1509 立方公里)的 17%。最大的贡献来自龙恩冰架和布伦特冰架多冰带以及与冰混杂带有关的多冰带。此外,我们还研究了基于多冰盖的冰产量对(i)冰景表示和(ii)区域大气强迫的敏感性。虽然大尺度大气场决定了多冰带以外的海冰产量,但冰景处理和区域大气强迫对多冰带海冰产量的区域模式都很重要。冰混杂区的表示对于模拟冰混杂区以西/以东的多冰带至关重要,否则多冰带就会被抑制/高估。与使用ERA-Interim再分析数据集作为大气强迫数据集相比,使用CCLM输出的数据集可减少东部大陆架上由于离岸风减弱而产生的多冰带冰量,从而获得更真实的多冰带表示。我们的研究结果表明,在确定大陆架上产生的 HSSW 的属性时,多雨带海冰生成的位置而不仅仅是强度是一个相关参数,而 HSSW 的属性反过来又会影响 Filchner-Ronne 冰架的基底融化。
{"title":"Southern Weddell Sea surface freshwater flux modulated by icescape and atmospheric forcing","authors":"L. Stulic, R. Timmermann, S. Paul, Rolf Zentek, G. Heinemann, T. Kanzow","doi":"10.5194/os-19-1791-2023","DOIUrl":"https://doi.org/10.5194/os-19-1791-2023","url":null,"abstract":"Abstract. Sea ice formation dominates surface salt forcing in the southern Weddell Sea. Brine rejected in the process of sea ice production results in the production of High Salinity Shelf Water (HSSW) that feeds the global overturning circulation and fuels the basal melt of the adjacent ice shelf. The strongest sea ice production rates are found in coastal polynyas, where steady offshore winds promote divergent ice movement during the freezing season. We used the Finite Element Sea ice–ice shelf–Ocean Model (FESOM) forced by output from the regional atmospheric model COSMO-CLM (CCLM) with 14 km horizontal resolution to investigate the role of polynyas for the surface freshwater flux of the southern Weddell Sea (2002–2017). The presence of stationary icescape features (i.e., fast-ice areas and grounded icebergs) can influence the formation of polynyas and, therefore, impact sea ice production. The representation of the icescape in our model is included by prescribing the position, shape and temporal evolution of a largely immobile ice mélange formed between the Filchner–Ronne Ice Shelf (FRIS) and a major grounded iceberg based on satellite data. We find that 70 % of the ice produced on the continental shelf of the southern Weddell Sea is exported from the region. While coastal polynyas cover 2 % of the continental shelf area, sea ice production within the coastal polynyas accounts for 17 % of the overall annual sea ice production (1509 km3). The largest contributions come from the Ronne Ice Shelf and Brunt Ice Shelf polynyas and polynyas associated with the ice mélange. Furthermore, we investigate the sensitivity of the polynya-based ice production to the (i) representation of the icescape and (ii) regional atmospheric forcing. Although large-scale atmospheric fields determine the sea ice production outside polynyas, both the treatment of the icescape and the regional atmospheric forcing are important for the regional patterns of sea ice production in polynyas. The representation of the ice mélange is crucial for the simulation of polynyas westward/eastward of it, which are otherwise suppressed/overestimated. Compared to using ERA-Interim reanalysis as an atmospheric forcing data set, using CCLM output reduces polynya-based ice production over the eastern continental shelf due to weaker offshore winds, yielding a more realistic polynya representation. Our results show that the location and not just the strength of the sea ice production in polynyas is a relevant parameter in setting the properties of the HSSW produced on the continental shelf, which in turn affects the basal melting of the Filchner–Ronne Ice Shelf.\u0000","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"67 6","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139003335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Long-term eddy modulation affects the meridional asymmetry of the halocline in the Beaufort Gyre 长期涡流调节影响波弗特环流中晕线的经向不对称性
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-12-13 DOI: 10.5194/os-19-1773-2023
Jinling Lu, Ling Du, Shuhao Tao
Abstract. Against the background of wind-forcing change along with Arctic sea ice retreat, the mesoscale processes undergoing distinct variation in the Beaufort Gyre (BG) region are increasingly important to oceanic transport and energy cascades, and these changes subsequently put oceanic stratification into a new state. Here, the varying number and strength of eddies in the central Canada Basin (CB) and Chukchi–Beaufort continental slope are obtained based on mooring observations (2003–2018), altimetry measurements (1993–2019), and reanalysis data (1980–2020). In this paper, the variability in the BG halocline, representing the adjustment of stratification in the upper layer, is shown in order to analyse how variability occurs under changing mesoscale processes. We find that over almost the last 2 decades the halocline depth has deepened by ∼ 40 m in the south of the central gyre, while that in the north has deepened by ∼ 70 m according to multiple datasets. Surrounding the central gyre, the asymmetry of the halocline, with much steeper and deeper isopycnals over the southern continental slope, reduced after 2014. In the meantime, eddy activities in the upper layer from the southern margin of the BG to the abyssal plain have been enhanced. Moreover, the convergence of the eddy lateral flux has increased as the halocline structures on either side, which is at least 120 km from the central gyre, have reached a nearly identical and stable regime. It has been clarified that long-term dynamic eddy modulation through eddy fluxes, facilitating the freshwater redistribution, affects the meridional asymmetry of the BG halocline. Our results provide a better understanding of the eddy modulation processes and their influence on the halocline structure.
