Betcy Evangeline Pamela, Chhaya Patole, Subashini Thamizhmaran, Ranjith K Moorthy, Josephin Manoj, Anupriya Thanigachalam, James R S Hocker, Douglas A Drevets, Anna Oommen, Vedantam Rajshekhar, Hélène Carabin, Prabhakaran Vasudevan
Neurocysticercosis (NCC), a major cause of global acquired epilepsy, results from Taenia solium larval brain infection. T. solium adult worms release large numbers of infective eggs into the environment contributing to high levels of exposure in endemic areas. This study identifies T. solium proteins in the sera of individuals with and without NCC using mass spectrometry to examine exposure in endemic regions. Forty-seven patients (18-51 years), 24 parenchymal NCC (pNCC), 8 epilepsy of unknown aetiology, 7 glioma, 8 brain tuberculoma, and 7 healthy volunteers were studied. Trypsin digested sera were subject to liquid chromatography-tandem mass spectrometry and spectra of 375-1700 m/z matched against T. solium WormBase ParaSite database with MaxQuant software to identify T. solium proteins. Three hundred and nineteen T. solium proteins were identified in 87.5% of pNCC and 56.6% of non-NCC subjects. Three hundred and four proteins were exclusive to pNCC sera, seven to non-NCC sera and eight in both. Ten percent, exhibiting immune-modulatory properties, originated from the oncosphere and cyst vesicular fluid. In conclusion, in endemic regions, T. solium proteins are detected in sera of individuals with and without pNCC. The immunomodulatory nature of these proteins may influence susceptibility and course of infection.
{"title":"Mass Spectrometry Identifies Taenia solium Proteins in Sera of Patients With and Without Parenchymal Neurocysticercosis.","authors":"Betcy Evangeline Pamela, Chhaya Patole, Subashini Thamizhmaran, Ranjith K Moorthy, Josephin Manoj, Anupriya Thanigachalam, James R S Hocker, Douglas A Drevets, Anna Oommen, Vedantam Rajshekhar, Hélène Carabin, Prabhakaran Vasudevan","doi":"10.1111/pim.13058","DOIUrl":"10.1111/pim.13058","url":null,"abstract":"<p><p>Neurocysticercosis (NCC), a major cause of global acquired epilepsy, results from Taenia solium larval brain infection. T. solium adult worms release large numbers of infective eggs into the environment contributing to high levels of exposure in endemic areas. This study identifies T. solium proteins in the sera of individuals with and without NCC using mass spectrometry to examine exposure in endemic regions. Forty-seven patients (18-51 years), 24 parenchymal NCC (pNCC), 8 epilepsy of unknown aetiology, 7 glioma, 8 brain tuberculoma, and 7 healthy volunteers were studied. Trypsin digested sera were subject to liquid chromatography-tandem mass spectrometry and spectra of 375-1700 m/z matched against T. solium WormBase ParaSite database with MaxQuant software to identify T. solium proteins. Three hundred and nineteen T. solium proteins were identified in 87.5% of pNCC and 56.6% of non-NCC subjects. Three hundred and four proteins were exclusive to pNCC sera, seven to non-NCC sera and eight in both. Ten percent, exhibiting immune-modulatory properties, originated from the oncosphere and cyst vesicular fluid. In conclusion, in endemic regions, T. solium proteins are detected in sera of individuals with and without pNCC. The immunomodulatory nature of these proteins may influence susceptibility and course of infection.</p>","PeriodicalId":19931,"journal":{"name":"Parasite Immunology","volume":"46 7","pages":"e13058"},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366451/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Kazemi Arababadi, Seyyed Hossein Abdollahi, Mahnaz Ramezani, Mohammad Zare-Bidaki
Toxoplasmosis as a zoonotic disease has a worldwide distribution and can infect a wide range of animal hosts, as well as at least one third of the world's human population. The disease is usually mild or asymptomatic in immunocompetent individuals, but dormant tissue cysts survive especially in the brain for the host lifespan, known as latent toxoplasmosis (LT). Recent studies suggest that LT can have certain neurological, immunological psychological and behavioural effects on human including schizophrenia, bipolar disorder, Alzheimer's disease, depression, suicide anxiety and sleeping disorders. LT effects are controversial, and their exact mechanisms of action is not yet fully understood. This review aims to provide an overview of the potential effects, their basic mechanisms including alteration of neurotransmitter levels, immune activation in the central nervous system and induction of oxidative stress. Additionally, beneficial effects of LT, and an explanation of the effects within the framework of manipulation hypothesis, and finally, the challenges and limitations of the current research are discussed.
