Background: Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are one of the key components in highly active anti-retroviral therapy because of their high specificity and less toxicity. NNRTIs inhibit reverse transcriptase enzyme by binding to the allosteric site, which is 10Å away from the active site. Rapid emergence of resistance is the major problem with all anti-HIV agents. Hence, there is continuous need to develop novel anti-HIV agents active against both drug sensitive and resistance strains.
Results: All the 16 synthesized 2-(1,3-dioxo-3a,4-dihydro-1H-isoindol-2(3H,7H,7aH)-yl)-N-(substitutedphenyl) acetamide 4(a-p) analogs were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, mass spectroscopy, and elemental analysis. Lipinski rule of five parameters and molecular parameters like solubility, drug likeness, and drug score were derived for designed analogs using online servers like Molinspiration and Osiris property explorer. Synthesized compounds were evaluated for their HIV-1 reverse transcriptase inhibitor activity by HIV-1 RNA-dependent DNA polymerase activity assay at 2 and 20 μM concentrations.
Conclusions: Among the 16 synthesized compounds, 4a, 4b, 4f, 4g, 4k, and 4l showed weak reverse transcriptase inhibitor activity at 20 μM concentration. For the designed compounds, there was no correlation observed between molecular modeling and in vitro studies.
{"title":"Design and synthesis of tetrahydrophthalimide derivatives as inhibitors of HIV-1 reverse transcriptase.","authors":"Ashok Penta, Swastika Ganguly, Sankaran Murugesan","doi":"10.1186/2191-2858-3-8","DOIUrl":"https://doi.org/10.1186/2191-2858-3-8","url":null,"abstract":"<p><strong>Background: </strong>Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are one of the key components in highly active anti-retroviral therapy because of their high specificity and less toxicity. NNRTIs inhibit reverse transcriptase enzyme by binding to the allosteric site, which is 10Å away from the active site. Rapid emergence of resistance is the major problem with all anti-HIV agents. Hence, there is continuous need to develop novel anti-HIV agents active against both drug sensitive and resistance strains.</p><p><strong>Results: </strong>All the 16 synthesized 2-(1,3-dioxo-3a,4-dihydro-1H-isoindol-2(3H,7H,7aH)-yl)-N-(substitutedphenyl) acetamide 4(a-p) analogs were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, mass spectroscopy, and elemental analysis. Lipinski rule of five parameters and molecular parameters like solubility, drug likeness, and drug score were derived for designed analogs using online servers like Molinspiration and Osiris property explorer. Synthesized compounds were evaluated for their HIV-1 reverse transcriptase inhibitor activity by HIV-1 RNA-dependent DNA polymerase activity assay at 2 and 20 μM concentrations.</p><p><strong>Conclusions: </strong>Among the 16 synthesized compounds, 4a, 4b, 4f, 4g, 4k, and 4l showed weak reverse transcriptase inhibitor activity at 20 μM concentration. For the designed compounds, there was no correlation observed between molecular modeling and in vitro studies.</p>","PeriodicalId":19639,"journal":{"name":"Organic and Medicinal Chemistry Letters","volume":"3 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2013-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2191-2858-3-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31676497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: We report the synthesis of benzimidazoles using lanthanum chloride as an efficient catalyst. One-pot synthesis of 2-substituted benzimidazole derivatives from o-phenylenediamine and a variety of aldehydes were developed under mild reaction conditions.
Results: We have examined the effect of different solvents using the same reaction conditions. The yield of the product varied with the nature of the solvents, and better conversion and easy isolation of products were found with acetonitrile. In a similar manner, the reaction with o-phenylenediamine and 3,4,5-trimethoxybenzaldehyde was carried out without any solvents. The observation shows that the reaction was not brought into completion, even after starting for a period of 9 h, and the reaction mixture showed a number of spots in thin-layer chromatography.
Conclusions: In conclusion, lanthanum chloride has been employed as a novel and efficient catalyst for the synthesis of benzimidazoles in good yields from o-phenylenediamine and a wide variety of aldehydes. All of the reactions were carried out in the presence of lanthanum chloride (10 mol%) in acetonitrile at room temperature.