摘要随着北极海冰的消退,风的作用发生了变化,在此背景下,波弗特环流(BG)区域的中尺度过程发生了明显的变化,对海洋传输和能量级联的作用越来越重要,这些变化使海洋分层进入了一个新的状态。本文基于系泊观测数据(2003-2018 年)、测高数据(1993-2019 年)和再分析数据(1980-2020 年),研究了加拿大盆地(CB)中部和楚科奇-波弗特大陆坡漩涡的数量和强度变化。本文展示了代表上层分层调整的 BG 卤线的变化,以分析在中尺度变化过程中如何发生变化。根据多个数据集,我们发现在过去近 20 年中,中央涡旋南部的卤线深度加深了 40 米,而北部则加深了 70 米。在中央涡旋周围,卤线的不对称性在 2014 年后有所减弱,南部大陆坡的等深线更陡更深。与此同时,从北大西洋南缘到深海平原的上层漩涡活动增强。此外,由于两侧(距离中央涡旋至少 120 千米)的卤跃层结构达到了几乎相同的稳定状态,漩涡侧向通量的汇聚也有所增加。这说明,通过漩涡通量的长期动态漩涡调制,促进了淡水的再分配,影响了 BG 卤线的经向不对称性。我们的研究结果有助于更好地理解涡旋调节过程及其对卤线结构的影响。
{"title":"Long-term eddy modulation affects the meridional asymmetry of the halocline in the Beaufort Gyre","authors":"Jinling Lu, Ling Du, Shuhao Tao","doi":"10.5194/os-19-1773-2023","DOIUrl":"https://doi.org/10.5194/os-19-1773-2023","url":null,"abstract":"Abstract. Against the background of wind-forcing change along with Arctic sea ice retreat, the mesoscale processes undergoing distinct variation in the Beaufort Gyre (BG) region are increasingly important to oceanic transport and energy cascades, and these changes subsequently put oceanic stratification into a new state. Here, the varying number and strength of eddies in the central Canada Basin (CB) and Chukchi–Beaufort continental slope are obtained based on mooring observations (2003–2018), altimetry measurements (1993–2019), and reanalysis data (1980–2020). In this paper, the variability in the BG halocline, representing the adjustment of stratification in the upper layer, is shown in order to analyse how variability occurs under changing mesoscale processes. We find that over almost the last 2 decades the halocline depth has deepened by ∼ 40 m in the south of the central gyre, while that in the north has deepened by ∼ 70 m according to multiple datasets. Surrounding the central gyre, the asymmetry of the halocline, with much steeper and deeper isopycnals over the southern continental slope, reduced after 2014. In the meantime, eddy activities in the upper layer from the southern margin of the BG to the abyssal plain have been enhanced. Moreover, the convergence of the eddy lateral flux has increased as the halocline structures on either side, which is at least 120 km from the central gyre, have reached a nearly identical and stable regime. It has been clarified that long-term dynamic eddy modulation through eddy fluxes, facilitating the freshwater redistribution, affects the meridional asymmetry of the BG halocline. Our results provide a better understanding of the eddy modulation processes and their influence on the halocline structure.\u0000","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"34 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139003534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainties and discrepancies in the representation of recent storm surges in a non-tidal semi-enclosed basin: a hindcast ensemble for the Baltic Sea 非潮汐半封闭海盆中近期风暴潮表现形式的不确定性和差异:波罗的海后报组合
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-12-08 DOI: 10.5194/os-19-1753-2023
Marvin Lorenz, U. Gräwe
Abstract. Extreme sea level events, such as storm surges, pose a threat to coastlines around the globe. Many tide gauges have been measuring the sea level and recording these extreme events for decades, some for over a century. The data from these gauges often serve as the basis for evaluating the extreme sea level statistics, which are used to extrapolate sea levels that serve as design values for coastal protection. Hydrodynamic models often have difficulty in correctly reproducing extreme sea levels and, consequently, extreme sea level statistics and trends. In this study, we generate a 13-member hindcast ensemble for the non-tidal Baltic Sea from 1979 to 2018 using the coastal ocean model GETM (General Estuarine Transport Model). In order to cope with mean biases in maximum water levels in the simulations, we include both simulations with and those without wind-speed adjustments in the ensemble. We evaluate the uncertainties in the extreme value statistics and recent trends of annual maximum sea levels. Although the ensemble mean shows good agreement with observations regarding return levels and trends, we still find large variability and uncertainty within the ensemble (95 % confidence levels up to 60 cm for the 30-year return level). We argue that biases and uncertainties in the atmospheric reanalyses, e.g. variability in the representation of storms, translate directly into uncertainty within the ensemble. The translation of the variability of the 99th percentile wind speeds into the sea level elevation is in the order of the variability of the ensemble spread of the modelled maximum sea levels. Our results emphasise that 13 members are insufficient and that regionally large ensembles should be created to minimise uncertainties. This should improve the ability of the models to correctly reproduce the underlying extreme value statistics and thus provide robust estimates of climate change-induced changes in the future.
