Fan Wu, Fuer Lu, Hui Dong, Meilin Hu, Lijun Xu, Dingkun Wang
Oxyberberine (OBB), a natural metabolite of berberine, has been shown to exhibit inhibitory effects on gluconeogenesis in our previous work. This work was designed to investigate the potential effects and underlying mechanisms of OBB on hepatic gluconeogenesis. Our work found that OBB significantly inhibited the expressions of glucose 6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), and decreased the glucose production in palmitic acid-induced HepG2 cells. Then, AMPK/Akt/FoxO1 and AMPK/CRTC2 signaling pathways were confirmed by transcriptomics and network pharmacology analyses. It was shown that AMPK activation may phosphorylate and promote nuclear exclusion of FoxO1 and CRTC2, two key regulators of hepatic gluconeogenesis transcriptional pathways, resulting in the inhibition of gluconeogenesis under OBB administration. Afterwards, AMPK/Akt/FoxO1, AMPK/CRTC2 signaling pathways were evidenced by western blot, immunoprecipitation and confocal immunofluorescence, and the targeted inhibitor (Compound C) and siRNA of AMPK were applied for further mechanism verification. Moreover, it was found that OBB treatment activated AMPK/Akt/FoxO1 and AMPK/CRTC2 signaling pathways to decrease hepatic gluconeogenesis in db/db mice. Similarly, the in vivo inhibitory effects of OBB on gluconeogenesis were also diminished by AMPK inhibition. Our work demonstrated that OBB can inhibit hepatic gluconeogenesis in vitro and in vivo, and its underlying mechanisms were associated with AMPK-mediated suppression of FoxO1 and CRTC2 signaling axes.
{"title":"Oxyberberine Inhibits Hepatic Gluconeogenesis via AMPK-Mediated Suppression of FoxO1 and CRTC2 Signaling Axes.","authors":"Fan Wu, Fuer Lu, Hui Dong, Meilin Hu, Lijun Xu, Dingkun Wang","doi":"10.1002/ptr.8381","DOIUrl":"https://doi.org/10.1002/ptr.8381","url":null,"abstract":"<p><p>Oxyberberine (OBB), a natural metabolite of berberine, has been shown to exhibit inhibitory effects on gluconeogenesis in our previous work. This work was designed to investigate the potential effects and underlying mechanisms of OBB on hepatic gluconeogenesis. Our work found that OBB significantly inhibited the expressions of glucose 6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), and decreased the glucose production in palmitic acid-induced HepG2 cells. Then, AMPK/Akt/FoxO1 and AMPK/CRTC2 signaling pathways were confirmed by transcriptomics and network pharmacology analyses. It was shown that AMPK activation may phosphorylate and promote nuclear exclusion of FoxO1 and CRTC2, two key regulators of hepatic gluconeogenesis transcriptional pathways, resulting in the inhibition of gluconeogenesis under OBB administration. Afterwards, AMPK/Akt/FoxO1, AMPK/CRTC2 signaling pathways were evidenced by western blot, immunoprecipitation and confocal immunofluorescence, and the targeted inhibitor (Compound C) and siRNA of AMPK were applied for further mechanism verification. Moreover, it was found that OBB treatment activated AMPK/Akt/FoxO1 and AMPK/CRTC2 signaling pathways to decrease hepatic gluconeogenesis in db/db mice. Similarly, the in vivo inhibitory effects of OBB on gluconeogenesis were also diminished by AMPK inhibition. Our work demonstrated that OBB can inhibit hepatic gluconeogenesis in vitro and in vivo, and its underlying mechanisms were associated with AMPK-mediated suppression of FoxO1 and CRTC2 signaling axes.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenxuan Liu, Runlin Gui, Yang Li, Man Li, Zhen Lei, Yanyan Jin, Yi Yu, Yujia Li, Lu Qian, Yuyan Xiong
Insulin resistance (IR) is a central pathophysiological process underlying numerous chronic metabolic disorders, including type 2 diabetes and obesity. Lycii Cortex, a widely used traditional Chinese herb, has demonstrated potential benefits in preventing and managing diabetes and IR. Whereas, the specific bioactive compounds responsible for these protective effects and their underlying mechanisms of action remain elusive. This study aimed to identify the bioactive components within Lycii Cortex that contribute to its anti-diabetic effects and to elucidate the molecular mechanisms underlying its beneficial actions on insulin resistance. Network pharmacology and molecular docking analyses were employed to identify the potential active compounds in Lycii Cortex and their corresponding target proteins. An in vitro model of IR was established using palmitic acid (PA)-treated HepG2 cells. Cell viability was assessed using the CCK-8 assay, while glucose uptake was evaluated by 2-NBDG staining and extracellular glucose measurement. To validate the in vitro findings, an in vivo model of obesity-induced IR was established using high-fat diet (HFD)-fed mice. The network pharmacology analysis preliminarily identified 13 candidate chemicals and 10 hub LyC and IR-related genes (LIRRGs). Molecular docking analysis demonstrates that Linarin as the potential active component exhibits the greatest potential to target c-FOS for preventing obesity-induced IR. Enrichment analysis suggested that Linarin-targeted pathways are correlated with inflammation. In vitro experimental validation demonstrated that Linarin was capable of protecting against PA-induced IR in HepG2 cells evidenced by improving glucose uptake ability and reducing extracellular glucose content. Additionally, we found that Linarin ablated PA-induced increase in the expression of c-FOS and inflammatory cytokines. Furthermore, in PA-treated cells, silencing c-FOS markedly improved glucose consumption, and reduced inflammation and Arginase 2 (ARG2) expression. Similarly, as exposure to PA, silencing ARG2 also ameliorated glucose uptake and inflammation, while not affecting c-FOS expression. In vivo experiments further showed that Linarin administration remarkably improved glucose tolerance and insulin sensitivity, and reduced the fat mass and body weight in HFD-induced obese mice. In this study, Linarin has been identified as the bioactive compound of Lycii Cortex to ameliorate obesity-related IR and inflammation through the c-FOS/ARG2 signaling cascade. These findings underscore the therapeutic potential of Linarin and provide valuable insights into developing novel intervention strategies for type 2 diabetes therapy.