{"title":"Facile and efficient one-pot synthesis of benzimidazoles using lanthanum chloride.","authors":"Yekkirala Venkateswarlu, Sudhagani Ramesh Kumar, Panuganti Leelavathi","doi":"10.1186/2191-2858-3-7","DOIUrl":"10.1186/2191-2858-3-7","url":null,"abstract":"<p><strong>Background: </strong>We report the synthesis of benzimidazoles using lanthanum chloride as an efficient catalyst. One-pot synthesis of 2-substituted benzimidazole derivatives from o-phenylenediamine and a variety of aldehydes were developed under mild reaction conditions.</p><p><strong>Results: </strong>We have examined the effect of different solvents using the same reaction conditions. The yield of the product varied with the nature of the solvents, and better conversion and easy isolation of products were found with acetonitrile. In a similar manner, the reaction with o-phenylenediamine and 3,4,5-trimethoxybenzaldehyde was carried out without any solvents. The observation shows that the reaction was not brought into completion, even after starting for a period of 9 h, and the reaction mixture showed a number of spots in thin-layer chromatography.</p><p><strong>Conclusions: </strong>In conclusion, lanthanum chloride has been employed as a novel and efficient catalyst for the synthesis of benzimidazoles in good yields from o-phenylenediamine and a wide variety of aldehydes. All of the reactions were carried out in the presence of lanthanum chloride (10 mol%) in acetonitrile at room temperature.</p>","PeriodicalId":19639,"journal":{"name":"Organic and Medicinal Chemistry Letters","volume":"3 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2013-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3765254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31636622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The aim of this study was to identify, quantify, and compare the phytochemical contents, antioxidant capacities, and antibacterial activities of Aloe vera lyophilized leaf gel (LGE) and 95% ethanol leaf gel extracts (ELGE) using GC-MS and spectrophotometric methods.
Results: Analytically, 95% ethanol is less effective than ethyl acetate/diethyl ether or hexane (in the case of fatty acids) extractions in separating phytochemicals for characterization purposes. However, although fewer compounds are extracted in the ELGE, they are approximately 345 times more concentrated as compared to the LGE, hence justifying ELGE use in biological efficacy studies in vivo. Individual phytochemicals identified included various phenolic acids/polyphenols, phytosterols, fatty acids, indoles, alkanes, pyrimidines, alkaloids, organic acids, aldehydes, dicarboxylic acids, ketones, and alcohols. Due to the presence of the antioxidant polyphenols, indoles, and alkaloids, the A. vera leaf gel shows antioxidant capacity as confirmed by ORAC and FRAP analyses. Both analytical methods used show the non-flavonoid polyphenols to contribute to the majority of the total polyphenol content. Three different solvents such as aqueous, ethanol, and acetone were used to extract the bioactive compounds from the leaves of A. vera to screen the antibacterial activity selected human clinical pathogens by agar diffusion method. The maximum antibacterial activities were observed in acetone extracts (12 ± 0.45, 20 ± 0.35, 20 ± 0.57, and 15 ± 0.38 nm) other than aqueous and ethanol extracts.
Conclusion: Due to its phytochemical composition, A. vera leaf gel may show promise in alleviating symptoms associated with/or prevention of cardiovascular diseases, cancer, neurodegeneration, and diabetes.
{"title":"Antibacterial activities and antioxidant capacity of Aloe vera.","authors":"Fatemeh Nejatzadeh-Barandozi","doi":"10.1186/2191-2858-3-5","DOIUrl":"https://doi.org/10.1186/2191-2858-3-5","url":null,"abstract":"<p><strong>Background: </strong>The aim of this study was to identify, quantify, and compare the phytochemical contents, antioxidant capacities, and antibacterial activities of Aloe vera lyophilized leaf gel (LGE) and 95% ethanol leaf gel extracts (ELGE) using GC-MS and spectrophotometric methods.</p><p><strong>Results: </strong>Analytically, 95% ethanol is less effective than ethyl acetate/diethyl ether or hexane (in the case of fatty acids) extractions in separating phytochemicals for characterization purposes. However, although fewer compounds are extracted in the ELGE, they are approximately 345 times more concentrated as compared to the LGE, hence justifying ELGE use in biological efficacy studies in vivo. Individual phytochemicals identified included various phenolic acids/polyphenols, phytosterols, fatty acids, indoles, alkanes, pyrimidines, alkaloids, organic acids, aldehydes, dicarboxylic acids, ketones, and alcohols. Due to the presence of the antioxidant polyphenols, indoles, and alkaloids, the A. vera leaf gel shows antioxidant capacity as confirmed by ORAC and FRAP analyses. Both analytical methods used show the non-flavonoid polyphenols to contribute to the majority of the total polyphenol content. Three different solvents such as aqueous, ethanol, and acetone were used to extract the bioactive compounds from the leaves of A. vera to screen the antibacterial activity selected human clinical pathogens by agar diffusion method. The maximum antibacterial activities were observed in acetone extracts (12 ± 0.45, 20 ± 0.35, 20 ± 0.57, and 15 ± 0.38 nm) other than aqueous and ethanol extracts.