摘要。极端海平面事件,如风暴潮,对全球海岸线构成威胁。几十年来,许多潮汐计一直在测量海平面并记录这些极端事件,有些甚至超过了一个世纪。来自这些测量仪的数据通常作为评估极端海平面统计数据的基础,这些统计数据用于推断海平面,作为海岸保护的设计值。水动力模型往往难以正确再现极端海平面,因此也难以准确再现极端海平面的统计数据和趋势。在本研究中,我们使用沿海海洋模式GETM(一般河口运输模式)生成了1979 - 2018年波罗的海非潮汐的13个成员的后置集合。为了处理模拟中最大水位的平均偏差,我们在集合中包括了有风速调节和没有风速调节的模拟。我们评估了极值统计和年最高海平面最近趋势的不确定性。尽管总体平均值与观测值在回归水平和趋势方面表现出良好的一致性,但我们仍然发现总体中存在很大的变异性和不确定性(30年回归水平的95%置信水平高达60厘米)。我们认为,大气再分析中的偏差和不确定性,例如风暴表现的变异性,直接转化为整体中的不确定性。将第99百分位风速的变率转化为海平面高度的变率与模拟的最高海平面的整体扩展的变率相同。我们的研究结果强调,13个成员是不够的,应该创建区域性的大集合以尽量减少不确定性。这将提高模式正确再现潜在极值统计数据的能力,从而提供对未来气候变化引起的变化的可靠估计。
{"title":"Uncertainties and discrepancies in the representation of recent storm surges in a non-tidal semi-enclosed basin: a hindcast ensemble for the Baltic Sea","authors":"Marvin Lorenz, U. Gräwe","doi":"10.5194/os-19-1753-2023","DOIUrl":"https://doi.org/10.5194/os-19-1753-2023","url":null,"abstract":"Abstract. Extreme sea level events, such as storm surges, pose a threat to coastlines around the globe. Many tide gauges have been measuring the sea level and recording these extreme events for decades, some for over a century. The data from these gauges often serve as the basis for evaluating the extreme sea level statistics, which are used to extrapolate sea levels that serve as design values for coastal protection. Hydrodynamic models often have difficulty in correctly reproducing extreme sea levels and, consequently, extreme sea level statistics and trends. In this study, we generate a 13-member hindcast ensemble for the non-tidal Baltic Sea from 1979 to 2018 using the coastal ocean model GETM (General Estuarine Transport Model). In order to cope with mean biases in maximum water levels in the simulations, we include both simulations with and those without wind-speed adjustments in the ensemble. We evaluate the uncertainties in the extreme value statistics and recent trends of annual maximum sea levels. Although the ensemble mean shows good agreement with observations regarding return levels and trends, we still find large variability and uncertainty within the ensemble (95 % confidence levels up to 60 cm for the 30-year return level). We argue that biases and uncertainties in the atmospheric reanalyses, e.g. variability in the representation of storms, translate directly into uncertainty within the ensemble. The translation of the variability of the 99th percentile wind speeds into the sea level elevation is in the order of the variability of the ensemble spread of the modelled maximum sea levels. Our results emphasise that 13 members are insufficient and that regionally large ensembles should be created to minimise uncertainties. This should improve the ability of the models to correctly reproduce the underlying extreme value statistics and thus provide robust estimates of climate change-induced changes in the future.\u0000","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"29 44","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138589172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Delayed-mode reprocessing of in situ sea level data for the Copernicus Marine Service 为哥白尼海洋服务对原地海平面数据进行延迟模式再处理
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-12-06 DOI: 10.5194/os-19-1743-2023
Jue Lin-Ye, Begoña Pérez Gómez, Alejandro Gallardo, F. Manzano, M. de Alfonso, Elizabeth Bradshaw, Angela Hibbert
Abstract. The number of tide gauges providing coastal sea level data has significantly increased in recent decades. They help in the issue of coastal hazard warnings, in the forecasting (indirectly through models) of storm surges and tsunamis, and in operational oceanography applications. These data are automatically quality controlled in near-real time in the Copernicus Marine Service. A new initiative seeks to provide delayed-mode reprocessed data for the Copernicus Marine Service by developing a new product and upgrading the software used in its automated quality control. Several new modules, such as buddy checking or the detection of attenuated data, are implemented. The new product was launched in November of 2022. The entire reprocessing is discussed in detail. An example of the information that can be extracted from the delayed-mode reprocessed product is also given.
