Objective: The CYP2D6 enzyme is crucial for the metabolism and disposition of a variety of drugs. This study was conducted to examine the relationship between CYP2D6 gene polymorphisms and the response to angiotensin receptor blocker (ARB)-based treatment in patients of Chinese Bai ethnicity with hypertension.
Methods: Seventy-two hypertensive adults from the Chinese Bai ethnic group, exhibiting systolic blood pressure (SBP) ≥ 140 mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg, were recruited. Targeted regional sequencing was utilized to genotype single nucleotide polymorphisms in the CYP2D6 gene, aiming to assess their frequency and to evaluate their influence on the therapeutic efficacy of ARB medications.
Results: Our research identified nine significant CYP2D6 polymorphisms associated with the efficacy of ARB treatment in the Bai hypertensive cohort. Specifically, patients possessing certain mutant genotype at rs111564371 exhibited substantially greater reductions in SBP and DBP, with P -values of 0.021 and 0.016, respectively, compared to those carrying the wild genotype. Additionally, these mutant genotype at rs111564371 and rs112568578 were linked to approximately 20% higher overall efficacy rates and a 10% increased achievement rate relative to the wild genotype.
Conclusion: Our research with the Bai hypertensive group shows that certain CYP2D6 polymorphisms significantly influence ARB treatment outcomes. Mutations at rs111564371 led to better blood pressure control ( P -values: 0.021 for SBP, 0.016 for DBP), improving ARB efficacy by appromixately 20% and increasing treatment goal achievement by 10% over the wild-type genotype.
Statements: Our investigation into CYP2D6 polymorphisms within the Bai hypertensive cohort marks a substantial advancement towards personalized healthcare, underscoring the pivotal influence of genetic constitution on the effectiveness of ARB therapy.
{"title":"Exploring CYP2D6 polymorphisms and angiotensin receptor blocker response in the Bai hypertensive population.","authors":"Canbiao Yang, Guoqiang Zhang, Chang Shu, Linxi Lv, Zhengxing Liu, Yan Tian, Qi Tan, Zhaobin Wang, Songnian Hu, Libo Yang, Ningling Sun","doi":"10.1097/FPC.0000000000000537","DOIUrl":"10.1097/FPC.0000000000000537","url":null,"abstract":"<p><strong>Objective: </strong>The CYP2D6 enzyme is crucial for the metabolism and disposition of a variety of drugs. This study was conducted to examine the relationship between CYP2D6 gene polymorphisms and the response to angiotensin receptor blocker (ARB)-based treatment in patients of Chinese Bai ethnicity with hypertension.</p><p><strong>Methods: </strong>Seventy-two hypertensive adults from the Chinese Bai ethnic group, exhibiting systolic blood pressure (SBP) ≥ 140 mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg, were recruited. Targeted regional sequencing was utilized to genotype single nucleotide polymorphisms in the CYP2D6 gene, aiming to assess their frequency and to evaluate their influence on the therapeutic efficacy of ARB medications.</p><p><strong>Results: </strong>Our research identified nine significant CYP2D6 polymorphisms associated with the efficacy of ARB treatment in the Bai hypertensive cohort. Specifically, patients possessing certain mutant genotype at rs111564371 exhibited substantially greater reductions in SBP and DBP, with P -values of 0.021 and 0.016, respectively, compared to those carrying the wild genotype. Additionally, these mutant genotype at rs111564371 and rs112568578 were linked to approximately 20% higher overall efficacy rates and a 10% increased achievement rate relative to the wild genotype.</p><p><strong>Conclusion: </strong>Our research with the Bai hypertensive group shows that certain CYP2D6 polymorphisms significantly influence ARB treatment outcomes. Mutations at rs111564371 led to better blood pressure control ( P -values: 0.021 for SBP, 0.016 for DBP), improving ARB efficacy by appromixately 20% and increasing treatment goal achievement by 10% over the wild-type genotype.</p><p><strong>Statements: </strong>Our investigation into CYP2D6 polymorphisms within the Bai hypertensive cohort marks a substantial advancement towards personalized healthcare, underscoring the pivotal influence of genetic constitution on the effectiveness of ARB therapy.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":" ","pages":"199-208"},"PeriodicalIF":1.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-05-13DOI: 10.1097/FPC.0000000000000535
Ting Zhao, Ji-Rong Feng, Hui-Lan Zhang, Jing Yu, Jie Feng, Ke-Fang Sun, Lu-Hai Yu, Yan Sun, Hong-Jian Li
Purpose: This study was the first to evaluate the effect of CYP3A5*3 gene polymorphisms on plasma concentration of perampanel (PER) in Chinese pediatric patients with epilepsy.
Methods: We enrolled 98 patients for this investigation. Plasma PER concentrations were measured using liquid chromatography-tandem mass spectrometry. Leftover samples from standard therapeutic drug monitoring were allocated for genotyping analysis. The primary measure of efficacy was the rate of seizure reduction with PER treatment at the final checkup.
