Pub Date : 2023-01-01DOI: 10.29026/oea.2023.220063
D. Tang, Zhenglong Shao, Xin Xie, Yingjie Zhou, Xiaohu Zhang, F. Fan, S. Wen
{"title":"Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing","authors":"D. Tang, Zhenglong Shao, Xin Xie, Yingjie Zhou, Xiaohu Zhang, F. Fan, S. Wen","doi":"10.29026/oea.2023.220063","DOIUrl":"https://doi.org/10.29026/oea.2023.220063","url":null,"abstract":"","PeriodicalId":19611,"journal":{"name":"Opto-Electronic Advances","volume":null,"pages":null},"PeriodicalIF":14.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69521192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To improve the processing efficiency and extend the tuning range of 3D isotropic fabrication, we apply the simultaneous spatiotemporal focusing (SSTF) technique to a high-repetition-rate femtosecond (fs) fiber laser system. In the SSTF scheme, we propose a pulse compensation scheme for the fiber laser with a narrow spectral bandwidth by building an extra-cavity pulse stretcher. We further demonstrate truly 3D isotropic microfabrication in photosensitive glass with a tunable resolution ranging from 8 µm to 22 µm using the SSTF of fs laser pulses. Moreover, we systematically investigate the influences of pulse energy, writing speed, processing depth, and spherical aberration on the fabrication resolution. As a proof-of-concept demonstration, the SSTF scheme was further employed for the fs laser-assisted etching of complicated glass microfluidic structures with 3D uniform sizes. The developed technique can be extended to many applications such as advanced photonics, 3D biomimetic printing, micro-electromechanical systems, and lab-on-a-chips.
{"title":"Three-dimensional isotropic microfabrication in glass using spatiotemporal focusing of high-repetition-rate femtosecond laser pulses","authors":"Yuanxin Tan, Haotian Lv, Jian Xu, Aodong Zhang, Yunpeng Song, Jianping Yu, Wei Chen, Yuexin Wan, Zhaoxiang Liu, Zhaohui Liu, Jia Qi, Yangjian Cai, Ya Cheng","doi":"10.29026/oea.2023.230066","DOIUrl":"https://doi.org/10.29026/oea.2023.230066","url":null,"abstract":"To improve the processing efficiency and extend the tuning range of 3D isotropic fabrication, we apply the simultaneous spatiotemporal focusing (SSTF) technique to a high-repetition-rate femtosecond (fs) fiber laser system. In the SSTF scheme, we propose a pulse compensation scheme for the fiber laser with a narrow spectral bandwidth by building an extra-cavity pulse stretcher. We further demonstrate truly 3D isotropic microfabrication in photosensitive glass with a tunable resolution ranging from 8 µm to 22 µm using the SSTF of fs laser pulses. Moreover, we systematically investigate the influences of pulse energy, writing speed, processing depth, and spherical aberration on the fabrication resolution. As a proof-of-concept demonstration, the SSTF scheme was further employed for the fs laser-assisted etching of complicated glass microfluidic structures with 3D uniform sizes. The developed technique can be extended to many applications such as advanced photonics, 3D biomimetic printing, micro-electromechanical systems, and lab-on-a-chips.","PeriodicalId":19611,"journal":{"name":"Opto-Electronic Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135496321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.29026/oea.2023.220085
Shoulin Jiang, Feifan Chen, Yan Zhao, Shou-fei Gao, Ying‐ying Wang, H. Ho, W. Jin
We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber. The phase modulation dynamics are studied by multi-physics simulation. A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling. It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm. The rise and fall time constants are 3.5 and 3.7 μs, respectively, 2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators. The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.