{"title":"A Review of Immunological and Neuropsychobehavioral Effects of Latent Toxoplasmosis on Humans.","authors":"Mohammad Kazemi Arababadi, Seyyed Hossein Abdollahi, Mahnaz Ramezani, Mohammad Zare-Bidaki","doi":"10.1111/pim.13060","DOIUrl":"https://doi.org/10.1111/pim.13060","url":null,"abstract":"<p><p>Toxoplasmosis as a zoonotic disease has a worldwide distribution and can infect a wide range of animal hosts, as well as at least one third of the world's human population. The disease is usually mild or asymptomatic in immunocompetent individuals, but dormant tissue cysts survive especially in the brain for the host lifespan, known as latent toxoplasmosis (LT). Recent studies suggest that LT can have certain neurological, immunological psychological and behavioural effects on human including schizophrenia, bipolar disorder, Alzheimer's disease, depression, suicide anxiety and sleeping disorders. LT effects are controversial, and their exact mechanisms of action is not yet fully understood. This review aims to provide an overview of the potential effects, their basic mechanisms including alteration of neurotransmitter levels, immune activation in the central nervous system and induction of oxidative stress. Additionally, beneficial effects of LT, and an explanation of the effects within the framework of manipulation hypothesis, and finally, the challenges and limitations of the current research are discussed.</p>","PeriodicalId":19931,"journal":{"name":"Parasite Immunology","volume":"46 7","pages":"e13060"},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annabel A Ferguson, Heather L Rossi, De'Broski R Herbert
Co-evolutionary adaptation of hookworms with their mammalian hosts has been selected for immunoregulatory excretory/secretory (E/S) products. However, it is not known whether, or if so, how host immunological status impacts the secreted profile of hematophagous adult worms. This study interrogated the impact of host Signal transducer and activator of transcription 6 (STAT6) expression during the experimental evolution of hookworms through the sequential passage of the life cycle in either STAT6 deficient or WT C57BL/6 mice. Proteomic analysis of E/S products by LC-MS showed increased abundance of 15 proteins, including myosin-3, related to muscle function, and aconitate hydratase, related to iron homeostasis. However, most E/S proteins (174 of 337 unique identities) were decreased, including those in the Ancylostoma-secreted protein (ASP) category, and metallopeptidases. Several identified proteins are established immune-modulators such as fatty acid-binding protein homologue, cystatin, and acetylcholinesterase. Enrichment analysis of InterPro functional categories showed down-regulation of Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP), Astacin-like metallopeptidase, Glycoside hydrolase, and Transthyretin-like protein groups in STAT6 KO-adapted worms. Taken together, these data indicate that in an environment lacking Type 2 immunity, hookworms alter their secretome by reducing immune evasion proteins- and increasing locomotor- and feeding-associated proteins.