Results: The plasma concentration showed a linear correlation with the daily dose taken ( r = 0.17; P < 0.05). The ineffective group showed a significantly lower plasma concentration of PER (490.5 ± 297.1 vs. 633.8 ± 305.5 μg/ml; P = 0.019). For the mean concentration-to-dose (C/D) ratio, the ineffective group showed a significantly lower C/D ratio of PER (3.2 ± 1.7 vs. 3.8 ± 2.0; P = 0.040). The CYP3A5*3 CC genotype exhibited the highest average plasma concentration of PER at 562.8 ± 293.9 ng/ml, in contrast to the CT and TT genotypes at 421.1 ± 165.6 ng/ml and 260.0 ± 36.1 ng/ml. The mean plasma PER concentration was significantly higher in the adverse events group (540.8 ± 285.6 vs. 433.0 ± 227.2 ng/ml; P = 0.042).
Conclusion: The CYP3A5*3 gene's genetic polymorphisms influence plasma concentrations of PER in Chinese pediatric patients with epilepsy. Given that both efficacy and potential toxicity are closely tied to plasma PER levels, the CYP3A5*3 genetic genotype should be factored in when prescribing PER to patients with epilepsy.
目的:本研究首次评估了CYP3A5*3基因多态性对中国儿科癫痫患者血浆中哌仑帕奈(PER)浓度的影响:方法:我们招募了98名患者进行研究。采用液相色谱-串联质谱法测量血浆中 PER 的浓度。标准治疗药物监测的剩余样本被分配用于基因分型分析。疗效的主要衡量标准是在最后一次检查中接受 PER 治疗后癫痫发作的减少率:结果:血浆浓度与每日服用剂量呈线性相关(r = 0.17;P 结论:血浆浓度与每日服用剂量呈线性相关:CYP3A5*3基因的遗传多态性会影响中国儿童癫痫患者的PER血浆浓度。鉴于疗效和潜在毒性与血浆 PER 水平密切相关,因此在为癫痫患者处方 PER 时应考虑 CYP3A5*3 基因的基因型。
{"title":"Effects of CYP3A5*3 genetic polymorphisms on the pharmacokinetics of perampanel in Chinese pediatric patients with epilepsy.","authors":"Ting Zhao, Ji-Rong Feng, Hui-Lan Zhang, Jing Yu, Jie Feng, Ke-Fang Sun, Lu-Hai Yu, Yan Sun, Hong-Jian Li","doi":"10.1097/FPC.0000000000000535","DOIUrl":"10.1097/FPC.0000000000000535","url":null,"abstract":"<p><strong>Purpose: </strong>This study was the first to evaluate the effect of CYP3A5*3 gene polymorphisms on plasma concentration of perampanel (PER) in Chinese pediatric patients with epilepsy.</p><p><strong>Methods: </strong>We enrolled 98 patients for this investigation. Plasma PER concentrations were measured using liquid chromatography-tandem mass spectrometry. Leftover samples from standard therapeutic drug monitoring were allocated for genotyping analysis. The primary measure of efficacy was the rate of seizure reduction with PER treatment at the final checkup.</p><p><strong>Results: </strong>The plasma concentration showed a linear correlation with the daily dose taken ( r = 0.17; P < 0.05). The ineffective group showed a significantly lower plasma concentration of PER (490.5 ± 297.1 vs. 633.8 ± 305.5 μg/ml; P = 0.019). For the mean concentration-to-dose (C/D) ratio, the ineffective group showed a significantly lower C/D ratio of PER (3.2 ± 1.7 vs. 3.8 ± 2.0; P = 0.040). The CYP3A5*3 CC genotype exhibited the highest average plasma concentration of PER at 562.8 ± 293.9 ng/ml, in contrast to the CT and TT genotypes at 421.1 ± 165.6 ng/ml and 260.0 ± 36.1 ng/ml. The mean plasma PER concentration was significantly higher in the adverse events group (540.8 ± 285.6 vs. 433.0 ± 227.2 ng/ml; P = 0.042).</p><p><strong>Conclusion: </strong>The CYP3A5*3 gene's genetic polymorphisms influence plasma concentrations of PER in Chinese pediatric patients with epilepsy. Given that both efficacy and potential toxicity are closely tied to plasma PER levels, the CYP3A5*3 genetic genotype should be factored in when prescribing PER to patients with epilepsy.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":" ","pages":"184-190"},"PeriodicalIF":1.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140904880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maternally expressed gene 3 ( MEG3 ) is a noncoding RNA that is known as a tumor suppressor in solid cancers. Recently, a line of studies has emphasized its potential role in hematological malignancies in terms of tumorigenesis, metastasis, and drug resistance. Similar to solid cancers, MEG3 can regulate various cancer hallmarks via sponging miRNA, transcriptional, or posttranslational regulation mechanisms, but may regulate different key elements. In contrast with solid cancers, in some subtypes of leukemia, MEG3 has been found to be upregulated and oncogenic. In this review, we systematically describe the role and underlying mechanisms of MEG3 in multiple types of hematological malignancies. Particularly, we highlight the role of MEG3 in drug resistance and as a novel therapeutic target.
