Equity of educational outcome and fairness of AI with respect to race have been topics of increasing importance in education. In this work, we address both with empirical evaluations of grade prediction in higher education, an important task to improve curriculum design, plan interventions for academic support, and offer course guidance to students. With fairness as the aim, we trial several strategies for both label and instance balancing to attempt to minimize differences in algorithm performance with respect to race. We find that an adversarial learning approach, combined with grade label balancing, achieved by far the fairest results. With equity of educational outcome as the aim, we trial strategies for boosting predictive performance on historically underserved groups and find success in sampling those groups in inverse proportion to their historic outcomes. With AI-infused technology supports increasingly prevalent on campuses, our methodologies fill a need for frameworks to consider performance trade-offs with respect to sensitive student attributes and allow institutions to instrument their AI resources in ways that are attentive to equity and fairness.
{"title":"Towards Equity and Algorithmic Fairness in Student Grade Prediction","authors":"Weijie Jiang, Z. Pardos","doi":"10.1145/3461702.3462623","DOIUrl":"https://doi.org/10.1145/3461702.3462623","url":null,"abstract":"Equity of educational outcome and fairness of AI with respect to race have been topics of increasing importance in education. In this work, we address both with empirical evaluations of grade prediction in higher education, an important task to improve curriculum design, plan interventions for academic support, and offer course guidance to students. With fairness as the aim, we trial several strategies for both label and instance balancing to attempt to minimize differences in algorithm performance with respect to race. We find that an adversarial learning approach, combined with grade label balancing, achieved by far the fairest results. With equity of educational outcome as the aim, we trial strategies for boosting predictive performance on historically underserved groups and find success in sampling those groups in inverse proportion to their historic outcomes. With AI-infused technology supports increasingly prevalent on campuses, our methodologies fill a need for frameworks to consider performance trade-offs with respect to sensitive student attributes and allow institutions to instrument their AI resources in ways that are attentive to equity and fairness.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116959427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Riccardo Fogliato, Alice Xiang, Z. Lipton, D. Nagin, A. Chouldechova
Re-offense risk is considered in decision-making at many stages of the criminal justice system, from pre-trial, to sentencing, to parole. To aid decision-makers in their assessments, institutions increasingly rely on algorithmic risk assessment instruments (RAIs). These tools assess the likelihood that an individual will be arrested for a new criminal offense within some time window following their release. However, since not all crimes result in arrest, RAIs do not directly assess the risk of re-offense. Furthermore, disparities in the likelihood of arrest can potentially lead to biases in the resulting risk scores. Several recent validations of RAIs have therefore focused on arrests for violent offenses, which are viewed as being more accurate and less biased reflections of offending behavior. In this paper, we investigate biases in violent arrest data by analysing racial disparities in the likelihood of arrest for White and Black violent offenders. We focus our study on 2007--2016 incident-level data of violent offenses from 16 US states as recorded in the National Incident Based Reporting System (NIBRS). Our analysis shows that the magnitude and direction of the racial disparities depend on various characteristics of the crimes. In addition, our investigation reveals large variations in arrest rates across geographical locations and offense types. We discuss the implications of the observed disconnect between re-arrest and re-offense in the context of RAIs and the challenges around the use of data from NIBRS to correct for the sampling bias.