{"title":"Broadband all-fiber optical phase modulator based on photo-thermal effect in a gas-filled hollow-core fiber","authors":"Shoulin Jiang, Feifan Chen, Yan Zhao, Shou-fei Gao, Ying‐ying Wang, H. Ho, W. Jin","doi":"10.29026/oea.2023.220085","DOIUrl":"https://doi.org/10.29026/oea.2023.220085","url":null,"abstract":"We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber. The phase modulation dynamics are studied by multi-physics simulation. A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling. It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm. The rise and fall time constants are 3.5 and 3.7 μs, respectively, 2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators. The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.","PeriodicalId":19611,"journal":{"name":"Opto-Electronic Advances","volume":null,"pages":null},"PeriodicalIF":14.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69521719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.29026/oea.2023.220101
Wenliang Zhang, O. Çakıroğlu, A. Al-Enizi, A. Nafady, Xuetao Gan, Xiaohua Ma, Sruthi Kuriakose, Yong Xie, A. Castellanos-Gomez
{"title":"Solvent-free fabrication of broadband WS2 photodetectors on paper","authors":"Wenliang Zhang, O. Çakıroğlu, A. Al-Enizi, A. Nafady, Xuetao Gan, Xiaohua Ma, Sruthi Kuriakose, Yong Xie, A. Castellanos-Gomez","doi":"10.29026/oea.2023.220101","DOIUrl":"https://doi.org/10.29026/oea.2023.220101","url":null,"abstract":"","PeriodicalId":19611,"journal":{"name":"Opto-Electronic Advances","volume":null,"pages":null},"PeriodicalIF":14.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69521916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.29026/oea.2023.230007
Chang-Cun Yan, Zong-Lu Che, Wanting Yang, Xue‐Dong Wang, Liang Liao
{"title":"Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity","authors":"Chang-Cun Yan, Zong-Lu Che, Wanting Yang, Xue‐Dong Wang, Liang Liao","doi":"10.29026/oea.2023.230007","DOIUrl":"https://doi.org/10.29026/oea.2023.230007","url":null,"abstract":"","PeriodicalId":19611,"journal":{"name":"Opto-Electronic Advances","volume":null,"pages":null},"PeriodicalIF":14.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69523545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.29026/oea.2023.230094
Mingrui Shao, Chang Ji, Jibing Tan, Baoqiang Du, Xiaofei Zhao, Jing Yu, Baoyuan Man, Kaichen Xu, Chao Zhang, Zhen Li
Surface-enhanced Raman scattering (SERS) substrates based on chemical mechanism (CM) have received widespread attentions for the stable and repeatable signal output due to their excellent chemical stability, uniform molecular adsorption and controllable molecular orientation. However, it remains huge challenges to achieve the optimal SERS signal for diverse molecules with different band structures on the same substrate. Herein, we demonstrate a graphene oxide (GO) energy band regulation strategy through ferroelectric polarization to facilitate the charge transfer process for improving SERS activity. The Fermi level (Ef) of GO can be flexibly manipulated by adjusting the ferroelectric polarization direction or the temperature of the ferroelectric substrate. Experimentally, kelvin probe force microscopy (KPFM) is employed to quantitatively analyze the Ef of GO. Theoretically, the density functional theory calculations are also performed to verify the proposed modulation mechanism. Consequently, the SERS response of probe molecules with different band structures (R6G, CV, MB, PNTP) can be improved through polarization direction or temperature changes without the necessity to redesign the SERS substrate. This work provides a novel insight into the SERS substrate design based on CM and is expected to be applied to other two-dimensional materials.
{"title":"Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response","authors":"Mingrui Shao, Chang Ji, Jibing Tan, Baoqiang Du, Xiaofei Zhao, Jing Yu, Baoyuan Man, Kaichen Xu, Chao Zhang, Zhen Li","doi":"10.29026/oea.2023.230094","DOIUrl":"https://doi.org/10.29026/oea.2023.230094","url":null,"abstract":"Surface-enhanced Raman scattering (SERS) substrates based on chemical mechanism (CM) have received widespread attentions for the stable and repeatable signal output due to their excellent chemical stability, uniform molecular adsorption and controllable molecular orientation. However, it remains huge challenges to achieve the optimal SERS signal for diverse molecules with different band structures on the same substrate. Herein, we demonstrate a graphene oxide (GO) energy band regulation strategy through ferroelectric polarization to facilitate the charge transfer process for improving SERS activity. The Fermi level (<italic>E</italic><sub>f</sub>) of GO can be flexibly manipulated by adjusting the ferroelectric polarization direction or the temperature of the ferroelectric substrate. Experimentally, kelvin probe force microscopy (KPFM) is employed to quantitatively analyze the <italic>E</italic><sub>f</sub> of GO. Theoretically, the density functional theory calculations are also performed to verify the proposed modulation mechanism. Consequently, the SERS response of probe molecules with different band structures (R6G, CV, MB, PNTP) can be improved through polarization direction or temperature changes without the necessity to redesign the SERS substrate. This work provides a novel insight into the SERS substrate design based on CM and is expected to be applied to other two-dimensional materials.","PeriodicalId":19611,"journal":{"name":"Opto-Electronic Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135784431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.29026/oea.2023.220174
Ze Zheng, Lei Xu, Lujun Huang, Daria Smirnova, Khosro Zangeneh Kamali, Arman Yousefi, Fu Deng, Rocio Camacho-Morales, Cuifeng Ying, Andrey E. Miroshnichenko, Dragomir N. Neshev, Mohsen Rahmani
Dielectric metasurfaces play an increasingly important role in enhancing optical nonlinear generations owing to their ability to support strong light-matter interactions based on Mie-type multipolar resonances. Compared to metasurfaces composed of the periodic arrangement of nanoparticles, inverse, so-called, membrane metasurfaces offer unique possibilities for supporting multipolar resonances, while maintaining small unit cell size, large mode volume and high field enhancement for enhancing nonlinear frequency conversion. Here, we theoretically and experimentally investigate the formation of bound states in the continuum (BICs) from silicon dimer-hole membrane metasurfaces. We demonstrate that our BIC-formed resonance features a strong and tailorable electric near-field confinement inside the silicon membrane films. Furthermore, we show that by tuning the gap between the holes, one can open a leaky channel to transform these regular BICs into quasi-BICs, which can be excited directly under normal plane wave incidence. To prove the capabilities of such metasurfaces, we demonstrate the conversion of an infrared image to the visible range, based on the Third-harmonic generation (THG) process with the resonant membrane metasurfaces. Our results suggest a new paradigm for realising efficient nonlinear photonics metadevices and hold promise for extending the applications of nonlinear structuring surfaces to new types of all-optical near-infrared imaging technologies.