{"title":"MEG3 in hematologic malignancies: from the role of disease biomarker to therapeutic target.","authors":"Chunlan Zhang, Yun Qin, Yun Tang, Mingyu Gu, Zhengyan Li, Heng Xu","doi":"10.1097/FPC.0000000000000534","DOIUrl":"10.1097/FPC.0000000000000534","url":null,"abstract":"<p><p>Maternally expressed gene 3 ( MEG3 ) is a noncoding RNA that is known as a tumor suppressor in solid cancers. Recently, a line of studies has emphasized its potential role in hematological malignancies in terms of tumorigenesis, metastasis, and drug resistance. Similar to solid cancers, MEG3 can regulate various cancer hallmarks via sponging miRNA, transcriptional, or posttranslational regulation mechanisms, but may regulate different key elements. In contrast with solid cancers, in some subtypes of leukemia, MEG3 has been found to be upregulated and oncogenic. In this review, we systematically describe the role and underlying mechanisms of MEG3 in multiple types of hematological malignancies. Particularly, we highlight the role of MEG3 in drug resistance and as a novel therapeutic target.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":" ","pages":"209-216"},"PeriodicalIF":1.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-05-15DOI: 10.1097/FPC.0000000000000536
Yin-Xiao Du, Ying-Xia Zhu, Liang Li, Jing Yang, Xiao-Ping Chen
Objectives: Both age and CYP2C19 genotypes affect voriconazole plasma concentration; the interaction of age and CYP2C19 genotypes on voriconazole plasma concentration remains unknown. This study aims to investigate the combined effects of age and CYP2C19 genotypes on voriconazole plasma concentration in Chinese patients.
Methods: A total of 480 patients who received voriconazole treatment were recruited. CYP2C19*2 (rs4244285) and CYP2C19*3 (rs4986893) polymorphisms were genotyped. Patients were divided into the young and the elderly groups by age of 60 years old. Influence of CYP2C19 genotype on steady-state trough concentration (C ss-min ) in overall patients and in age subgroups was analyzed.
Results: Voriconazole C ss-min correlated positively with age, and mean voriconazole C ss-min was significantly higher in the elderly group ( P < 0.001). CYP2C19 poor metabolizers showed significantly increased mean voriconazole C ss-min in the young but not the elderly group. The percentage of patients with subtherapeutic voriconazole C ss-min (<1.0 mg/l) was higher in the young group and that of supratherapeutic voriconazole C ss-min (>5.5 mg/l) was higher in the elderly patients. When the average C ss-min in the CYP2C19 normal metabolizer genotype was regarded as a reference, CYP2C19 genotypes showed greater impact on voriconazole C ss-min in the young group, while the influence of age on voriconazole C ss-min exceeded CYP2C19 genotypes in the elderly.
Conclusion: CYP2C19 genotypes affects voriconazole exposure is age dependent. Influence of CYP2C19 poor metabolizer genotype on increased voriconazoleexposure is prominent in the young, while age is a more important determinant factor for increased voriconazole exposure in the elderly patients.