{"title":"On the Validity of Arrest as a Proxy for Offense: Race and the Likelihood of Arrest for Violent Crimes","authors":"Riccardo Fogliato, Alice Xiang, Z. Lipton, D. Nagin, A. Chouldechova","doi":"10.1145/3461702.3462538","DOIUrl":"https://doi.org/10.1145/3461702.3462538","url":null,"abstract":"Re-offense risk is considered in decision-making at many stages of the criminal justice system, from pre-trial, to sentencing, to parole. To aid decision-makers in their assessments, institutions increasingly rely on algorithmic risk assessment instruments (RAIs). These tools assess the likelihood that an individual will be arrested for a new criminal offense within some time window following their release. However, since not all crimes result in arrest, RAIs do not directly assess the risk of re-offense. Furthermore, disparities in the likelihood of arrest can potentially lead to biases in the resulting risk scores. Several recent validations of RAIs have therefore focused on arrests for violent offenses, which are viewed as being more accurate and less biased reflections of offending behavior. In this paper, we investigate biases in violent arrest data by analysing racial disparities in the likelihood of arrest for White and Black violent offenders. We focus our study on 2007--2016 incident-level data of violent offenses from 16 US states as recorded in the National Incident Based Reporting System (NIBRS). Our analysis shows that the magnitude and direction of the racial disparities depend on various characteristics of the crimes. In addition, our investigation reveals large variations in arrest rates across geographical locations and offense types. We discuss the implications of the observed disconnect between re-arrest and re-offense in the context of RAIs and the challenges around the use of data from NIBRS to correct for the sampling bias.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127127929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The computer science research community and the broader public have become increasingly aware of negative consequences of algorithmic systems. In response, the top-tier Neural Information Processing Systems (NeurIPS) conference for machine learning and artificial intelligence research required that authors include a statement of broader impact to reflect on potential positive and negative consequences of their work. We present the results of a qualitative thematic analysis of a sample of statements written for the 2020 conference. The themes we identify broadly fall into categories related to how consequences are expressed (e.g., valence, specificity, uncertainty), areas of impacts expressed (e.g., bias, the environment, labor, privacy), and researchers' recommendations for mitigating negative consequences in the future. In light of our results, we offer perspectives on how the broader impact statement can be implemented in future iterations to better align with potential goals.
{"title":"Unpacking the Expressed Consequences of AI Research in Broader Impact Statements","authors":"Priyanka Nanayakkara, J. Hullman, N. Diakopoulos","doi":"10.1145/3461702.3462608","DOIUrl":"https://doi.org/10.1145/3461702.3462608","url":null,"abstract":"The computer science research community and the broader public have become increasingly aware of negative consequences of algorithmic systems. In response, the top-tier Neural Information Processing Systems (NeurIPS) conference for machine learning and artificial intelligence research required that authors include a statement of broader impact to reflect on potential positive and negative consequences of their work. We present the results of a qualitative thematic analysis of a sample of statements written for the 2020 conference. The themes we identify broadly fall into categories related to how consequences are expressed (e.g., valence, specificity, uncertainty), areas of impacts expressed (e.g., bias, the environment, labor, privacy), and researchers' recommendations for mitigating negative consequences in the future. In light of our results, we offer perspectives on how the broader impact statement can be implemented in future iterations to better align with potential goals.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122874099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Schelenz, Ivano Bison, Matteo Busso, Amalia de Götzen, D. Gática-Pérez, Fausto Giunchiglia, L. Meegahapola, S. Ruiz-Correa
Diversity-aware platform design is a paradigm that responds to the ethical challenges of existing social media platforms. Available platforms have been criticized for minimizing users' autonomy, marginalizing minorities, and exploiting users' data for profit maximization. This paper presents a design solution that centers the well-being of users. It presents the theory and practice of designing a diversity-aware platform for social relations. In this approach, the diversity of users is leveraged in a way that allows like-minded individuals to pursue similar interests or diverse individuals to complement each other in a complex activity. The end users of the envisioned platform are students, who participate in the design process. Diversity-aware platform design involves numerous steps, of which two are highlighted in this paper: 1) defining a framework and operationalizing the "diversity" of students, 2) collecting "diversity" data to build diversity-aware algorithms. The paper further reflects on the ethical challenges encountered during the design of a diversity-aware platform.