{"title":"The Secretome of Adult Murine Hookworms Is Shaped by Host Expression of STAT6.","authors":"Annabel A Ferguson, Heather L Rossi, De'Broski R Herbert","doi":"10.1111/pim.13056","DOIUrl":"10.1111/pim.13056","url":null,"abstract":"<p><p>Co-evolutionary adaptation of hookworms with their mammalian hosts has been selected for immunoregulatory excretory/secretory (E/S) products. However, it is not known whether, or if so, how host immunological status impacts the secreted profile of hematophagous adult worms. This study interrogated the impact of host Signal transducer and activator of transcription 6 (STAT6) expression during the experimental evolution of hookworms through the sequential passage of the life cycle in either STAT6 deficient or WT C57BL/6 mice. Proteomic analysis of E/S products by LC-MS showed increased abundance of 15 proteins, including myosin-3, related to muscle function, and aconitate hydratase, related to iron homeostasis. However, most E/S proteins (174 of 337 unique identities) were decreased, including those in the Ancylostoma-secreted protein (ASP) category, and metallopeptidases. Several identified proteins are established immune-modulators such as fatty acid-binding protein homologue, cystatin, and acetylcholinesterase. Enrichment analysis of InterPro functional categories showed down-regulation of Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP), Astacin-like metallopeptidase, Glycoside hydrolase, and Transthyretin-like protein groups in STAT6 KO-adapted worms. Taken together, these data indicate that in an environment lacking Type 2 immunity, hookworms alter their secretome by reducing immune evasion proteins- and increasing locomotor- and feeding-associated proteins.</p>","PeriodicalId":19931,"journal":{"name":"Parasite Immunology","volume":"46 7","pages":"e13056"},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zahra Navi, Reza Falak, Mehdi Mohebali, Mohammad Bagher Molairad, Zabihollah Zarei, Mojgan Aryaeipour, Abbas Rahimi Foroushani, Mohammad Zibaei, Mohammad Bagher Rokni
We aimed to develop an indirect enzyme-linked immunosorbent assay (ELISA) to evaluate the presence of specific IgG against Toxocara canis and Toxocara cati somatic antigens on the serum of patients with toxocariasis. The sensitivity, specificity, positive and negative predictive values for indirect-ELISA were calculated by receiver operating characteristic curve (ROC) analysis and Youden's J using Likelihood ratio. All statistics were analysed and graphs are plotted using GraphPad Prism version 8.4.3 (Graph Pad Software, La Jolla, CA, USA), with 95% confidence interval (CI). The sensitivity, specificity, positive and negative predictive values for T. canis were 100%, 82%, 79% and 100%, respectively. The mentioned variables for T. cati were 97%, 82%, 78% and 98%, respectively. Five immune reactive bands of 38, 40, 72, 100 and 250 kDa were common in both species. Toxocara crude antigens were highly immunogenic in human sera. Immunoreactive bands against T. canis compared to T. cati somatic antigen were about two times more. Unlike Toxocara excretory-secretory antigen, that was homologue in two species, somatic antigens of T. canis and T. cati showed different immunoreactive bands in our western blot.
我们旨在开发一种间接酶联免疫吸附试验(ELISA),以评估弓形虫病患者血清中是否存在针对犬弓形虫和猫弓形虫体细胞抗原的特异性 IgG。通过接收者操作特征曲线(ROC)分析和使用似然比的 Youden's J 计算了间接-ELISA 的灵敏度、特异性、阳性预测值和阴性预测值。所有统计数据均使用 GraphPad Prism 8.4.3 版(Graph Pad Software,La Jolla,CA,USA)进行分析并绘制图表,并附有 95% 的置信区间 (CI)。犬白喉的敏感性、特异性、阳性预测值和阴性预测值分别为 100%、82%、79% 和 100%。上述变量对 T. cati 的预测值分别为 97%、82%、78% 和 98%。在这两个物种中,38、40、72、100 和 250 kDa 的五条免疫反应带很常见。弓形虫粗抗原在人类血清中的免疫原性很高。与 T. cati 体细胞抗原相比,T. canis 的免疫反应带要高出两倍。与两个物种同源的弓形虫排泄-分泌抗原不同,犬尾蚴和猫尾蚴的体细胞抗原在我们的 Western 印迹中显示出不同的免疫反应带。
{"title":"Evaluation of Somatic Antigens of Adult Toxocara helminthes for Detection of Human Toxocariasis.","authors":"Zahra Navi, Reza Falak, Mehdi Mohebali, Mohammad Bagher Molairad, Zabihollah Zarei, Mojgan Aryaeipour, Abbas Rahimi Foroushani, Mohammad Zibaei, Mohammad Bagher Rokni","doi":"10.1111/pim.13055","DOIUrl":"https://doi.org/10.1111/pim.13055","url":null,"abstract":"<p><p>We aimed to develop an indirect enzyme-linked immunosorbent assay (ELISA) to evaluate the presence of specific IgG against Toxocara canis and Toxocara cati somatic antigens on the serum of patients with toxocariasis. The sensitivity, specificity, positive and negative predictive values