摘要。近几十年来,提供沿海海平面数据的潮汐计数量显著增加。它们有助于发布海岸灾害警报,(间接通过模型)预报风暴潮和海啸,以及海洋学业务应用。在哥白尼海洋服务中,这些数据会自动进行近乎实时的质量控制。一项新的计划旨在通过开发一种新产品和升级其自动化质量控制中使用的软件,为哥白尼海洋服务提供延迟模式再处理数据。实现了几个新模块,如伙伴检查或衰减数据检测。新产品于2022年11月推出。详细讨论了整个后处理过程。最后给出了从延迟模式再加工产品中提取信息的实例。
{"title":"Delayed-mode reprocessing of in situ sea level data for the Copernicus Marine Service","authors":"Jue Lin-Ye, Begoña Pérez Gómez, Alejandro Gallardo, F. Manzano, M. de Alfonso, Elizabeth Bradshaw, Angela Hibbert","doi":"10.5194/os-19-1743-2023","DOIUrl":"https://doi.org/10.5194/os-19-1743-2023","url":null,"abstract":"Abstract. The number of tide gauges providing coastal sea level data has significantly increased in recent decades. They help in the issue of coastal hazard warnings, in the forecasting (indirectly through models) of storm surges and tsunamis, and in operational oceanography applications. These data are automatically quality controlled in near-real time in the Copernicus Marine Service. A new initiative seeks to provide delayed-mode reprocessed data for the Copernicus Marine Service by developing a new product and upgrading the software used in its automated quality control. Several new modules, such as buddy checking or the detection of attenuated data, are implemented. The new product was launched in November of 2022. The entire reprocessing is discussed in detail. An example of the information that can be extracted from the delayed-mode reprocessed product is also given.\u0000","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"66 24","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138594863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equatorial wave diagnosis for the Atlantic Niño in 2019 with an ocean reanalysis 利用海洋再分析对 2019 年大西洋厄尔尼诺现象进行赤道波诊断
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-12-05 DOI: 10.5194/os-19-1705-2023
Q. Song, H. Aiki
Abstract. The propagation of equatorial waves is essential for the onset of Atlantic Niño, but diagnosing waves with ocean reanalysis or in situ data remains a challenge. This study uses an ocean reanalysis to diagnose the wave energy transfer route during the 2019 event. The climatological values and the anomaly in 2019 at each grid point are decomposed into the first four baroclinic modes based on their local density profiles. The decomposed geopotential can well reproduce the displacement of the thermocline during the event. Wave energy flux is calculated by means of a group-velocity-based scheme. In addition to detecting wind-forced Kelvin waves and reflected Rossby waves, the wave energy flux reveals another possible energy transfer route along the western boundary, where some off-equatorial wave energy can excite coastally trapped Kelvin waves and transfer back to the equatorial Atlantic. Five transects are selected, across which the passing wave energy fluxes in 2019 are integrated. The results suggest that the Kelvin waves in the third and fourth mode are locally forced, while the wave energy in the second mode is more likely from the off-equatorial region. Therefore, in the autumn of 2019, the second-mode Kelvin waves can deepen the thermocline ahead of other modes from September, serving to precondition the Niño event.