{"title":"The Theory, Practice, and Ethical Challenges of Designing a Diversity-Aware Platform for Social Relations","authors":"Laura Schelenz, Ivano Bison, Matteo Busso, Amalia de Götzen, D. Gática-Pérez, Fausto Giunchiglia, L. Meegahapola, S. Ruiz-Correa","doi":"10.1145/3461702.3462595","DOIUrl":"https://doi.org/10.1145/3461702.3462595","url":null,"abstract":"Diversity-aware platform design is a paradigm that responds to the ethical challenges of existing social media platforms. Available platforms have been criticized for minimizing users' autonomy, marginalizing minorities, and exploiting users' data for profit maximization. This paper presents a design solution that centers the well-being of users. It presents the theory and practice of designing a diversity-aware platform for social relations. In this approach, the diversity of users is leveraged in a way that allows like-minded individuals to pursue similar interests or diverse individuals to complement each other in a complex activity. The end users of the envisioned platform are students, who participate in the design process. Diversity-aware platform design involves numerous steps, of which two are highlighted in this paper: 1) defining a framework and operationalizing the \"diversity\" of students, 2) collecting \"diversity\" data to build diversity-aware algorithms. The paper further reflects on the ethical challenges encountered during the design of a diversity-aware platform.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"86 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120841406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Traditional approaches to ensure group fairness in algorithmic decision making aim to equalize "total" error rates for different subgroups in the population. In contrast, we argue that the fairness approaches should instead focus only on equalizing errors arising due to model uncertainty (a.k.a epistemic uncertainty), caused due to lack of knowledge about the best model or due to lack of data. In other words, our proposal calls for ignoring the errors that occur due to uncertainty inherent in the data, i.e., aleatoric uncertainty. We draw a connection between predictive multiplicity and model uncertainty and argue that the techniques from predictive multiplicity could be used to identify errors made due to model uncertainty. We propose scalable convex proxies to come up with classifiers that exhibit predictive multiplicity and empirically show that our methods are comparable in performance and up to four orders of magnitude faster than the current state-of-the-art. We further pro- pose methods to achieve our goal of equalizing group error rates arising due to model uncertainty in algorithmic decision making and demonstrate the effectiveness of these methods using synthetic and real-world datasets
{"title":"Accounting for Model Uncertainty in Algorithmic Discrimination","authors":"Junaid Ali, Preethi Lahoti, K. Gummadi","doi":"10.1145/3461702.3462630","DOIUrl":"https://doi.org/10.1145/3461702.3462630","url":null,"abstract":"Traditional approaches to ensure group fairness in algorithmic decision making aim to equalize \"total\" error rates for different subgroups in the population. In contrast, we argue that the fairness approaches should instead focus only on equalizing errors arising due to model uncertainty (a.k.a epistemic uncertainty), caused due to lack of knowledge about the best model or due to lack of data. In other words, our proposal calls for ignoring the errors that occur due to uncertainty inherent in the data, i.e., aleatoric uncertainty. We draw a connection between predictive multiplicity and model uncertainty and argue that the techniques from predictive multiplicity could be used to identify errors made due to model uncertainty. We propose scalable convex proxies to come up with classifiers that exhibit predictive multiplicity and empirically show that our methods are comparable in performance and up to four orders of magnitude faster than the current state-of-the-art. We further pro- pose methods to achieve our goal of equalizing group error rates arising due to model uncertainty in algorithmic decision making and demonstrate the effectiveness of these methods using synthetic and real-world datasets","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117329145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Algorithmic fairness research has traditionally been linked to the disciplines of philosophy, ethics, and economics, where notions of fairness are prescriptive and seek objectivity. Increasingly, however, scholars are turning to the study of what different people perceive to be fair, and how these perceptions can or should help to shape the design of machine learning, particularly in the policy realm. The present work experimentally explores five novel research questions at the intersection of the "Who," "What," and "How" of fairness perceptions. Specifically, we present the results of a multi-factor conjoint analysis study that quantifies the effects of the specific context in which a question is asked, the framing of the given question, and who is answering it. Our results broadly suggest that the "Who" and "What," at least, matter in ways that are 1) not easily explained by any one theoretical perspective, 2) have critical implications for how perceptions of fairness should be measured and/or integrated into algorithmic decision-making systems.