for indirect-ELISA were calculated by receiver operating characteristic curve (ROC) analysis and Youden's J using Likelihood ratio. All statistics were analysed and graphs are plotted using GraphPad Prism version 8.4.3 (Graph Pad Software, La Jolla, CA, USA), with 95% confidence interval (CI). The sensitivity, specificity, positive and negative predictive values for T. canis were 100%, 82%, 79% and 100%, respectively. The mentioned variables for T. cati were 97%, 82%, 78% and 98%, respectively. Five immune reactive bands of 38, 40, 72, 100 and 250 kDa were common in both species. Toxocara crude antigens were highly immunogenic in human sera. Immunoreactive bands against T. canis compared to T. cati somatic antigen were about two times more. Unlike Toxocara excretory-secretory antigen, that was homologue in two species, somatic antigens of T. canis and T. cati showed different immunoreactive bands in our western blot.</p>","PeriodicalId":19931,"journal":{"name":"Parasite Immunology","volume":"46 7","pages":"e13055"},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcelo Andreetta Corral, Dirce Mary Correia Lima Meisel, Michele Soares Gomes Gouvêa, Mario Guimarães Pessoa, Edson Abdala, Debora Raquel Benedita Terrabuio, Idessania Nazareth da Costa, Fabiana Martins de Paula, Ronaldo Cesar Borges Gryschek
Immunosuppressed patients, particularly transplant recipients, can develop severe strongyloidiasis. This study aimed to detect anti-Strongyloides IgG antibodies in a panel of sera from liver transplant patients. Two techniques were used: ELISA as the initial screening test and Western blotting as a confirmatory test. ELISA reactivity of 10.9% (32/294) was observed. The 40-30 kDa fraction was recognised in 93.7% (30/32) of the patients, resulting in a positivity rate of 10.2%. These data highlight the importance of serological screening for Strongyloides stercoralis infection in liver transplant recipients.
{"title":"Detection of Anti-Strongyloides Antibodies in the Serum of Liver Transplant Recipients: Need of Screening for This Neglected Helminthiasis.","authors":"Marcelo Andreetta Corral, Dirce Mary Correia Lima Meisel, Michele Soares Gomes Gouvêa, Mario Guimarães Pessoa, Edson Abdala, Debora Raquel Benedita Terrabuio, Idessania Nazareth da Costa, Fabiana Martins de Paula, Ronaldo Cesar Borges Gryschek","doi":"10.1111/pim.13059","DOIUrl":"https://doi.org/10.1111/pim.13059","url":null,"abstract":"<p><p>Immunosuppressed patients, particularly transplant recipients, can develop severe strongyloidiasis. This study aimed to detect anti-Strongyloides IgG antibodies in a panel of sera from liver transplant patients. Two techniques were used: ELISA as the initial screening test and Western blotting as a confirmatory test. ELISA reactivity of 10.9% (32/294) was observed. The 40-30 kDa fraction was recognised in 93.7% (30/32) of the patients, resulting in a positivity rate of 10.2%. These data highlight the importance of serological screening for Strongyloides stercoralis infection in liver transplant recipients.</p>","PeriodicalId":19931,"journal":{"name":"Parasite Immunology","volume":"46 7","pages":"e13059"},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chagas disease is a parasitic disease caused by the protozoan Trypanosoma cruzi with an acute, detectable blood parasites phase and a chronic phase, in which the parasitemia is not observable, but cardiac and gastrointestinal consequences are possible. Mice are the principal host used in experimental Chagas disease but reproduce the human infection depending on the animal and parasite strain, besides dose and route of administration. Lipidic mediators are tremendously involved in the pathogenesis of T. cruzi infection, meaning the prostaglandins and thromboxane, which participate in the immunosuppression characteristic of the acute phase. Thus, the eicosanoids inhibition caused by the nonsteroidal anti-inflammatory drugs (NSAIDs) alters the dynamic of the disease in the experimental models, both in vitro and in vivo, which can explain the participation of the different mediators in infection. However, marked differences are founded in the various NSAIDs existing because of the varied routes blocked by the drugs. So, knowing the results in the experimental models of Chagas disease with or without the NSAIDs helps comprehend the pathogenesis of this infection, which still needs a better understanding.