{"title":"Interaction of age and CYP2C19 genotypes on voriconazole steady-state trough concentration in Chinese patients.","authors":"Yin-Xiao Du, Ying-Xia Zhu, Liang Li, Jing Yang, Xiao-Ping Chen","doi":"10.1097/FPC.0000000000000536","DOIUrl":"10.1097/FPC.0000000000000536","url":null,"abstract":"<p><strong>Objectives: </strong>Both age and CYP2C19 genotypes affect voriconazole plasma concentration; the interaction of age and CYP2C19 genotypes on voriconazole plasma concentration remains unknown. This study aims to investigate the combined effects of age and CYP2C19 genotypes on voriconazole plasma concentration in Chinese patients.</p><p><strong>Methods: </strong>A total of 480 patients who received voriconazole treatment were recruited. CYP2C19*2 (rs4244285) and CYP2C19*3 (rs4986893) polymorphisms were genotyped. Patients were divided into the young and the elderly groups by age of 60 years old. Influence of CYP2C19 genotype on steady-state trough concentration (C ss-min ) in overall patients and in age subgroups was analyzed.</p><p><strong>Results: </strong>Voriconazole C ss-min correlated positively with age, and mean voriconazole C ss-min was significantly higher in the elderly group ( P < 0.001). CYP2C19 poor metabolizers showed significantly increased mean voriconazole C ss-min in the young but not the elderly group. The percentage of patients with subtherapeutic voriconazole C ss-min (<1.0 mg/l) was higher in the young group and that of supratherapeutic voriconazole C ss-min (>5.5 mg/l) was higher in the elderly patients. When the average C ss-min in the CYP2C19 normal metabolizer genotype was regarded as a reference, CYP2C19 genotypes showed greater impact on voriconazole C ss-min in the young group, while the influence of age on voriconazole C ss-min exceeded CYP2C19 genotypes in the elderly.</p><p><strong>Conclusion: </strong>CYP2C19 genotypes affects voriconazole exposure is age dependent. Influence of CYP2C19 poor metabolizer genotype on increased voriconazoleexposure is prominent in the young, while age is a more important determinant factor for increased voriconazole exposure in the elderly patients.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":" ","pages":"191-198"},"PeriodicalIF":1.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-03-18DOI: 10.1097/FPC.0000000000000530
Irene Ferrer Bolufer, Ximo Galiana Vallés, Silvia Izquierdo Álvarez, Ana Serrano Mira, Carola Guzmán Luján, María José Safont Aguilera, Ricardo González Tarancón, Matilde Bolaños Naranjo, Pilar Carrasco Salas, María Santamaría González, Raquel Rodríguez-López
Consensus guidelines for genotype-guided fluoropyrimidine dosing based on variation in the dihydropyrimidine dehydrogenase (DPYD) gene before treatment have been firmly established. The prior pharmacogenetic report avoids the serious toxicity that inevitably occurred in a non-negligible percentage of the treated patients. The precise description of the allelic distribution of the variants of interest in our reference populations is information of great interest for the management of the prescription of these antineoplastic drugs. We characterized the allelic distribution of the UGT1A1*28 variant (rs3064744), as well as the DPYD*2A (rs3918290) variant, c.1679T>G (rs55886062), c.2846A>T (rs67376798) and c.1129-5923C>G (rs75017182; HapB3) in series of 5251 patients who are going to receive treatment with irinotecan and fluoropyrimidines, representative of Valencian, Aragonese and Western Andalusian populations.
{"title":"Diversity of oncopharmacogenetic profile within Spanish population.","authors":"Irene Ferrer Bolufer, Ximo Galiana Vallés, Silvia Izquierdo Álvarez, Ana Serrano Mira, Carola Guzmán Luján, María José Safont Aguilera, Ricardo González Tarancón, Matilde Bolaños Naranjo, Pilar Carrasco Salas, María Santamaría González, Raquel Rodríguez-López","doi":"10.1097/FPC.0000000000000530","DOIUrl":"10.1097/FPC.0000000000000530","url":null,"abstract":"<p><p>Consensus guidelines for genotype-guided fluoropyrimidine dosing based on variation in the dihydropyrimidine dehydrogenase (DPYD) gene before treatment have been firmly established. The prior pharmacogenetic report avoids the serious toxicity that inevitably occurred in a non-negligible percentage of the treated patients. The precise description of the allelic distribution of the variants of interest in our reference populations is information of great interest for the management of the prescription of these antineoplastic drugs. We characterized the allelic distribution of the UGT1A1*28 variant (rs3064744), as well as the DPYD*2A (rs3918290) variant, c.1679T>G (rs55886062), c.2846A>T (rs67376798) and c.1129-5923C>G (rs75017182; HapB3) in series of 5251 patients who are going to receive treatment with irinotecan and fluoropyrimidines, representative of Valencian, Aragonese and Western Andalusian populations.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":" ","pages":"166-169"},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140132171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-03-20DOI: 10.1097/FPC.0000000000000529
Samuel Gerlach, Abdullah Al Maruf, Sarker M Shaheen, Ryden McCloud, Madison Heintz, Laina McAusland, Paul D Arnold, Chad A Bousman
Objectives: Amphetamine-based medications are recommended as a first-line pharmacotherapy for the treatment of attention-deficit/hyperactivity disorder in children and adolescents. However, the efficacy and tolerability of these medications vary across individuals, which could be related to interindividual differences in amphetamine metabolism. This study examined if genotype-predicted phenotypes of the cytochrome P450 isozyme CYP2D6 were associated with self-reported side effects and symptom improvement in youth treated with amphetamines.
Methods: Two hundred fourteen participants aged 6-24 who had a history of past or current amphetamine treatment were enrolled from Western Canada. Amphetamine dose and duration information was collected from the participants along with questions regarding adherence, concomitant medications, symptom improvement and side effects. DNA was extracted from saliva samples and genotyped for CYP2D6 . Binomial logistic regression models were used to determine the effect of CYP2D6 metabolizer phenotype with and without correction for phenoconversion on self-reported symptom improvement and side effects.