</p><p><strong>Conclusion: </strong>Due to its phytochemical composition, A. vera leaf gel may show promise in alleviating symptoms associated with/or prevention of cardiovascular diseases, cancer, neurodegeneration, and diabetes.</p>","PeriodicalId":19639,"journal":{"name":"Organic and Medicinal Chemistry Letters","volume":"3 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2013-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2191-2858-3-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31593448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Pyrazolones are traditionally synthesized by the reaction of β-keto esters with hydrazine and its derivatives. There are methods to synthesize β-keto esters from esters and aldehydes, but these methods have main limitation in varying the substituents. Often, there are a number of methods such as acylation of enolates in which a chelating effect has been employed to lock the enolate anion using lithium and magnesium salts; however, these methods suffer from inconsistent yields in the case of aliphatic acylation. There are methods to synthesize β-keto esters from ketones like caboxylation of ketone enolates using carbon dioxide and carbon monoxide sources in the presence of palladium or transition metal catalysts. Currently, the most general and simple method to synthesize β-keto ester is the reaction of dimethyl or ethyl carbonate with ketone in the presence of strong bases which also requires long reaction time, use of excessive amount of reagent and inconsistent yield. These factors lead us to develop a simple method to synthesize β-keto esters by changing the base and reagent.
Results: A series of β-keto esters were synthesized from ketones and ethyl chloroformate in the presence of base which in turn are converted to pyrazolones and then subjected to cytotoxicity studies towards various cancer cell lines and antimicrobial activity studies towards various bacterial and fungal strains.
Conclusion: The β-keto esters from ethyl chloroformate was successfully attempted, and the developed method is simple, fast and applicable to the ketones having the alkyl halogens, protecting groups like Boc and Cbz that were tolerated and proved to be useful in the synthesis of fused bicyclic and tricyclic pyrazolones efficiently using cyclic ketones. Since this method is successful for different ketones, it can be useful for the synthesis of pharmaceutically important pyrazolones also. The synthesized pyrazolones were subjected to antimicrobial, docking and cytotoxicity assay against ACHN (human renal cell carcinoma), Panc-1 (human pancreatic adenocarcinoma) and HCT-116 (human colon cancer) cell line, and lead molecules have been identified. Some of the compounds are found to have promising activity against different bacterial and fungal strains tested.
{"title":"β-Keto esters from ketones and ethyl chloroformate: a rapid, general, efficient synthesis of pyrazolones and their antimicrobial, in silico and in vitro cytotoxicity studies.","authors":"Ramasamy Venkat Ragavan, Kalavathi Murugan Kumar, Vijayaparthasarathi Vijayakumar, Sundaramoorthy Sarveswari, Sudha Ramaiah, Anand Anbarasu, Sivashanmugam Karthikeyan, Periyasamy Giridharan, Nalilu Suchetha Kumari","doi":"10.1186/2191-2858-3-6","DOIUrl":"https://doi.org/10.1186/2191-2858-3-6","url":null,"abstract":"<p><strong>Background: </strong>Pyrazolones are traditionally synthesized by the reaction of β-keto esters with hydrazine and its derivatives. There are methods to synthesize β-keto esters from esters and aldehydes, but these methods have main limitation in varying the substituents. Often, there are a number of methods such as acylation of enolates in which a chelating effect has been employed to lock the enolate anion using lithium and magnesium salts; however, these methods suffer from inconsistent yields in the case of aliphatic acylation. There are methods to synthesize β-keto esters from ketones like caboxylation of ketone enolates using carbon dioxide and carbon monoxide sources in the presence of palladium or transition metal catalysts. Currently, the most general and simple method to synthesize β-keto ester is the reaction of dimethyl or ethyl carbonate with ketone in the presence of strong bases which also requires long reaction time, use of excessive amount of reagent and inconsistent yield. These factors lead us to develop a simple method to synthesize β-keto esters by changing the base and reagent.