{"title":"Nonsteroidal Anti-Inflammatory Drugs and Experimental Chagas Disease: An Unsolved Question.","authors":"Scheila Thaís Nicolau, Daniela Patrícia Tres, Thaís Soprani Ayala, Rafael Andrade Menolli","doi":"10.1111/pim.13057","DOIUrl":"10.1111/pim.13057","url":null,"abstract":"<p><p>Chagas disease is a parasitic disease caused by the protozoan Trypanosoma cruzi with an acute, detectable blood parasites phase and a chronic phase, in which the parasitemia is not observable, but cardiac and gastrointestinal consequences are possible. Mice are the principal host used in experimental Chagas disease but reproduce the human infection depending on the animal and parasite strain, besides dose and route of administration. Lipidic mediators are tremendously involved in the pathogenesis of T. cruzi infection, meaning the prostaglandins and thromboxane, which participate in the immunosuppression characteristic of the acute phase. Thus, the eicosanoids inhibition caused by the nonsteroidal anti-inflammatory drugs (NSAIDs) alters the dynamic of the disease in the experimental models, both in vitro and in vivo, which can explain the participation of the different mediators in infection. However, marked differences are founded in the various NSAIDs existing because of the varied routes blocked by the drugs. So, knowing the results in the experimental models of Chagas disease with or without the NSAIDs helps comprehend the pathogenesis of this infection, which still needs a better understanding.</p>","PeriodicalId":19931,"journal":{"name":"Parasite Immunology","volume":"46 7","pages":"e13057"},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Denzel Middleton, Kelly Hanlon, Scott P Greiner, Scott A Bowdridge
Pathogen recognition is an essential component to achieve the desired outcome of host protection. Nod-like receptor pyrin containing domain 3 (NLRP3) is a cytoplasmic pattern recognition receptor (PRR) with a wide array of agonists, such as PAMPs, DAMPs, ATP, bacterial product and viral products. Stimulation of the NLRP3 inflammasome results in proteolytic activation of IL-1β and IL-18, cell pyroptosis and classically, the induction of proinflammatory responses. St. Croix (STC) sheep have resistance traits exhibiting the appropriate T-helper type 2 immune response ensuing protection during helminth parasitic infection whereas parasite-susceptible Suffolk (SUF) sheep have an impaired response resulting in parasite establishment and adverse symptoms. The objective of these experiments was to determine if NLRP3 protein in H. contortus-infected SUF sheep was defective using the classical activation pathway of NLRP3 inflammasome. Peripheral blood mononuclear cells (PBMCs) derived from H. contortus-infected STC and SUF sheep were isolated from whole blood and treated (MCC950 treatment for 2 h followed by LPS treatment for 3 h, 1400 W treatment for 2 h followed by LPS treatment for 3 h, LPS treatment for 3 h or culture media for 3 h). qPCR analysis of LPS-stimulated PBMC revealed an upregulation in inflammatory associated genes IL-1β, TLR4, TNFα and NFκB (p < 0.0001) in STC PBMC and downregulation in IFNγ, IL-6 and iNOS for SUF PBMC. Pharmacological inhibition of iNOS in SUF PBMC resulted in an upregulation in the expression of IFNγ. These preliminary data begin to discover a relationship between NLRP3 activation and TLR4 signalling in PBMC of STC and SUF sheep.