{"title":"Third-harmonic generation and imaging with resonant Si membrane metasurface","authors":"Ze Zheng, Lei Xu, Lujun Huang, Daria Smirnova, Khosro Zangeneh Kamali, Arman Yousefi, Fu Deng, Rocio Camacho-Morales, Cuifeng Ying, Andrey E. Miroshnichenko, Dragomir N. Neshev, Mohsen Rahmani","doi":"10.29026/oea.2023.220174","DOIUrl":"https://doi.org/10.29026/oea.2023.220174","url":null,"abstract":"Dielectric metasurfaces play an increasingly important role in enhancing optical nonlinear generations owing to their ability to support strong light-matter interactions based on Mie-type multipolar resonances. Compared to metasurfaces composed of the periodic arrangement of nanoparticles, inverse, so-called, membrane metasurfaces offer unique possibilities for supporting multipolar resonances, while maintaining small unit cell size, large mode volume and high field enhancement for enhancing nonlinear frequency conversion. Here, we theoretically and experimentally investigate the formation of bound states in the continuum (BICs) from silicon dimer-hole membrane metasurfaces. We demonstrate that our BIC-formed resonance features a strong and tailorable electric near-field confinement inside the silicon membrane films. Furthermore, we show that by tuning the gap between the holes, one can open a leaky channel to transform these regular BICs into quasi-BICs, which can be excited directly under normal plane wave incidence. To prove the capabilities of such metasurfaces, we demonstrate the conversion of an infrared image to the visible range, based on the Third-harmonic generation (THG) process with the resonant membrane metasurfaces. Our results suggest a new paradigm for realising efficient nonlinear photonics metadevices and hold promise for extending the applications of nonlinear structuring surfaces to new types of all-optical near-infrared imaging technologies.","PeriodicalId":19611,"journal":{"name":"Opto-Electronic Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136008738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture. Linear weighting and nonlinear spike activation are two fundamental functions of a photonic spiking neural network (PSNN). However, they are separately implemented with different photonic materials and devices, hindering the large-scale integration of PSNN. Here, we propose, fabricate and experimentally demonstrate a photonic neuro-synaptic chip enabling the simultaneous implementation of linear weighting and nonlinear spike activation based on a distributed feedback (DFB) laser with a saturable absorber (DFB-SA). A prototypical system is experimentally constructed to demonstrate the parallel weighted function and nonlinear spike activation. Furthermore, a four-channel DFB-SA laser array is fabricated for realizing matrix convolution of a spiking convolutional neural network, achieving a recognition accuracy of 87% for the MNIST dataset. The fabricated neuro-synaptic chip offers a fundamental building block to construct the large-scale integrated PSNN chip.
{"title":"Photonic integrated neuro-synaptic core for convolutional spiking neural network","authors":"Shuiying Xiang, Yuechun Shi, Yahui Zhang, Xingxing Guo, Ling Zheng, Yanan Han, Yuna Zhang, Ziwei Song, Dianzhuang Zheng, Tao Zhang, Hailing Wang, Xiaojun Zhu, Xiangfei Chen, Min Qiu, Yichen Shen, Wanhua Zheng, Yue Hao","doi":"10.29026/oea.2023.230140","DOIUrl":"https://doi.org/10.29026/oea.2023.230140","url":null,"abstract":"Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture. Linear weighting and nonlinear spike activation are two fundamental functions of a photonic spiking neural network (PSNN). However, they are separately implemented with different photonic materials and devices, hindering the large-scale integration of PSNN. Here, we propose, fabricate and experimentally demonstrate a photonic neuro-synaptic chip enabling the simultaneous implementation of linear weighting and nonlinear spike activation based on a distributed feedback (DFB) laser with a saturable absorber (DFB-SA). A prototypical system is experimentally constructed to demonstrate the parallel weighted function and nonlinear spike activation. Furthermore, a four-channel DFB-SA laser array is fabricated for realizing matrix convolution of a spiking convolutional neural network, achieving a recognition accuracy of 87% for the MNIST dataset. The fabricated neuro-synaptic chip offers a fundamental building block to construct the large-scale integrated PSNN chip.","PeriodicalId":19611,"journal":{"name":"Opto-Electronic Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135662668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}