</p><p><strong>Results: </strong>A series of β-keto esters were synthesized from ketones and ethyl chloroformate in the presence of base which in turn are converted to pyrazolones and then subjected to cytotoxicity studies towards various cancer cell lines and antimicrobial activity studies towards various bacterial and fungal strains.</p><p><strong>Conclusion: </strong>The β-keto esters from ethyl chloroformate was successfully attempted, and the developed method is simple, fast and applicable to the ketones having the alkyl halogens, protecting groups like Boc and Cbz that were tolerated and proved to be useful in the synthesis of fused bicyclic and tricyclic pyrazolones efficiently using cyclic ketones. Since this method is successful for different ketones, it can be useful for the synthesis of pharmaceutically important pyrazolones also. The synthesized pyrazolones were subjected to antimicrobial, docking and cytotoxicity assay against ACHN (human renal cell carcinoma), Panc-1 (human pancreatic adenocarcinoma) and HCT-116 (human colon cancer) cell line, and lead molecules have been identified. Some of the compounds are found to have promising activity against different bacterial and fungal strains tested.</p>","PeriodicalId":19639,"journal":{"name":"Organic and Medicinal Chemistry Letters","volume":"3 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2013-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2191-2858-3-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31594262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Faheem Khan, Nisha Negi, Rajnikant Sharma, Devendra Singh Negi
Background: Glycosmis is a genus of evergreen glabrous shrub and distributed all over India. It possesses various medicinal properties and is used in indigenous medicine for cough, rheumatism, anemia, and jaundice. Glycosmis arborea is a rich source of alkaloids, terpenoids, coumarins, as well as flavonoids.
Results: The chemical investigation of methanol fraction of the leaves of G. arborea led to the isolation of one new flavone C-glycoside along with three known flavanoids, named as 5,7-dihydroxy-2-[4-hydroxy-3-(methoxy methyl) phenyl]-6-C-β-d-glucopyranosyl flavone (4), 5,7,4'-trihydroxy-3'-methoxy flavone (1), 5,4'-dihydroxy-3'-methoxy-7-O-β-d-glucupyranosyl flavanone (2), and 5,4'-dihydroxy-3'-methoxy-7-O-(α-l-rhamnosyl-(1‴→6‴)-β-d-glucopyranosyl) flavanone (3), respectively. The structures of all compounds were elucidated with the help of nuclear magnetic resonance spectrometry. Pure compounds and fractions were evaluated for pest antifeedant and antimicrobial activity.
Conclusion: Four compounds were isolated from the leaves of G. arborea. Among them, compound 4 showed significant antimicrobial activity.
{"title":"Bioactive flavanoids from Glycosmis arborea.","authors":"Mohammad Faheem Khan, Nisha Negi, Rajnikant Sharma, Devendra Singh Negi","doi":"10.1186/2191-2858-3-4","DOIUrl":"https://doi.org/10.1186/2191-2858-3-4","url":null,"abstract":"<p><strong>Background: </strong>Glycosmis is a genus of evergreen glabrous shrub and distributed all over India. It possesses various medicinal properties and is used in indigenous medicine for cough, rheumatism, anemia, and jaundice. Glycosmis arborea is a rich source of alkaloids, terpenoids, coumarins, as well as flavonoids.</p><p><strong>Results: </strong>The chemical investigation of methanol fraction of the leaves of G. arborea led to the isolation of one new flavone C-glycoside along with three known flavanoids, named as 5,7-dihydroxy-2-[4-hydroxy-3-(methoxy methyl) phenyl]-6-C-β-d-glucopyranosyl flavone (4), 5,7,4'-trihydroxy-3'-methoxy flavone (1), 5,4'-dihydroxy-3'-methoxy-7-O-β-d-glucupyranosyl flavanone (2), and 5,4'-dihydroxy-3'-methoxy-7-O-(α-l-rhamnosyl-(1‴→6‴)-β-d-glucopyranosyl) flavanone (3), respectively. The structures of all compounds were elucidated with the help of nuclear magnetic resonance spectrometry. Pure compounds and fractions were evaluated for pest antifeedant and antimicrobial activity.</p><p><strong>Conclusion: </strong>Four compounds were isolated from the leaves of G. arborea. Among them, compound 4 showed significant antimicrobial activity.</p>","PeriodicalId":19639,"journal":{"name":"Organic and Medicinal Chemistry Letters","volume":"3 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2191-2858-3-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31403574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sunil Kumar, Samir Mehndiratta, Kunal Nepali, Manish K Gupta, Surrinder Koul, Parduman R Sharma, Ajit K Saxena, Kanaya L Dhar
Background: The combretastatins are a class of natural stilbenoids. These molecules generally share three common structural features: a trimethoxy "A"-ring, a "B"-ring containing substituent often at C3' and C4', and an ethene bridge between the two rings, which provides necessary structural rigidity. Members of the combretastatin family possess varying ability to cause vascular disruption in tumors. Combretastatin binds to the colchicine binding site of β-subunit of tubulin. Despite having a similar name, combretastatin is unrelated to statins, a family of cholesterol-lowering drugs.