Results: Genotype-predicted CYP2D6 poor metabolizers had significantly higher odds of reporting symptom improvement when compared to intermediate metabolizers (OR = 3.67, 95% CI = 1.15-11.7, P = 0.029) after correction for phenoconversion and adjusting for sex, age, dose, duration, and adherence. There was no association between CYP2D6 metabolizer phenotype and self-reported side effects.
Conclusion: Our findings indicate that phenoconverted and genotype-predicted CYP2D6 poor metabolizer phenotype is significantly associated with higher odds of symptom improvement in children and adolescents treated with amphetamine. If replicated, these results could inform the development of future dosing guidelines for amphetamine treatment in children and adolescents.
{"title":"Effect of CYP2D6 genetic variation on patient-reported symptom improvement and side effects among children and adolescents treated with amphetamines.","authors":"Samuel Gerlach, Abdullah Al Maruf, Sarker M Shaheen, Ryden McCloud, Madison Heintz, Laina McAusland, Paul D Arnold, Chad A Bousman","doi":"10.1097/FPC.0000000000000529","DOIUrl":"10.1097/FPC.0000000000000529","url":null,"abstract":"<p><strong>Objectives: </strong>Amphetamine-based medications are recommended as a first-line pharmacotherapy for the treatment of attention-deficit/hyperactivity disorder in children and adolescents. However, the efficacy and tolerability of these medications vary across individuals, which could be related to interindividual differences in amphetamine metabolism. This study examined if genotype-predicted phenotypes of the cytochrome P450 isozyme CYP2D6 were associated with self-reported side effects and symptom improvement in youth treated with amphetamines.</p><p><strong>Methods: </strong>Two hundred fourteen participants aged 6-24 who had a history of past or current amphetamine treatment were enrolled from Western Canada. Amphetamine dose and duration information was collected from the participants along with questions regarding adherence, concomitant medications, symptom improvement and side effects. DNA was extracted from saliva samples and genotyped for CYP2D6 . Binomial logistic regression models were used to determine the effect of CYP2D6 metabolizer phenotype with and without correction for phenoconversion on self-reported symptom improvement and side effects.</p><p><strong>Results: </strong>Genotype-predicted CYP2D6 poor metabolizers had significantly higher odds of reporting symptom improvement when compared to intermediate metabolizers (OR = 3.67, 95% CI = 1.15-11.7, P = 0.029) after correction for phenoconversion and adjusting for sex, age, dose, duration, and adherence. There was no association between CYP2D6 metabolizer phenotype and self-reported side effects.</p><p><strong>Conclusion: </strong>Our findings indicate that phenoconverted and genotype-predicted CYP2D6 poor metabolizer phenotype is significantly associated with higher odds of symptom improvement in children and adolescents treated with amphetamine. If replicated, these results could inform the development of future dosing guidelines for amphetamine treatment in children and adolescents.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":" ","pages":"149-153"},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140189967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-03-22DOI: 10.1097/FPC.0000000000000531
Kar Mun Tham, Jacklyn Jia Lin Yek, Christopher Wei Yang Liu
Purpose: This umbrella review was conducted to summarize the association between HLA*1502 allele with antiepileptic induced Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN).
Methods: Pubmed, Scopus and EMBASE were searched for eligible reviews in May 2023. Two authors independently screened titles and abstracts and assessed full-text reviews for eligibility. The quality of meta-analyses and case-control studies was appraised with Assessing the Methodological Quality of Systematic Reviews 2 and Newcastle-Ottawa Scale, respectively. Narrative summaries of each antiepileptic drug were analyzed. Preestablished protocol was registered on the International Prospective Register of Systematic Reviews Registry(ID: CRD42023403957).
Results: Included studies are systematic reviews, meta-analyses and case-control studies evaluating the association of HLA-B*1502 allele with the following antiepileptics. Seven meta-analyses for carbamazepine, three meta-analyses for lamotrigine (LTG), three case-control studies for oxcarbazepine, nine case-control studies for phenytoin and four case-control studies for phenobarbitone were included. The findings of this umbrella review suggest that there is a strong association between HLA-B-1502 with SJS/TEN for carbamazepine and oxcarbazepine and a milder association for lamotrigine and phenytoin.
Conclusion: In summary, although HLA-B*1502 is less likely to be associated with phenytoin or lamotrigine-induced SJS/TEN compared to carbamazepine-induced SJS/TEN, it is a significant risk factor that if carefully screened, could potentially reduce the development of SJS/TEN. In view of potential morbidity and mortality, HLA-B*1502 testing may be beneficial in patients who are initiating lamotrigine/phenytoin therapy. However, further studies are required to examine the association of other alleles with the development of SJS/TEN and to explore the possibility of genome-wide association studies before initiation of treatment.