{"title":"Variants of NLRP3 Protein in Haemonchus contortus Infected Sheep: Impact on Immune Cell Responsiveness to LPS In Vitro.","authors":"Denzel Middleton, Kelly Hanlon, Scott P Greiner, Scott A Bowdridge","doi":"10.1111/pim.13054","DOIUrl":"https://doi.org/10.1111/pim.13054","url":null,"abstract":"<p><p>Pathogen recognition is an essential component to achieve the desired outcome of host protection. Nod-like receptor pyrin containing domain 3 (NLRP3) is a cytoplasmic pattern recognition receptor (PRR) with a wide array of agonists, such as PAMPs, DAMPs, ATP, bacterial product and viral products. Stimulation of the NLRP3 inflammasome results in proteolytic activation of IL-1β and IL-18, cell pyroptosis and classically, the induction of proinflammatory responses. St. Croix (STC) sheep have resistance traits exhibiting the appropriate T-helper type 2 immune response ensuing protection during helminth parasitic infection whereas parasite-susceptible Suffolk (SUF) sheep have an impaired response resulting in parasite establishment and adverse symptoms. The objective of these experiments was to determine if NLRP3 protein in H. contortus-infected SUF sheep was defective using the classical activation pathway of NLRP3 inflammasome. Peripheral blood mononuclear cells (PBMCs) derived from H. contortus-infected STC and SUF sheep were isolated from whole blood and treated (MCC950 treatment for 2 h followed by LPS treatment for 3 h, 1400 W treatment for 2 h followed by LPS treatment for 3 h, LPS treatment for 3 h or culture media for 3 h). qPCR analysis of LPS-stimulated PBMC revealed an upregulation in inflammatory associated genes IL-1β, TLR4, TNFα and NFκB (p < 0.0001) in STC PBMC and downregulation in IFNγ, IL-6 and iNOS for SUF PBMC. Pharmacological inhibition of iNOS in SUF PBMC resulted in an upregulation in the expression of IFNγ. These preliminary data begin to discover a relationship between NLRP3 activation and TLR4 signalling in PBMC of STC and SUF sheep.</p>","PeriodicalId":19931,"journal":{"name":"Parasite Immunology","volume":"46 6","pages":"e13054"},"PeriodicalIF":1.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ticks are notorious blood-sucking ectoparasites that affect both humans and animals. They serve as a unique vector of various deadly diseases. Here, we have shown the roles of the receptor for advanced glycation end products (RAGE) during repeated infestations by the tick Haemaphysalis longicornis using RAGE-/- mice. In primary infestation, a large blood pool developed, which was flooded with numerous RBCs, especially during the rapid feeding phase of the tick both in wild-type (wt) and RAGE-/- mice. Very few inflammatory cells were detected around the zones of haemorrhage in the primary infestations. However, the number of inflammatory cells gradually increased in the subsequent tick infestations, and during the third infestations, the number of inflammatory cells reached to the highest level (350.3 ± 16.8 cells/focus). The site of attachment was totally occupied by the inflammatory cells in wt mice, whereas very few cells were detected at the ticks' biting sites in RAGE-/- mice. RAGE was highly expressed during the third infestation in wt mice. In the third infestation, infiltration of CD44+ lymphocytes, eosinophils and expression of S100A8 and S100B significantly increased at the biting sites of ticks in wt, but not in RAGE-/- mice. In addition, peripheral eosinophil counts significantly increased in wt but not in RAGE-/- mice. Taken together, our study revealed that RAGE-mediated inflammation and eosinophils played crucial roles in the tick-induced inflammatory reactions.
