Razieh Amini, Shadi Moradi, Rezvan Najafi, Mehrdokht Mazdeh, Amir Taherkhani
Background. Neurological disorders like Alzheimer’s disease (AD) and Parkinson’s disease (PD) manifest through gradually deteriorating cognitive functions. An encouraging strategy for addressing these disorders involves the inhibition of precursor-cleaving enzyme 1 (BACE1). Objectives. In the current research, a virtual screening technique was employed to identify potential BACE1 inhibitors among selected herbal isolates. Methods. This study evaluated 79 flavonoids, anthraquinones (AQs), and cinnamic acid derivatives for their potential blood–brain barrier (BBB) permeability. Using the AutoDock 4.0 tool, molecular docking analysis was conducted to determine the binding affinity of BBB permeable compounds to the BACE1 active site. Molecular dynamics (MD) simulations were performed to assess the stability of the docked poses of the most potent inhibitors. The interactions between the most effective plant-based inhibitors and the residues within the BACE1 catalytic site were examined before and after MD simulations. Results. Ponciretin, danthron, chrysophanol, and N-p-coumaroyltyramine were among the highest-ranking BACE1 inhibitors, with inhibition constant values calculated in the nanomolar range. Furthermore, during 10 ns simulations, the docked poses of these ligands were observed to be stable. Conclusion. The findings propose that ponciretin, danthron, chrysophanol, and N-p-coumaroyltyramine might serve as potential choices for the treatment of AD and PD, laying the groundwork for the creation of innovative BACE1 inhibitors.
{"title":"BACE1 Inhibition Utilizing Organic Compounds Holds Promise as a Potential Treatment for Alzheimer’s and Parkinson’s Diseases","authors":"Razieh Amini, Shadi Moradi, Rezvan Najafi, Mehrdokht Mazdeh, Amir Taherkhani","doi":"10.1155/2024/6654606","DOIUrl":"https://doi.org/10.1155/2024/6654606","url":null,"abstract":"<i>Background</i>. Neurological disorders like Alzheimer’s disease (AD) and Parkinson’s disease (PD) manifest through gradually deteriorating cognitive functions. An encouraging strategy for addressing these disorders involves the inhibition of precursor-cleaving enzyme 1 (BACE1). <i>Objectives</i>. In the current research, a virtual screening technique was employed to identify potential BACE1 inhibitors among selected herbal isolates. <i>Methods</i>. This study evaluated 79 flavonoids, anthraquinones (AQs), and cinnamic acid derivatives for their potential blood–brain barrier (BBB) permeability. Using the AutoDock 4.0 tool, molecular docking analysis was conducted to determine the binding affinity of BBB permeable compounds to the BACE1 active site. Molecular dynamics (MD) simulations were performed to assess the stability of the docked poses of the most potent inhibitors. The interactions between the most effective plant-based inhibitors and the residues within the BACE1 catalytic site were examined before and after MD simulations. <i>Results</i>. Ponciretin, danthron, chrysophanol, and N-p-coumaroyltyramine were among the highest-ranking BACE1 inhibitors, with inhibition constant values calculated in the nanomolar range. Furthermore, during 10 ns simulations, the docked poses of these ligands were observed to be stable. <i>Conclusion</i>. The findings propose that ponciretin, danthron, chrysophanol, and N-p-coumaroyltyramine might serve as potential choices for the treatment of AD and PD, laying the groundwork for the creation of innovative BACE1 inhibitors.","PeriodicalId":19657,"journal":{"name":"Oxidative Medicine and Cellular Longevity","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sajeev Wagle, Julie Anne Lee, H. P. Vasantha Rupasinghe
Chaga mushroom (Inonotus obliquus) contains bioactive metabolites and has been used to treat various ailments, including cancer. Similarly, marine microalgae are considered a sustainable food supplement with anticancer and antioxidant properties. This study investigated the cytotoxicity of different extracts prepared from I. obliquus and microalgae using cultured human and canine cancer cell lines (MCF-7, HepG2, HOS, D-17, and DH-82). MTS cell viability assay was used to study the cytotoxicity of I. obliquus and microalgae extracts, and a synergy matrix effect was used to study the combined effect of the extracts. Isobologram analysis and the highest single agent synergy model were applied to study and validate the synergy between the extracts from I. obliquus and microalgae. Ethanol-based extraction and supercritical water extract significantly inhibited the growth of various mammalian cancer cells compared to aqueous extracts. Osteosarcoma cells were more susceptible to the supercritical extracts of I. obliquus and chlorophyll-free and sugar-free ethanol extracts of microalgae. A combination of ethanol-based I. obliquus extract and chlorophyll-free microalgae extract resulted in a synergistic interaction with various tested cancer cells. This study provides experimental evidence supporting the potential therapeutic application of I. obliquus and microalgae extracts with a synergistic effect to inhibit the growth of various mammalian cancer cells. Additional in vivo studies are required to fully explore possible therapeutic applications of these unique mixtures to be used in treating cancers.