Results: New combretastatin 2-(1-acetyl-1H-indole-3-yl)-3-(phenyl) propenoic analogues (2a to 2y), bearing indole moiety at the place of ring A of combretastatin (CA4), were synthesized and evaluated for anticancer activity against various cancer cell lines such as THP-1 (leukemia), A-549 (lung), IGROV-1 (ovary), HEP-2 (liver), MCF-7 (breast), and DU-145 (prostate). Compound 2d showed anti-cancer activity against THP-1 and MCF-7 with IC50 0.80 and 0.37 μM, respectively, and 2y showed against MCF-7 with IC50 3.60 μM comparable to paclitaxel.
Conclusions: The target compounds bind to the colchicine binding site which is situated at α and β interface of tubulin and prevent polymerization as it was confirmed by immunofluorescence technique. The molecular docking further confirmed the binding of the potent compound 2d to the colchicine binding site at α and β interface of tubulin.
{"title":"Novel indole-bearing combretastatin analogues as tubulin polymerization inhibitors.","authors":"Sunil Kumar, Samir Mehndiratta, Kunal Nepali, Manish K Gupta, Surrinder Koul, Parduman R Sharma, Ajit K Saxena, Kanaya L Dhar","doi":"10.1186/2191-2858-3-3","DOIUrl":"https://doi.org/10.1186/2191-2858-3-3","url":null,"abstract":"<p><strong>Background: </strong>The combretastatins are a class of natural stilbenoids. These molecules generally share three common structural features: a trimethoxy \"A\"-ring, a \"B\"-ring containing substituent often at C3' and C4', and an ethene bridge between the two rings, which provides necessary structural rigidity. Members of the combretastatin family possess varying ability to cause vascular disruption in tumors. Combretastatin binds to the colchicine binding site of β-subunit of tubulin. Despite having a similar name, combretastatin is unrelated to statins, a family of cholesterol-lowering drugs.</p><p><strong>Results: </strong>New combretastatin 2-(1-acetyl-1H-indole-3-yl)-3-(phenyl) propenoic analogues (2a to 2y), bearing indole moiety at the place of ring A of combretastatin (CA4), were synthesized and evaluated for anticancer activity against various cancer cell lines such as THP-1 (leukemia), A-549 (lung), IGROV-1 (ovary), HEP-2 (liver), MCF-7 (breast), and DU-145 (prostate). Compound 2d showed anti-cancer activity against THP-1 and MCF-7 with IC50 0.80 and 0.37 μM, respectively, and 2y showed against MCF-7 with IC50 3.60 μM comparable to paclitaxel.</p><p><strong>Conclusions: </strong>The target compounds bind to the colchicine binding site which is situated at α and β interface of tubulin and prevent polymerization as it was confirmed by immunofluorescence technique. The molecular docking further confirmed the binding of the potent compound 2d to the colchicine binding site at α and β interface of tubulin.</p>","PeriodicalId":19639,"journal":{"name":"Organic and Medicinal Chemistry Letters","volume":"3 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2013-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2191-2858-3-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31275406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Synthesized arylidene derivatives of rhodanine and 2,4-thiazolidiendione have potent pharmacological activities, and these are also key substrates for the preparation of clinically used antidiabetics.
Findings: Some 1,1,3,3-tetramethylguanidine-based task-specific ionic liquids (TSILs) 1a-1e were prepared and employed to the catalyzed solvent-free Knoevenagel condensation of 2,4-thiazolidinedione 3a and rhodanine 3b with a variety of aldehydes.
Conclusions: Best results were obtained with 1,1,3,3-tetramethylguanidine lactate ([TMG][Lac]) 1c. The TSIL used can be easily recovered and recycled, yielding products 4-5 in excellent yields under ultrasonic environment without the formation of any side products or toxic waste.