{"title":"Receptor for Advanced Glycation End Product (RAGE) Modulates Inflammation During Feeding of the Hard Tick, Haemaphysalis longicornis in Mice.","authors":"Anisuzzaman, Md Abdul Alim, Makoto Matsubyashi, Md Shahadat Hossain, Sharmin Shahid Labony, Ireen Sultana Shanta, Md Haydar Ali, Yasuhiko Yamamoto, Takeshi Hatta, Naotoshi Tsuji","doi":"10.1111/pim.13039","DOIUrl":"https://doi.org/10.1111/pim.13039","url":null,"abstract":"<p><p>Ticks are notorious blood-sucking ectoparasites that affect both humans and animals. They serve as a unique vector of various deadly diseases. Here, we have shown the roles of the receptor for advanced glycation end products (RAGE) during repeated infestations by the tick Haemaphysalis longicornis using RAGE<sup>-/-</sup> mice. In primary infestation, a large blood pool developed, which was flooded with numerous RBCs, especially during the rapid feeding phase of the tick both in wild-type (wt) and RAGE<sup>-/-</sup> mice. Very few inflammatory cells were detected around the zones of haemorrhage in the primary infestations. However, the number of inflammatory cells gradually increased in the subsequent tick infestations, and during the third infestations, the number of inflammatory cells reached to the highest level (350.3 ± 16.8 cells/focus). The site of attachment was totally occupied by the inflammatory cells in wt mice, whereas very few cells were detected at the ticks' biting sites in RAGE<sup>-/-</sup> mice. RAGE was highly expressed during the third infestation in wt mice. In the third infestation, infiltration of CD44<sup>+</sup> lymphocytes, eosinophils and expression of S100A8 and S100B significantly increased at the biting sites of ticks in wt, but not in RAGE<sup>-/-</sup> mice. In addition, peripheral eosinophil counts significantly increased in wt but not in RAGE<sup>-/-</sup> mice. Taken together, our study revealed that RAGE-mediated inflammation and eosinophils played crucial roles in the tick-induced inflammatory reactions.</p>","PeriodicalId":19931,"journal":{"name":"Parasite Immunology","volume":"46 6","pages":"e13039"},"PeriodicalIF":2.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Priscilla Carvalho Cabral, Sophia K Stegeman, Martin Olivier, Nicolas Cermakian
Leishmania spp. parasites use macrophages as a host cell during infection. As a result, macrophages have a dual role: clearing the parasite as well as acting as host cells. Recently, studies have shown that macrophages harbour circadian clocks, which affect many of their functions such as phagocytosis, receptor expression and cytokine release. Interestingly, Leishmania major infection in hosts was also shown to be under circadian control. Therefore, we decided to investigate what underlies the rhythms of L. major infection within macrophages. Using a culture model of infection of bone marrow-derived macrophages with L. major promastigotes, we show that the parasites are internalised into macrophages with a 24-h variation dependent on a functional circadian clock in the cells. This was associated with a variation in the number of parasites per macrophage. The cell surface expression of parasite receptors was not controlled by the cells' circadian clock. In contrast, the expression of the components of the endocytic pathway, EEA1 and LC3b, varied according to the time of infection. This was paralleled by variations in parasite-induced ROS production as well as cytokine tumour necrosis factor α. In summary, we have uncovered a time-dependent regulation of the internalisation of L. major promastigotes in macrophages, controlled by the circadian clock in these cells, as well as subsequent cellular events in the endocytic pathway, intracellular signalling and cytokine production.