{"title":"Unraveling the genetic link: an umbrella review on HLA-B*15:02 and antiepileptic drug-induced Stevens-Johnson syndrome/toxic epidermal necrolysis.","authors":"Kar Mun Tham, Jacklyn Jia Lin Yek, Christopher Wei Yang Liu","doi":"10.1097/FPC.0000000000000531","DOIUrl":"10.1097/FPC.0000000000000531","url":null,"abstract":"<p><strong>Purpose: </strong>This umbrella review was conducted to summarize the association between HLA*1502 allele with antiepileptic induced Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN).</p><p><strong>Methods: </strong>Pubmed, Scopus and EMBASE were searched for eligible reviews in May 2023. Two authors independently screened titles and abstracts and assessed full-text reviews for eligibility. The quality of meta-analyses and case-control studies was appraised with Assessing the Methodological Quality of Systematic Reviews 2 and Newcastle-Ottawa Scale, respectively. Narrative summaries of each antiepileptic drug were analyzed. Preestablished protocol was registered on the International Prospective Register of Systematic Reviews Registry(ID: CRD42023403957).</p><p><strong>Results: </strong>Included studies are systematic reviews, meta-analyses and case-control studies evaluating the association of HLA-B*1502 allele with the following antiepileptics. Seven meta-analyses for carbamazepine, three meta-analyses for lamotrigine (LTG), three case-control studies for oxcarbazepine, nine case-control studies for phenytoin and four case-control studies for phenobarbitone were included. The findings of this umbrella review suggest that there is a strong association between HLA-B-1502 with SJS/TEN for carbamazepine and oxcarbazepine and a milder association for lamotrigine and phenytoin.</p><p><strong>Conclusion: </strong>In summary, although HLA-B*1502 is less likely to be associated with phenytoin or lamotrigine-induced SJS/TEN compared to carbamazepine-induced SJS/TEN, it is a significant risk factor that if carefully screened, could potentially reduce the development of SJS/TEN. In view of potential morbidity and mortality, HLA-B*1502 testing may be beneficial in patients who are initiating lamotrigine/phenytoin therapy. However, further studies are required to examine the association of other alleles with the development of SJS/TEN and to explore the possibility of genome-wide association studies before initiation of treatment.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":" ","pages":"154-165"},"PeriodicalIF":1.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objectives: Given the high prevalence of fast-metabolizing alcohol dehydrogenase-1B*2 (ADH1B*2 ) and inactive aldehyde dehydrogenase-2*2 (ALDH2*2 ) alleles in East Asians, we evaluated how the ADH1B / ALDH2 genotypes and alcohol flushing might affect the development of alcohol dependence (AD).
Methods: We evaluated how the ADH1B / ALDH2 genotypes and self-reported alcohol flushing affected history of drinking events and withdrawal symptoms and ICD-10 criteria in 4116 Japanese AD men.
Results: The ADH1B*1/*1 group and ALDH2*1/*1 group were 1-5 years younger than the ADH1B*2 (+) and ALDH2*1/*2 groups, respectively, for all of the ages at onset of habitual drinking, blackouts, daytime drinking, uncontrolled drinking, withdrawal symptoms, and first treatment for AD, and the current age. Blackouts were more common in the ADH1B*1/*1 group and ALDH2*1/*1 group. Daytime drinking, uncontrolled drinking, and withdrawal symptoms, such as hand tremor, sweating, convulsions, and delirium tremens/hallucinations were more common in the ADH1B*1/*1 group. The ADH1B*1/*1 was positively associated with the ICD-10 criteria for 'tolerance' and 'withdrawal symptoms'. The ADH1B*1/*1 group and ALDH2*1/*2 group had a larger ICD-10 score. Never flushing was reported by 91.7% and 35.2% of the ALDH2*1/*1 and ALDH2*1/*2 carriers, respectively. After a 1-2-year delay in the onset of habitual drinking in the former-/current-flushing group, no differences in the ages of the aforementioned drinking milestones were found according to the flushing status.
Conclusion: The ADH1B*1/*1 and ALDH2*1/*1 accelerated the development of drinking events and withdrawal symptoms in Japanese AD patients. ICD-10 score was larger in the ADH1B*1/*1 group and ALDH2*1/*2 group. The effects of alcohol flushing on drinking events were limited.