{"title":"Ultrasound-assisted synthesis of 2,4-thiazolidinedione and rhodanine derivatives catalyzed by task-specific ionic liquid: [TMG][Lac].","authors":"Suresh, Jagir Singh Sandhu","doi":"10.1186/2191-2858-3-2","DOIUrl":"https://doi.org/10.1186/2191-2858-3-2","url":null,"abstract":"<p><strong>Background: </strong>Synthesized arylidene derivatives of rhodanine and 2,4-thiazolidiendione have potent pharmacological activities, and these are also key substrates for the preparation of clinically used antidiabetics.</p><p><strong>Findings: </strong>Some 1,1,3,3-tetramethylguanidine-based task-specific ionic liquids (TSILs) 1a-1e were prepared and employed to the catalyzed solvent-free Knoevenagel condensation of 2,4-thiazolidinedione 3a and rhodanine 3b with a variety of aldehydes.</p><p><strong>Conclusions: </strong>Best results were obtained with 1,1,3,3-tetramethylguanidine lactate ([TMG][Lac]) 1c. The TSIL used can be easily recovered and recycled, yielding products 4-5 in excellent yields under ultrasonic environment without the formation of any side products or toxic waste.</p>","PeriodicalId":19639,"journal":{"name":"Organic and Medicinal Chemistry Letters","volume":"3 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2013-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2191-2858-3-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31280019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The benzhydryl ether moiety is widely distributed in nature and constitutes a key structural motif in numerous molecules of significant biological potential and of prospective clinical uses. Solvent-free and cost-effective facile synthesis of symmetrical bis(benzhydryl)ethers is, thus, much desirable.
Results: A simple and efficient method for the facile synthesis of symmetrical bis(benzhydryl)ethers directly from the corresponding benzhydrols has been developed using a catalytic amount of p-toluenesulfonyl chloride (5 mol%) at an oil bath temperature of 110°C under solvent-free conditions.
Conclusions: Operational simplicity, low reagent loading, high product yields, short reaction time, and solvent-free conditions are the notable advantages of the present method.
{"title":"Facile synthesis of symmetrical bis(benzhydryl)ethers using p-toluenesulfonyl chloride under solvent-free conditions.","authors":"Goutam Brahmachari, Bubun Banerjee","doi":"10.1186/2191-2858-3-1","DOIUrl":"https://doi.org/10.1186/2191-2858-3-1","url":null,"abstract":"<p><strong>Background: </strong>The benzhydryl ether moiety is widely distributed in nature and constitutes a key structural motif in numerous molecules of significant biological potential and of prospective clinical uses. Solvent-free and cost-effective facile synthesis of symmetrical bis(benzhydryl)ethers is, thus, much desirable.</p><p><strong>Results: </strong>A simple and efficient method for the facile synthesis of symmetrical bis(benzhydryl)ethers directly from the corresponding benzhydrols has been developed using a catalytic amount of p-toluenesulfonyl chloride (5 mol%) at an oil bath temperature of 110°C under solvent-free conditions.</p><p><strong>Conclusions: </strong>Operational simplicity, low reagent loading, high product yields, short reaction time, and solvent-free conditions are the notable advantages of the present method.</p>","PeriodicalId":19639,"journal":{"name":"Organic and Medicinal Chemistry Letters","volume":"3 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2013-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2191-2858-3-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31242601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Free radicals are well known for playing a dual role in our body- deleterious as well as beneficial. It includes a metabolic pathway for its generation. Oxidative stress in our body occurs due to excessive generation of free radicals and reduced level of antioxidants, but at low concentrations, these radicals help to perform normal physiological functions of the body. Scientific evidence suggests that antioxidants reduce the risk for chronic diseases including cancer and heart disease. This review shows current tendency in the pyrimidine synthesis and reveals the pyrimidine core to be a very potent moiety which can be a rich source for the synthesis of new compounds having desirable antioxidant activity.