{"title":"Synergistic Cytotoxicity of Extracts of Chaga Mushroom and Microalgae against Mammalian Cancer Cells In Vitro","authors":"Sajeev Wagle, Julie Anne Lee, H. P. Vasantha Rupasinghe","doi":"10.1155/2024/7944378","DOIUrl":"https://doi.org/10.1155/2024/7944378","url":null,"abstract":"Chaga mushroom (<i>Inonotus obliquus</i>) contains bioactive metabolites and has been used to treat various ailments, including cancer. Similarly, marine microalgae are considered a sustainable food supplement with anticancer and antioxidant properties. This study investigated the cytotoxicity of different extracts prepared from <i>I. obliquus</i> and microalgae using cultured human and canine cancer cell lines (MCF-7, HepG2, HOS, D-17, and DH-82). MTS cell viability assay was used to study the cytotoxicity of <i>I. obliquus</i> and microalgae extracts, and a synergy matrix effect was used to study the combined effect of the extracts. Isobologram analysis and the highest single agent synergy model were applied to study and validate the synergy between the extracts from <i>I. obliquus</i> and microalgae. Ethanol-based extraction and supercritical water extract significantly inhibited the growth of various mammalian cancer cells compared to aqueous extracts. Osteosarcoma cells were more susceptible to the supercritical extracts of <i>I. obliquus</i> and chlorophyll-free and sugar-free ethanol extracts of microalgae. A combination of ethanol-based <i>I. obliquus</i> extract and chlorophyll-free microalgae extract resulted in a synergistic interaction with various tested cancer cells. This study provides experimental evidence supporting the potential therapeutic application of <i>I. obliquus</i> and microalgae extracts with a synergistic effect to inhibit the growth of various mammalian cancer cells. Additional in vivo studies are required to fully explore possible therapeutic applications of these unique mixtures to be used in treating cancers.","PeriodicalId":19657,"journal":{"name":"Oxidative Medicine and Cellular Longevity","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139483002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Rhodiola Rosea Extract Counteracts Stress in an Adaptogenic Response Curve Manner via Elimination of ROS and Induction of Neurite Outgrowth","authors":"Oxidative Medicine and Cellular Longevity","doi":"10.1155/2024/9782834","DOIUrl":"https://doi.org/10.1155/2024/9782834","url":null,"abstract":"<jats:p />","PeriodicalId":19657,"journal":{"name":"Oxidative Medicine and Cellular Longevity","volume":"6 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139441370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Pinosylvin Extract Retinari™ Sustains Electrophysiological Function, Prevents Thinning of Retina, and Enhances Cellular Response to Oxidative Stress in NFE2L2 Knockout Mice","authors":"Oxidative Medicine and Cellular Longevity","doi":"10.1155/2024/9835864","DOIUrl":"https://doi.org/10.1155/2024/9835864","url":null,"abstract":"<jats:p />","PeriodicalId":19657,"journal":{"name":"Oxidative Medicine and Cellular Longevity","volume":"60 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139441489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Pharmacological Properties of Bergapten: Mechanistic and Therapeutic Aspects","authors":"Oxidative Medicine and Cellular Longevity","doi":"10.1155/2024/9849584","DOIUrl":"https://doi.org/10.1155/2024/9849584","url":null,"abstract":"<jats:p />","PeriodicalId":19657,"journal":{"name":"Oxidative Medicine and Cellular Longevity","volume":"42 46","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139442229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Progress of Statin Therapy in the Treatment of Idiopathic Pulmonary Fibrosis","authors":"Oxidative Medicine and Cellular Longevity","doi":"10.1155/2024/9830469","DOIUrl":"https://doi.org/10.1155/2024/9830469","url":null,"abstract":"<jats:p />","PeriodicalId":19657,"journal":{"name":"Oxidative Medicine and Cellular Longevity","volume":"40 27","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139442494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Black Truffle Extract Exerts Antidiabetic Effects through Inhibition of Inflammation and Lipid Metabolism Regulation","authors":"Oxidative Medicine and Cellular Longevity","doi":"10.1155/2024/9765609","DOIUrl":"https://doi.org/10.1155/2024/9765609","url":null,"abstract":"<jats:p />","PeriodicalId":19657,"journal":{"name":"Oxidative Medicine and Cellular Longevity","volume":"35 42","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139442839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Theaflavin Chemistry and Its Health Benefits","authors":"Oxidative Medicine and Cellular Longevity","doi":"10.1155/2024/9893267","DOIUrl":"https://doi.org/10.1155/2024/9893267","url":null,"abstract":"<jats:p />","PeriodicalId":19657,"journal":{"name":"Oxidative Medicine and Cellular Longevity","volume":"35 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139442904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: The Protective Role of Brain CYP2J in Parkinson’s Disease Models","authors":"Oxidative Medicine and Cellular Longevity","doi":"10.1155/2024/9765745","DOIUrl":"https://doi.org/10.1155/2024/9765745","url":null,"abstract":"<jats:p />","PeriodicalId":19657,"journal":{"name":"Oxidative Medicine and Cellular Longevity","volume":"24 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139443131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retracted: Influence Factors and Predictive Models for the Outcome of Patients with Ischemic Stroke after Intravenous Thrombolysis: A Multicenter Retrospective Cohort Study","authors":"Oxidative Medicine and Cellular Longevity","doi":"10.1155/2024/9813785","DOIUrl":"https://doi.org/10.1155/2024/9813785","url":null,"abstract":"<jats:p />","PeriodicalId":19657,"journal":{"name":"Oxidative Medicine and Cellular Longevity","volume":"27 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139443411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}