{"title":"Who Gets What, According to Whom? An Analysis of Fairness Perceptions in Service Allocation","authors":"Jacqueline Hannan, H. Chen, K. Joseph","doi":"10.1145/3461702.3462568","DOIUrl":"https://doi.org/10.1145/3461702.3462568","url":null,"abstract":"Algorithmic fairness research has traditionally been linked to the disciplines of philosophy, ethics, and economics, where notions of fairness are prescriptive and seek objectivity. Increasingly, however, scholars are turning to the study of what different people perceive to be fair, and how these perceptions can or should help to shape the design of machine learning, particularly in the policy realm. The present work experimentally explores five novel research questions at the intersection of the \"Who,\" \"What,\" and \"How\" of fairness perceptions. Specifically, we present the results of a multi-factor conjoint analysis study that quantifies the effects of the specific context in which a question is asked, the framing of the given question, and who is answering it. Our results broadly suggest that the \"Who\" and \"What,\" at least, matter in ways that are 1) not easily explained by any one theoretical perspective, 2) have critical implications for how perceptions of fairness should be measured and/or integrated into algorithmic decision-making systems.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124030891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Activists, journalists, and scholars have long raised critical questions about the relationship between diversity, representation, and structural exclusions in data-intensive tools and services. We build on work mapping the emergent landscape of corporate AI ethics to center one outcome of these conversations: the incorporation of diversity and inclusion in corporate AI ethics activities. Using interpretive document analysis and analytic tools from the values in design field, we examine how diversity and inclusion work is articulated in public-facing AI ethics documentation produced by three companies that create application and services layer AI infrastructure: Google, Microsoft, and Salesforce. We find that as these documents make diversity and inclusion more tractable to engineers and technical clients, they reveal a drift away from civil rights justifications that resonates with the "managerialization of diversity" by corporations in the mid-1980s. The focus on technical artifacts - such as diverse and inclusive datasets - and the replacement of equity with fairness make ethical work more actionable for everyday practitioners. Yet, they appear divorced from broader DEI initiatives and relevant subject matter experts that could provide needed context to nuanced decisions around how to operationalize these values and new solutions. Finally, diversity and inclusion, as configured by engineering logic, positions firms not as "ethics owners" but as ethics allocators; while these companies claim expertise on AI ethics, the responsibility of defining who diversity and inclusion are meant to protect and where it is relevant is pushed downstream to their customers.
{"title":"Reconfiguring Diversity and Inclusion for AI Ethics","authors":"Nicole Chi, Emma Lurie, D. Mulligan","doi":"10.1145/3461702.3462622","DOIUrl":"https://doi.org/10.1145/3461702.3462622","url":null,"abstract":"Activists, journalists, and scholars have long raised critical questions about the relationship between diversity, representation, and structural exclusions in data-intensive tools and services. We build on work mapping the emergent landscape of corporate AI ethics to center one outcome of these conversations: the incorporation of diversity and inclusion in corporate AI ethics activities. Using interpretive document analysis and analytic tools from the values in design field, we examine how diversity and inclusion work is articulated in public-facing AI ethics documentation produced by three companies that create application and services layer AI infrastructure: Google, Microsoft, and Salesforce. We find that as these documents make diversity and inclusion more tractable to engineers and technical clients, they reveal a drift away from civil rights justifications that resonates with the \"managerialization of diversity\" by corporations in the mid-1980s. The focus on technical artifacts - such as diverse and inclusive datasets - and the replacement of equity with fairness make ethical work more actionable for everyday practitioners. Yet, they appear divorced from broader DEI initiatives and relevant subject matter experts that could provide needed context to nuanced decisions around how to operationalize these values and new solutions. Finally, diversity and inclusion, as configured by engineering logic, positions firms not as \"ethics owners\" but as ethics allocators; while these companies claim expertise on AI ethics, the responsibility of defining who diversity and inclusion are meant to protect and where it is relevant is pushed downstream to their customers.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123521957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Slavkovik, Clemens Stachl, Caroline Pitman, Jon Askonas
An institution, be it a body of government, commercial enterprise, or a service, cannot interact directly with a person. Instead, a model is created to represent us. We argue the existence of a new high-fidelity type of person model which we call a digital voodoo doll. We conceptualize it and compare its features with existing models of persons. Digital voodoo dolls are distinguished by existing completely beyond the influence and control of the person they represent. We discuss the ethical issues that such a lack of accountability creates and argue how these concerns can be mitigated.
{"title":"Digital Voodoo Dolls","authors":"M. Slavkovik, Clemens Stachl, Caroline Pitman, Jon Askonas","doi":"10.1145/3461702.3462626","DOIUrl":"https://doi.org/10.1145/3461702.3462626","url":null,"abstract":"An institution, be it a body of government, commercial enterprise, or a service, cannot interact directly with a person. Instead, a model is created to represent us. We argue the existence of a new high-fidelity type of person model which we call a digital voodoo doll. We conceptualize it and compare its features with existing models of persons. Digital voodoo dolls are distinguished by existing completely beyond the influence and control of the person they represent. We discuss the ethical issues that such a lack of accountability creates and argue how these concerns can be mitigated.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129915259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Candice Schumann, Susanna Ricco, Utsav Prabhu, V. Ferrari, C. Pantofaru
The Open Images Dataset contains approximately 9 million images and is a widely accepted dataset for computer vision research. As is common practice for large datasets, the annotations are not exhaustive, with bounding boxes and attribute labels for only a subset of the classes in each image. In this paper, we present a new set of annotations on a subset of the Open Images dataset called the MIAP (More Inclusive Annotations for People) subset, containing bounding boxes and attributes for all of the people visible in those images. The attributes and labeling methodology for the MIAP subset were designed to enable research into model fairness. In addition, we analyze the original annotation methodology for the person class and its subclasses, discussing the resulting patterns in order to inform future annotation efforts. By considering both the original and exhaustive annotation sets, researchers can also now study how systematic patterns in training annotations affect modeling.