{"title":"Free radical scavenging properties of pyrimidine derivatives.","authors":"Tabassum Bano, Nitin Kumar, Rupesh Dudhe","doi":"10.1186/2191-2858-2-34","DOIUrl":"https://doi.org/10.1186/2191-2858-2-34","url":null,"abstract":"<p><p> Free radicals are well known for playing a dual role in our body- deleterious as well as beneficial. It includes a metabolic pathway for its generation. Oxidative stress in our body occurs due to excessive generation of free radicals and reduced level of antioxidants, but at low concentrations, these radicals help to perform normal physiological functions of the body. Scientific evidence suggests that antioxidants reduce the risk for chronic diseases including cancer and heart disease. This review shows current tendency in the pyrimidine synthesis and reveals the pyrimidine core to be a very potent moiety which can be a rich source for the synthesis of new compounds having desirable antioxidant activity.</p>","PeriodicalId":19639,"journal":{"name":"Organic and Medicinal Chemistry Letters","volume":"2 1","pages":"34"},"PeriodicalIF":0.0,"publicationDate":"2012-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2191-2858-2-34","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31047208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: This experiment was conducted to evaluate the effect of different amounts of fertilizers on the polysaccharides of Aloe vera plant. There were four different treatments, viz. T1 = 150% N, T2 = 150% P, T3 = 150% K, and T4 = 150% NPK (50% N + 50% P + 50% K) soil. Crude water-soluble polysaccharides were isolated from the gel juice, skin juice, and flowers of A. vera planted in these soils.
Results: Result indicates that skin juice contained 2.4 times the level of polysaccharides in gel juice from one plant, suggesting the potential industrial application of A. vera skin rather than discarding it. After anion-exchange chromatography, neutral polysaccharides accounted for 58.1% and 78.5% of the total recovered neutral and acidic polysaccharide preparations from the gel juice and skin juice, respectively, whereas the crude flower polysaccharides were largely composed of weakly acidic polysaccharides (84.2%). Sugar analysis of the polysaccharides after gel permeation chromatography revealed that glucose and galactose were the most abundant monosaccharide in the neutral polysaccharides from the gel juice and skin juice, respectively. The acidic polysaccharides from the two juices consisted of glucuronic acid, galactose, glucose, mannose, and xylose with variable proportions.
Conclusions: Except glucuronic acid (15.4%) in flower acidic polysaccharide, the flower neutral and acidic polysaccharides contained galactose, glucose, and mannose as the main sugar components. Glucuronic acid was the major uronic acid in all acidic polysaccharides from different tissues.
{"title":"FT-IR study of the polysaccharides isolated from the skin juice, gel juice, and flower of Aloe vera tissues affected by fertilizer treatment.","authors":"Fatemeh Nejatzadeh-Barandozi, Sattar Tahmasebi Enferadi","doi":"10.1186/2191-2858-2-33","DOIUrl":"https://doi.org/10.1186/2191-2858-2-33","url":null,"abstract":"<p><strong>Background: </strong>This experiment was conducted to evaluate the effect of different amounts of fertilizers on the polysaccharides of Aloe vera plant. There were four different treatments, viz. T1 = 150% N, T2 = 150% P, T3 = 150% K, and T4 = 150% NPK (50% N + 50% P + 50% K) soil. Crude water-soluble polysaccharides were isolated from the gel juice, skin juice, and flowers of A. vera planted in these soils.</p><p><strong>Results: </strong>Result indicates that skin juice contained 2.4 times the level of polysaccharides in gel juice from one plant, suggesting the potential industrial application of A. vera skin rather than discarding it. After anion-exchange chromatography, neutral polysaccharides accounted for 58.1% and 78.5% of the total recovered neutral and acidic polysaccharide preparations from the gel juice and skin juice, respectively, whereas the crude flower polysaccharides were largely composed of weakly acidic polysaccharides (84.2%). Sugar analysis of the polysaccharides after gel permeation chromatography revealed that glucose and galactose were the most abundant monosaccharide in the neutral polysaccharides from the gel juice and skin juice, respectively. The acidic polysaccharides from the two juices consisted of glucuronic acid, galactose, glucose, mannose, and xylose with variable proportions.</p><p><strong>Conclusions: </strong>Except glucuronic acid (15.4%) in flower acidic polysaccharide, the flower neutral and acidic polysaccharides contained galactose, glucose, and mannose as the main sugar components. Glucuronic acid was the major uronic acid in all acidic polysaccharides from different tissues.</p>","PeriodicalId":19639,"journal":{"name":"Organic and Medicinal Chemistry Letters","volume":"2 1","pages":"33"},"PeriodicalIF":0.0,"publicationDate":"2012-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2191-2858-2-33","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31001452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}