摘要。赤道波的传播对大西洋Niño的发生至关重要,但用海洋再分析或现场数据诊断海浪仍然是一个挑战。这项研究使用海洋再分析来诊断2019年事件期间的波浪能量传递路线。根据各格点的局地密度分布,将各格点2019年的气候值和异常分解为前4个斜压模态。分解后的地势可以很好地再现事件中温跃层的位移。波浪能量通量的计算采用基于群速度的格式。除了探测风强迫开尔文波和反射的罗斯比波之外,波浪能量通量揭示了沿西部边界的另一种可能的能量传递路线,在那里一些离赤道的波浪能量可以激发沿海捕获的开尔文波并转移回赤道大西洋。选取5个断面,对2019年通过的波能通量进行积分。结果表明,第三和第四模态的开尔文波是局部强迫的,而第二模态的波能量更可能来自赤道外区域。因此,2019年秋季,从9月开始,第二模开尔文波可以先于其他模态加深温跃层,为Niño事件提供了先决条件。
{"title":"Equatorial wave diagnosis for the Atlantic Niño in 2019 with an ocean reanalysis","authors":"Q. Song, H. Aiki","doi":"10.5194/os-19-1705-2023","DOIUrl":"https://doi.org/10.5194/os-19-1705-2023","url":null,"abstract":"Abstract. The propagation of equatorial waves is essential for the onset of Atlantic Niño, but diagnosing waves with ocean reanalysis or in situ data remains a challenge. This study uses an ocean reanalysis to diagnose the wave energy transfer route during the 2019 event. The climatological values and the anomaly in 2019 at each grid point are decomposed into the first four baroclinic modes based on their local density profiles. The decomposed geopotential can well reproduce the displacement of the thermocline during the event. Wave energy flux is calculated by means of a group-velocity-based scheme. In addition to detecting wind-forced Kelvin waves and reflected Rossby waves, the wave energy flux reveals another possible energy transfer route along the western boundary, where some off-equatorial wave energy can excite coastally trapped Kelvin waves and transfer back to the equatorial Atlantic. Five transects are selected, across which the passing wave energy fluxes in 2019 are integrated. The results suggest that the Kelvin waves in the third and fourth mode are locally forced, while the wave energy in the second mode is more likely from the off-equatorial region. Therefore, in the autumn of 2019, the second-mode Kelvin waves can deepen the thermocline ahead of other modes from September, serving to precondition the Niño event.\u0000","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"34 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138600500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A thermodynamic potential of seawater in terms of Absolute Salinity, Conservative Temperature, and in situ pressure 以绝对盐度、恒温和原位压力表示的海水热力学潜力
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-12-05 DOI: 10.5194/os-19-1719-2023
Trevor J. McDougall, P. Barker, R. Feistel, F. Roquet
Abstract. A thermodynamic potential is derived for seawater as a function of Conservative Temperature, Absolute Salinity and pressure. From this thermodynamic potential, all the equilibrium thermodynamic properties of seawater can be found, just as all these thermodynamic properties can be found from the TEOS-10 (the International Thermodynamic Equation of Seawater – 2010; IOC et al., 2010) Gibbs function (which is a function of in situ temperature, Absolute Salinity, and pressure). Present oceanographic practice in the Gibbs SeaWater Oceanographic Toolbox uses a polynomial expression for specific volume (and enthalpy) in terms of Conservative Temperature (as well as of Absolute Salinity and pressure), whereas the relationship between in situ temperature and Conservative Temperature is based on the Gibbs function. This mixed practice introduces (numerically small) inconsistencies and superfluous conversions between variables. The proposed thermodynamic potential of seawater, being expressed as an explicit function of Conservative Temperature, overcomes these small numerical inconsistencies, and in addition, the new approach allows for greater computational efficiency in the evaluation of sea surface temperature from Conservative Temperature. It is also shown that when using Conservative Temperature, the thermodynamic information in enthalpy is independent of that contained in entropy. This contrasts with the cases where either in situ temperature or potential temperature is used. In these cases, a single thermodynamic potential serves the important purpose of avoiding having to impose a separate consistency requirement between the functional forms of enthalpy and entropy.
摘要。导出了海水作为保守温度、绝对盐度和压力的函数的热力学势。从这个热力学势可以找到海水的所有平衡热力学性质,正如所有这些热力学性质都可以从TEOS-10(国际海水热力学方程- 2010;IOC等人,2010)Gibbs函数(这是原位温度、绝对盐度和压力的函数)。目前在吉布斯海水海洋学工具箱中,海洋学实践使用一个多项式表达式来表示守恒温度(以及绝对盐度和压力)的比容(和焓),而原位温度和守恒温度之间的关系是基于吉布斯函数的。这种混合实践引入了变量之间的不一致性和多余的转换(数值很小)。所提出的海水热力学势,被表示为保守温度的显式函数,克服了这些小的数值不一致,此外,新方法在从保守温度评估海面温度时允许更高的计算效率。当使用保守温度时,焓的热力学信息与熵的热力学信息是独立的。这与使用原位温度或势温的情况形成对比。在这些情况下,单一热力学势的重要目的是避免在焓和熵的函数形式之间强加单独的一致性要求。