{"title":"Associations of ADH1B and ALDH2 genotypes and alcohol flushing with drinking history, withdrawal symptoms, and ICD-10 criteria in Japanese alcohol-dependent men.","authors":"Akira Yokoyama, Tetsuji Yokoyama, Yosuke Yumoto, Tsuyoshi Takimura, Tomomi Toyama, Junichi Yoneda, Kotaro Nishimura, Ruriko Minobe, Takanobu Matsuzaki, Mitsuru Kimura, Sachio Matsushita","doi":"10.1097/FPC.0000000000000528","DOIUrl":"10.1097/FPC.0000000000000528","url":null,"abstract":"<p><strong>Objectives: </strong>Given the high prevalence of fast-metabolizing alcohol dehydrogenase-1B*2 (ADH1B*2 ) and inactive aldehyde dehydrogenase-2*2 (ALDH2*2 ) alleles in East Asians, we evaluated how the ADH1B / ALDH2 genotypes and alcohol flushing might affect the development of alcohol dependence (AD).</p><p><strong>Methods: </strong>We evaluated how the ADH1B / ALDH2 genotypes and self-reported alcohol flushing affected history of drinking events and withdrawal symptoms and ICD-10 criteria in 4116 Japanese AD men.</p><p><strong>Results: </strong>The ADH1B*1/*1 group and ALDH2*1/*1 group were 1-5 years younger than the ADH1B*2 (+) and ALDH2*1/*2 groups, respectively, for all of the ages at onset of habitual drinking, blackouts, daytime drinking, uncontrolled drinking, withdrawal symptoms, and first treatment for AD, and the current age. Blackouts were more common in the ADH1B*1/*1 group and ALDH2*1/*1 group. Daytime drinking, uncontrolled drinking, and withdrawal symptoms, such as hand tremor, sweating, convulsions, and delirium tremens/hallucinations were more common in the ADH1B*1/*1 group. The ADH1B*1/*1 was positively associated with the ICD-10 criteria for 'tolerance' and 'withdrawal symptoms'. The ADH1B*1/*1 group and ALDH2*1/*2 group had a larger ICD-10 score. Never flushing was reported by 91.7% and 35.2% of the ALDH2*1/*1 and ALDH2*1/*2 carriers, respectively. After a 1-2-year delay in the onset of habitual drinking in the former-/current-flushing group, no differences in the ages of the aforementioned drinking milestones were found according to the flushing status.</p><p><strong>Conclusion: </strong>The ADH1B*1/*1 and ALDH2*1/*1 accelerated the development of drinking events and withdrawal symptoms in Japanese AD patients. ICD-10 score was larger in the ADH1B*1/*1 group and ALDH2*1/*2 group. The effects of alcohol flushing on drinking events were limited.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":" ","pages":"139-148"},"PeriodicalIF":1.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140094468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-02-19DOI: 10.1097/FPC.0000000000000525
Samantha Frear, Ashley Sherman, Don Rule, Lauren Ann Marcath
CYP2D6 is a highly polymorphic gene with clinically important structural variations. Commonly, only exon 9 is assayed on clinical pharmacogenomics panels, as it allows for accurate functional characterization even in the presence of a CYP2D6::CYP2D7 conversion. However, this method does not capture CYP2D7::CYP2D6 (CYP2D6*13) conversions, possibly leading to inaccurate phenotype assignment. The study's purpose was to determine the frequency of structural variations in CYP2D6 utilizing multiple copy number variation (CNV) assay locations to quantify the potential impact on clinical phenotype classification. A retrospective analysis was conducted of de-identified pharmacogenomics data submitted through the Translational Software, Inc. platform. Samples with CYP2D6 CNV data for exon 9 and at least one additional CNV location (5'UTR, exon 1, intron 2, exon 5 or intron 6) were included. CYP2D7::CYP2D6 and CYP2D6::CYP2D7 conversions were classified according to PharmVar nomenclature. The CYP2D6 copies were capped at four total copies to account for assay limitations in detecting more than four copies. A total of 106,474 samples were included for analysis. CYP2D7::CYP2D6 conversions were present in approximately 2.44% of samples, and 5.84% of samples had CYP2D6::CYP2D7 conversions. Many samples did not have a CYP2D7 conversion detected (91.5%; 97,462/106,474). A full gene deletion was detected in 0.15%, and 5.98% had a duplication or multiplication present. This retrospective study underscores the importance of testing more than one CNV site for CYP2D6 . Over 2% of patients were found to have a CYP2D7::CYP2D6 conversion. This translates into potentially misclassified phenotype classification and incongruent clinical recommendations.