开放图像数据集包含大约900万张图像,是一个被广泛接受的计算机视觉研究数据集。作为大型数据集的常见做法,注释不是详尽的,仅为每个图像中的类的子集使用边界框和属性标签。在本文中,我们在Open Images数据集的一个子集上提出了一组新的注释,称为MIAP (More Inclusive annotations for People)子集,其中包含了在这些图像中可见的所有人的边界框和属性。设计了MIAP子集的属性和标记方法,以便对模型公平性进行研究。此外,我们还分析了person类及其子类的原始注释方法,讨论了结果模式,以便为将来的注释工作提供信息。通过考虑原始注释集和穷举注释集,研究人员现在还可以研究训练注释中的系统模式如何影响建模。
{"title":"A Step Toward More Inclusive People Annotations for Fairness","authors":"Candice Schumann, Susanna Ricco, Utsav Prabhu, V. Ferrari, C. Pantofaru","doi":"10.1145/3461702.3462594","DOIUrl":"https://doi.org/10.1145/3461702.3462594","url":null,"abstract":"The Open Images Dataset contains approximately 9 million images and is a widely accepted dataset for computer vision research. As is common practice for large datasets, the annotations are not exhaustive, with bounding boxes and attribute labels for only a subset of the classes in each image. In this paper, we present a new set of annotations on a subset of the Open Images dataset called the MIAP (More Inclusive Annotations for People) subset, containing bounding boxes and attributes for all of the people visible in those images. The attributes and labeling methodology for the MIAP subset were designed to enable research into model fairness. In addition, we analyze the original annotation methodology for the person class and its subclasses, discussing the resulting patterns in order to inform future annotation efforts. By considering both the original and exhaustive annotation sets, researchers can also now study how systematic patterns in training annotations affect modeling.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128873287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We argue that the phenomena of distributed responsibility, induced acceptance, and acceptance through ignorance constitute instances of imperfect delegation when tasks are delegated to computationally-driven systems. Imperfect delegation challenges human accountability. We hold that both direct public accountability via public transparency and indirect public accountability via transparency to auditors in public organizations can be both instrumentally ethically valuable and required as a matter of deontology from the principle of democratic self-government. We analyze the regulatory content of 16 guideline documents about the use of AI in the public sector, by mapping their requirements to those of our philosophical account of accountability, and conclude that while some guidelines refer processes that amount to auditing, it seems that the debate would benefit from more clarity about the nature of the entitlement of auditors and the goals of auditing, also in order to develop ethically meaningful standards with respect to which different forms of auditing can be evaluated and compared.
{"title":"Towards Accountability in the Use of Artificial Intelligence for Public Administrations","authors":"M. Loi, M. Spielkamp","doi":"10.1145/3461702.3462631","DOIUrl":"https://doi.org/10.1145/3461702.3462631","url":null,"abstract":"We argue that the phenomena of distributed responsibility, induced acceptance, and acceptance through ignorance constitute instances of imperfect delegation when tasks are delegated to computationally-driven systems. Imperfect delegation challenges human accountability. We hold that both direct public accountability via public transparency and indirect public accountability via transparency to auditors in public organizations can be both instrumentally ethically valuable and required as a matter of deontology from the principle of democratic self-government. We analyze the regulatory content of 16 guideline documents about the use of AI in the public sector, by mapping their requirements to those of our philosophical account of accountability, and conclude that while some guidelines refer processes that amount to auditing, it seems that the debate would benefit from more clarity about the nature of the entitlement of auditors and the goals of auditing, also in order to develop ethically meaningful standards with respect to which different forms of auditing can be evaluated and compared.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125685395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}