{"title":"A thermodynamic potential of seawater in terms of Absolute Salinity, Conservative Temperature, and in situ pressure","authors":"Trevor J. McDougall, P. Barker, R. Feistel, F. Roquet","doi":"10.5194/os-19-1719-2023","DOIUrl":"https://doi.org/10.5194/os-19-1719-2023","url":null,"abstract":"Abstract. A thermodynamic potential is derived for seawater as a function of Conservative Temperature, Absolute Salinity and pressure. From this thermodynamic potential, all the equilibrium thermodynamic properties of seawater can be found, just as all these thermodynamic properties can be found from the TEOS-10 (the International Thermodynamic Equation of Seawater – 2010; IOC et al., 2010) Gibbs function (which is a function of in situ temperature, Absolute Salinity, and pressure). Present oceanographic practice in the Gibbs SeaWater Oceanographic Toolbox uses a polynomial expression for specific volume (and enthalpy) in terms of Conservative Temperature (as well as of Absolute Salinity and pressure), whereas the relationship between in situ temperature and Conservative Temperature is based on the Gibbs function. This mixed practice introduces (numerically small) inconsistencies and superfluous conversions between variables. The proposed thermodynamic potential of seawater, being expressed as an explicit function of Conservative Temperature, overcomes these small numerical inconsistencies, and in addition, the new approach allows for greater computational efficiency in the evaluation of sea surface temperature from Conservative Temperature. It is also shown that when using Conservative Temperature, the thermodynamic information in enthalpy is independent of that contained in entropy. This contrasts with the cases where either in situ temperature or potential temperature is used. In these cases, a single thermodynamic potential serves the important purpose of avoiding having to impose a separate consistency requirement between the functional forms of enthalpy and entropy.\u0000","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"56 10","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138598536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the interannual variability in Maipo and Rapel river plumes off central Chile 智利中部近海迈波河和拉佩尔河羽流的年际变化建模
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-12-04 DOI: 10.5194/os-19-1687-2023
J. Salcedo-Castro, A. Olita, Freddy Saavedra, G. Saldías, Raúl C. Cruz-Gómez, Cristian D. De la Torre Martínez
Abstract. River plumes have a direct influence on coastal environments, impacting coastal planktonic and benthic communities, including fishery resources. In general, the main drivers of river plume dynamics are the river discharge and the alongshore wind stress, whereas the tides and topography play a secondary role. In central Chile, rivers flowing into the eastern Pacific have a relatively short path on land, with a high slope and a mixed snow–rain regime. This study aims to understand the interannual variability in the plumes of the Maipo and Rapel rivers in the coastal/shelf area off central Chile and their influence on local ocean dynamics. We used the Coastal and Regional Ocean Community (CROCO) model, with 1 km horizontal resolution and 20 sigma levels, to simulate the ocean dynamics for the period 2003–2011. The results show that the plume's area coverage and coastal ocean salinity are strongly correlated with the river discharges. The predominant northeastward winds control the plumes' orientation toward the northwest. However, episodes of southeastward winds in winter can reverse the plumes' direction, promoting their attachment to the coast and southward transport. Results also show a salification trend linked to the severe droughts hitting central Chile during the studied period. This salification determines a change in local dynamics which could be more frequent in future scenarios of climate change with a significant lack of rain and river discharges along central Chile.
摘要。河流羽流对沿海环境有直接影响,影响沿海浮游生物和底栖生物群落,包括渔业资源。一般来说,河流羽流动力学的主要驱动力是河流流量和沿岸风应力,潮汐和地形起次要作用。在智利中部,流入东太平洋的河流在陆地上的路径相对较短,坡度高,雪雨混合。本研究旨在了解智利中部沿海/陆架地区Maipo河和Rapel河羽流的年际变化及其对当地海洋动力学的影响。采用水平分辨率为1 km,水平分辨率为20 sigma的沿海和区域海洋群落(CROCO)模式,模拟了2003-2011年期间的海洋动态。结果表明,烟柱的覆盖面积和沿海海洋盐度与河流流量有较强的相关性。主要的东北风控制了羽流向西北的方向。然而,冬季的东南风可以扭转羽流的方向,促进它们附着在海岸上并向南移动。研究结果还显示,在研究期间,智利中部地区的严重干旱与盐渍化趋势有关。这种盐化决定了当地动力的变化,这种变化在未来的气候变化情景中可能会更加频繁,因为智利中部地区雨水和河流流量严重不足。
{"title":"Modeling the interannual variability in Maipo and Rapel river plumes off central Chile","authors":"J. Salcedo-Castro, A. Olita, Freddy Saavedra, G. Saldías, Raúl C. Cruz-Gómez, Cristian D. De la Torre Martínez","doi":"10.5194/os-19-1687-2023","DOIUrl":"https://doi.org/10.5194/os-19-1687-2023","url":null,"abstract":"Abstract. River plumes have a direct influence on coastal environments, impacting coastal planktonic and benthic communities, including fishery resources. In general, the main drivers of river plume dynamics are the river discharge and the alongshore wind stress, whereas the tides and topography play a secondary role. In central Chile, rivers flowing into the eastern Pacific have a relatively short path on land, with a high slope and a mixed snow–rain regime. This study aims to understand the interannual variability in the plumes of the Maipo and