{"title":"Prevalence of CYP2D6 structural variation in large retrospective study.","authors":"Samantha Frear, Ashley Sherman, Don Rule, Lauren Ann Marcath","doi":"10.1097/FPC.0000000000000525","DOIUrl":"10.1097/FPC.0000000000000525","url":null,"abstract":"<p><p>CYP2D6 is a highly polymorphic gene with clinically important structural variations. Commonly, only exon 9 is assayed on clinical pharmacogenomics panels, as it allows for accurate functional characterization even in the presence of a CYP2D6::CYP2D7 conversion. However, this method does not capture CYP2D7::CYP2D6 (CYP2D6*13) conversions, possibly leading to inaccurate phenotype assignment. The study's purpose was to determine the frequency of structural variations in CYP2D6 utilizing multiple copy number variation (CNV) assay locations to quantify the potential impact on clinical phenotype classification. A retrospective analysis was conducted of de-identified pharmacogenomics data submitted through the Translational Software, Inc. platform. Samples with CYP2D6 CNV data for exon 9 and at least one additional CNV location (5'UTR, exon 1, intron 2, exon 5 or intron 6) were included. CYP2D7::CYP2D6 and CYP2D6::CYP2D7 conversions were classified according to PharmVar nomenclature. The CYP2D6 copies were capped at four total copies to account for assay limitations in detecting more than four copies. A total of 106,474 samples were included for analysis. CYP2D7::CYP2D6 conversions were present in approximately 2.44% of samples, and 5.84% of samples had CYP2D6::CYP2D7 conversions. Many samples did not have a CYP2D7 conversion detected (91.5%; 97,462/106,474). A full gene deletion was detected in 0.15%, and 5.98% had a duplication or multiplication present. This retrospective study underscores the importance of testing more than one CNV site for CYP2D6 . Over 2% of patients were found to have a CYP2D7::CYP2D6 conversion. This translates into potentially misclassified phenotype classification and incongruent clinical recommendations.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":" ","pages":"135-138"},"PeriodicalIF":2.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-02-08DOI: 10.1097/FPC.0000000000000523
Courtney Lenz, Ankita Narang, Chad A Bousman
The use of genome-wide genotyping arrays in pharmacogenomics (PGx) research and clinical implementation applications is increasing but it is unclear which arrays are best suited for these applications. Here, we conduct a comparative coverage analysis of PGx alleles included on genome-wide genotyping arrays, with an emphasis on alleles in genes with PGx-based prescribing guidelines. Genomic manifest files for seven arrays including the Axiom Precision Medicine Diversity Array (PMDA), Axiom PMDA Plus, Axiom PangenomiX, Axiom PangenomiX Plus, Infinium Global Screening Array, Infinium Global Diversity Array (GDA) and Infinium GDA with enhanced PGx (GDA-PGx) Array, were evaluated for coverage of 523 star alleles across 19 pharmacogenes included in prescribing guidelines developed by the Clinical Pharmacogenetic Implementation Consortium and Dutch Pharmacogenomics Working Group. Specific attention was given to coverage of the Association of Molecular Pathology's Tier 1 and Tier 2 allele sets for CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, NUDT15, TPMT and VKORC1 . Coverage of the examined PGx alleles was highest for the Infinium GDA-PGx (88%), Axiom PangenomiX Plus (77%), Axiom PangenomiX (72%) and Axiom PMDA Plus (70%). Three arrays (Infinium GDA-PGx, Axiom PangenomiX Plus and Axiom PMDA Plus) fully covered the Tier 1 alleles and the Axiom PangenomiX array provided full coverage of Tier 2 alleles. In conclusion, PGx allele coverage varied by gene and array. A superior array for all PGx applications was not identified. Future comparative analyses of genotype data produced by these arrays are needed to determine the robustness of the reported coverage estimates.
{"title":"Pharmacogenomic allele coverage of genome-wide genotyping arrays: a comparative analysis.","authors":"Courtney Lenz, Ankita Narang, Chad A Bousman","doi":"10.1097/FPC.0000000000000523","DOIUrl":"10.1097/FPC.0000000000000523","url":null,"abstract":"<p><p>The use of genome-wide genotyping arrays in pharmacogenomics (PGx) research and clinical implementation applications is increasing but it is unclear which arrays are best suited for these applications. Here, we conduct a comparative coverage analysis of PGx alleles included on genome-wide genotyping arrays, with an emphasis on alleles in genes with PGx-based prescribing guidelines. Genomic manifest files for seven arrays including the Axiom Precision Medicine Diversity Array (PMDA), Axiom PMDA Plus, Axiom PangenomiX, Axiom PangenomiX Plus, Infinium Global Screening Array, Infinium Global Diversity Array (GDA) and Infinium GDA with enhanced PGx (GDA-PGx) Array, were evaluated for coverage of 523 star alleles across 19 pharmacogenes included in prescribing guidelines developed by the Clinical Pharmacogenetic Implementation Consortium and Dutch Pharmacogenomics Working Group. Specific attention was given to coverage of the Association of Molecular Pathology's Tier 1 and Tier 2 allele sets for CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, NUDT15, TPMT and VKORC1 . Coverage of the examined PGx alleles was highest for the Infinium GDA-PGx (88%), Axiom PangenomiX Plus (77%), Axiom PangenomiX (72%) and Axiom PMDA Plus (70%). Three arrays (Infinium GDA-PGx, Axiom PangenomiX Plus and Axiom PMDA Plus) fully covered the Tier 1 alleles and the Axiom PangenomiX array provided full coverage of Tier 2 alleles. In conclusion, PGx allele coverage varied by gene and array. A superior array for all PGx applications was not identified. Future comparative analyses of genotype data produced by these arrays are needed to determine the robustness of the reported coverage estimates.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":" ","pages":"130-134"},"PeriodicalIF":2.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139741680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}