{"title":"Circadian Regulation of Leishmania Parasite Internalisation in Macrophages and Downstream Cellular Events.","authors":"Priscilla Carvalho Cabral, Sophia K Stegeman, Martin Olivier, Nicolas Cermakian","doi":"10.1111/pim.13053","DOIUrl":"https://doi.org/10.1111/pim.13053","url":null,"abstract":"<p><p>Leishmania spp. parasites use macrophages as a host cell during infection. As a result, macrophages have a dual role: clearing the parasite as well as acting as host cells. Recently, studies have shown that macrophages harbour circadian clocks, which affect many of their functions such as phagocytosis, receptor expression and cytokine release. Interestingly, Leishmania major infection in hosts was also shown to be under circadian control. Therefore, we decided to investigate what underlies the rhythms of L. major infection within macrophages. Using a culture model of infection of bone marrow-derived macrophages with L. major promastigotes, we show that the parasites are internalised into macrophages with a 24-h variation dependent on a functional circadian clock in the cells. This was associated with a variation in the number of parasites per macrophage. The cell surface expression of parasite receptors was not controlled by the cells' circadian clock. In contrast, the expression of the components of the endocytic pathway, EEA1 and LC3b, varied according to the time of infection. This was paralleled by variations in parasite-induced ROS production as well as cytokine tumour necrosis factor α. In summary, we have uncovered a time-dependent regulation of the internalisation of L. major promastigotes in macrophages, controlled by the circadian clock in these cells, as well as subsequent cellular events in the endocytic pathway, intracellular signalling and cytokine production.</p>","PeriodicalId":19931,"journal":{"name":"Parasite Immunology","volume":"46 6","pages":"e13053"},"PeriodicalIF":2.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141180446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salwa S Younis, Amina M Salama, Dalia A Elmehy, Nehal A Heabah, Hanem M Rabah, Sara H Elakshar, Radwa A Awad, Ghada A Gamea
Trichinella spiralis (T. spiralis) is an immunomodulating parasite that can adversely affect tumor growth and extend host lifespan. The aim of this study was to elucidate the mechanisms by which T. spiralis larval antigens achieve this effect using Ehrlich solid carcinoma (ESC) murine model. Assessment was done by histopathological and immunohistochemical analysis of caspase-3, TNF-α, Ki-67 and CD31. Additionally, Bcl2 and Bcl2-associated protein X (Bax) relative gene expression was assessed by molecular analysis for studying the effect of T. spiralis crude larval extract (CLE) antigen on tumor necrosis, apoptosis, cell proliferation and angiogenesis. We found that both T. spiralis infection and CLE caused a decrease in the areas of necrosis in ESC. Moreover, they led to increased apoptosis through activation of caspase-3, up-regulation of pro-apoptotic gene, Bax and down-regulation of anti-apoptotic gene, Bcl2. Also, T. spiralis infection and CLE diminished ESC proliferation, as evidenced by decreasing Ki-67. T. spiralis infection and CLE were able to suppress the development of ESC by inhibiting tumor proliferation, inducing apoptosis and decreasing tumor necrosis, with subsequent decrease in tumor metastasis. T. spiralis CLE antigen may be considered as a promising complementary immunotherapeutic agent in the treatment of cancer.
{"title":"Trichinella spiralis Larval Extract as a Biological Anti-Tumor Therapy in a Murine Model of Ehrlich Solid Carcinoma.","authors":"Salwa S Younis, Amina M Salama, Dalia A Elmehy, Nehal A Heabah, Hanem M Rabah, Sara H Elakshar, Radwa A Awad, Ghada A Gamea","doi":"10.1111/pim.13035","DOIUrl":"https://doi.org/10.1111/pim.13035","url":null,"abstract":"<p><p>Trichinella spiralis (T. spiralis) is an immunomodulating parasite that can adversely affect tumor growth and extend host lifespan. The aim of this study was to elucidate the mechanisms by which T. spiralis larval antigens achieve this effect using Ehrlich solid carcinoma (ESC) murine model. Assessment was done by histopathological and immunohistochemical analysis of caspase-3, TNF-α, Ki-67 and CD31. Additionally, Bcl2 and Bcl2-associated protein X (Bax) relative gene expression was assessed by molecular analysis for studying the effect of T. spiralis crude larval extract (CLE) antigen on tumor necrosis, apoptosis, cell proliferation and angiogenesis. We found that both T. spiralis infection and CLE caused a decrease in the areas of necrosis in ESC. Moreover, they led to increased apoptosis through activation of caspase-3, up-regulation of pro-apoptotic gene, Bax and down-regulation of anti-apoptotic gene, Bcl2. Also, T. spiralis infection and CLE diminished ESC proliferation, as evidenced by decreasing Ki-67. T. spiralis infection and CLE were able to suppress the development of ESC by inhibiting tumor proliferation, inducing apoptosis and decreasing tumor necrosis, with subsequent decrease in tumor metastasis. T. spiralis CLE antigen may be considered as a promising complementary immunotherapeutic agent in the treatment of cancer.</p>","PeriodicalId":19931,"journal":{"name":"Parasite Immunology","volume":"46 5","pages":"e13035"},"PeriodicalIF":2.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140868518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}