Rapel rivers in the coastal/shelf area off central Chile and their influence on local ocean dynamics. We used the Coastal and Regional Ocean Community (CROCO) model, with 1 km horizontal resolution and 20 sigma levels, to simulate the ocean dynamics for the period 2003–2011. The results show that the plume's area coverage and coastal ocean salinity are strongly correlated with the river discharges. The predominant northeastward winds control the plumes' orientation toward the northwest. However, episodes of southeastward winds in winter can reverse the plumes' direction, promoting their attachment to the coast and southward transport. Results also show a salification trend linked to the severe droughts hitting central Chile during the studied period. This salification determines a change in local dynamics which could be more frequent in future scenarios of climate change with a significant lack of rain and river discharges along central Chile.\u0000","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"73 20","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138604757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constraining an eddy energy dissipation rate due to relative wind stress for use in energy budget-based eddy parameterisations 在基于能量预算的涡旋参数计算中使用相对风应力引起的涡旋能量耗散率约束
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-11-30 DOI: 10.5194/os-19-1669-2023
Thomas W Wilder, Xiaoming Zhai, D. Munday, M. Joshi
Abstract. A geostrophic eddy energy dissipation rate due to the interaction of the large-scale wind field and mesoscale ocean currents, or relative wind stress, is derived here for use in eddy energy budget-based eddy parameterisations. We begin this work by analytically deriving a relative wind stress damping term and a baroclinic geostrophic eddy energy equation. The time evolution of this analytical eddy energy in response to relative wind stress damping is compared directly with a baroclinic eddy in a general circulation model for both anticyclones and cyclones. The dissipation of eddy energy is comparable between each model and eddy type, although the numerical model diverges from the analytical model at around day 150, likely due to the presence of non-linear baroclinic processes. A constrained dissipation rate due to relative wind stress is then proposed using terms from the analytical eddy energy budget. This dissipation rate depends on the potential energy of the eddy thermocline displacement, which also depends on eddy length scale. Using an array of ocean datasets, and computing two forms for the eddy length scale, a range of values for the dissipation rate are presented. The analytical dissipation rate is found to vary from 0.25 to 4 times that of a constant dissipation rate employed in previous studies. The dissipation rates are generally enhanced in the Southern Ocean but smaller in the western boundaries. This proposed dissipation rate offers a tool to parameterise the damping of total eddy energy in coarse resolution global climate models and may have implications for a wide range of climate processes.
摘要本文推导了大尺度风场和中尺度洋流相互作用引起的地营涡动能量耗散率,即相对风应力,用于基于涡动能量预算的涡动参数计算。在这项工作中,我们首先通过分析推导出相对风应力阻尼项和气压沿岸地转漩涡能量方程。我们将分析得出的漩涡能量在相对风应力阻尼作用下的时间演化与反气旋和气旋大气环流模式中的条气漩涡进行了直接比较。尽管数值模式在第 150 天左右与分析模型出现分歧,可能是由于存在非线性条带过程,但每种模式和涡流类型的涡流能量耗散情况相当。然后,利用分析漩涡能量预算中的术语,提出了由相对风应力引起的约束耗散率。这种耗散率取决于涡热跃层位移的势能,而势能也取决于涡的长度尺度。利用一系列海洋数据集,并计算两种形式的涡长尺度,提出了耗散率的一系列数值。分析发现,耗散率是以往研究中使用的恒定耗散率的 0.25 至 4 倍。南大洋的耗散率普遍增大,但西部边界的耗散率较小。提出的耗散率为粗分辨率全球气候模式中总涡旋能量的阻尼参数化提供了一个工具,并可能对广泛的气候过程产生影响。
{"title":"Constraining an eddy energy dissipation rate due to relative wind stress for use in energy budget-based eddy parameterisations","authors":"Thomas W Wilder, Xiaoming Zhai, D. Munday, M. Joshi","doi":"10.5194/os-19-1669-2023","DOIUrl":"https://doi.org/10.5194/os-19-1669-2023","url":null,"abstract":"Abstract. A geostrophic eddy energy dissipation rate due to the interaction of the large-scale wind field and mesoscale ocean currents, or relative wind stress, is derived here for use in eddy energy budget-based eddy parameterisations. We begin this work by analytically deriving a relative wind stress damping term and a baroclinic geostrophic eddy energy equation. The time evolution of this analytical eddy energy in response to relative wind stress damping is compared directly with a baroclinic eddy in a general circulation model for both anticyclones and cyclones. The dissipation of eddy energy is comparable between each model and eddy type, although the numerical model diverges from the analytical model at around day 150, likely due to the presence of non-linear baroclinic processes. A constrained dissipation rate due to relative wind stress is then proposed using terms from the analytical eddy energy budget. This dissipation rate depends on the potential energy of the eddy thermocline displacement, which also depends on eddy length scale. Using an array of ocean datasets, and computing two forms for the eddy length scale, a range of values for the dissipation rate are presented. The analytical dissipation rate is found to vary from 0.25 to 4 times that of a constant dissipation rate employed in previous studies. The dissipation rates are generally enhanced in the Southern Ocean but smaller in the western boundaries. This proposed dissipation rate offers a tool to parameterise the damping of total eddy energy in coarse resolution global climate models and may have implications for a wide range of climate processes.","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"71 15","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139196837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Response of the Arctic sea ice–ocean system to meltwater perturbations based on a one-dimensional model study 基于一维模型研究的北极海冰-海洋系统对融水扰动的反应
IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2023-11-29 DOI: 10.5194/os-19-1649-2023
Haohao Zhang, Xuezhi Bai, Kaiwen Wang
Abstract. A one-dimensional coupled sea ice–ocean model is used to investigate how the Arctic Ocean stratification and sea ice respond to changes in meltwater. In the control experiments, the model is capable of accurately simulating seasonal changes in the upper-ocean stratification structure compared with observations, and the results suggest that ocean stratification is important for ice thickness development during the freezing season. The sensitivity experiments reveal the following: (1) a decrease in meltwater release weakens ocean stratification and creates a deeper, higher-salinity mixed layer. (2) Meltwater reduced ice melting by 17 % by strengthening ocean stratification. (3) The impact of meltwater released during the previous melting season on ice growth in winter depends on the strength of stratification. After removing all the meltwater during the summer, ice formation in areas with strong stratification increased by 12 % during the winter, while it decreased by 43 % in areas with weak stratification. (4) In some areas of the Nansen Basin where stratification is nearly absent, the warm Atlantic Water can reach the ice directly in early spring, leading to early melting of the sea ice in winter if all meltwater is removed from the model. These findings contribute to our understanding of the complex interactions between ocean stratification, meltwater and sea ice growth and have important implications for climate models and future change prediction in the Arctic.
摘要。利用一维海冰-海洋耦合模式研究了北冰洋分层和海冰对融水变化的响应。在对照实验中,与观测结果相比,该模式能够准确地模拟上层海洋分层结构的季节性变化,结果表明海洋分层对冰冻季节冰厚度的发展非常重要。敏感性实验揭示了以下几点:(1)融水释放量减少会减弱海洋分层,形成更深、含盐量更高的混合层。(2) 融水通过加强海洋分层,使冰层融化减少了 17%。(3) 上一个融化季节释放的融水对冬季冰层生长的影响取决于分层的强度。在去除夏季的所有融水后,分层作用强的地区冬季成冰量增加了 12%,而分层作用弱的地区成冰量减少了 43%。(4) 在南森盆地几乎没有分层的一些地区,如果从模型中去除所有融水,温暖的大西洋海水可在早春直接到达冰层,导致冬季海冰提前融化。这些发现有助于我们理解海洋分层、融水和海冰生长之间复杂的相互作用,对气候模型和北极未来变化预测具有重要意义。
{"title":"Response of the Arctic sea ice–ocean system to meltwater perturbations based on a one-dimensional model study","authors":"Haohao Zhang, Xuezhi Bai, Kaiwen Wang","doi":"10.5194/os-19-1649-2023","DOIUrl":"https://doi.org/10.5194/os-19-1649-2023","url":null,"abstract":"Abstract. A one-dimensional coupled sea ice–ocean model is used to investigate how the Arctic Ocean stratification and sea ice respond to changes in meltwater. In the control experiments, the model is capable of accurately simulating seasonal changes in the upper-ocean stratification structure compared with observations, and the results suggest that ocean stratification is important for ice thickness development during the freezing season. The sensitivity experiments reveal the following: (1) a decrease in meltwater release weakens ocean stratification and creates a deeper, higher-salinity mixed layer. (2) Meltwater reduced ice melting by 17 % by strengthening ocean stratification. (3) The impact of meltwater released during the previous melting season on ice growth in winter depends on the strength of stratification. After removing all the meltwater during the summer, ice formation in areas with strong stratification increased by 12 % during the winter, while it decreased by 43 % in areas with weak stratification. (4) In some areas of the Nansen Basin where stratification is nearly absent, the warm Atlantic Water can reach the ice directly in early spring, leading to early melting of the sea ice in winter if all meltwater is removed from the model. These findings contribute to our understanding of the complex interactions between ocean stratification, meltwater and sea ice growth and have important implications for climate models and future change prediction in the Arctic.","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"45 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139211101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ocean Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1