胰岛素抵抗(IR)是许多慢性代谢疾病(包括 2 型糖尿病和肥胖症)的核心病理生理过程。枸杞子是一种广泛使用的传统中草药,在预防和控制糖尿病和胰岛素抵抗方面具有潜在的益处。然而,产生这些保护作用的特定生物活性化合物及其潜在的作用机制仍未确定。本研究旨在确定枸杞皮中有助于其抗糖尿病作用的生物活性成分,并阐明其对胰岛素抵抗有益作用的分子机制。研究采用了网络药理学和分子对接分析来确定枸杞皮中潜在的活性化合物及其相应的靶蛋白。使用棕榈酸(PA)处理的 HepG2 细胞建立了 IR 体外模型。细胞活力通过 CCK-8 试验进行评估,葡萄糖摄取通过 2-NBDG 染色和细胞外葡萄糖测量进行评估。为了验证体外研究结果,研究人员利用高脂饮食(HFD)喂养的小鼠建立了肥胖诱导的IR体内模型。网络药理学分析初步确定了 13 种候选化学物质和 10 个中枢 LyC 和 IR 相关基因(LIRRGs)。分子对接分析表明,亚麻仁作为潜在的活性成分,在靶向 c-FOS 预防肥胖诱导的 IR 方面表现出最大的潜力。富集分析表明,利奈林靶向的通路与炎症相关。体外实验验证表明,通过提高葡萄糖摄取能力和降低细胞外葡萄糖含量,亚麻arin能够保护肝癌细胞免受PA诱导的IR影响。此外,我们还发现 Linarin 能抑制 PA 诱导的 c-FOS 和炎性细胞因子的表达。此外,在 PA 处理的细胞中,沉默 c-FOS 可显著改善葡萄糖消耗,并减少炎症和精氨酸酶 2(ARG2)的表达。同样,在暴露于 PA 的情况下,沉默 ARG2 也能改善葡萄糖摄取和炎症,而不影响 c-FOS 的表达。体内实验进一步表明,服用利奈林可显著改善糖耐量和胰岛素敏感性,并降低高氟日粮诱导的肥胖小鼠的脂肪量和体重。在这项研究中,枸杞多糖被鉴定为枸杞皮的生物活性化合物,可通过 c-FOS/ARG2 信号级联改善肥胖相关的红外和炎症。这些发现强调了枸杞多糖的治疗潜力,并为开发治疗2型糖尿病的新型干预策略提供了宝贵的见解。
{"title":"Linarin Identified as a Bioactive Compound of Lycii Cortex Ameliorates Insulin Resistance and Inflammation Through the c-FOS/ARG2 Signaling Axis.","authors":"Wenxuan Liu, Runlin Gui, Yang Li, Man Li, Zhen Lei, Yanyan Jin, Yi Yu, Yujia Li, Lu Qian, Yuyan Xiong","doi":"10.1002/ptr.8370","DOIUrl":"https://doi.org/10.1002/ptr.8370","url":null,"abstract":"<p><p>Insulin resistance (IR) is a central pathophysiological process underlying numerous chronic metabolic disorders, including type 2 diabetes and obesity. Lycii Cortex, a widely used traditional Chinese herb, has demonstrated potential benefits in preventing and managing diabetes and IR. Whereas, the specific bioactive compounds responsible for these protective effects and their underlying mechanisms of action remain elusive. This study aimed to identify the bioactive components within Lycii Cortex that contribute to its anti-diabetic effects and to elucidate the molecular mechanisms underlying its beneficial actions on insulin resistance. Network pharmacology and molecular docking analyses were employed to identify the potential active compounds in Lycii Cortex and their corresponding target proteins. An in vitro model of IR was established using palmitic acid (PA)-treated HepG2 cells. Cell viability was assessed using the CCK-8 assay, while glucose uptake was evaluated by 2-NBDG staining and extracellular glucose measurement. To validate the in vitro findings, an in vivo model of obesity-induced IR was established using high-fat diet (HFD)-fed mice. The network pharmacology analysis preliminarily identified 13 candidate chemicals and 10 hub LyC and IR-related genes (LIRRGs). Molecular docking analysis demonstrates that Linarin as the potential active component exhibits the greatest potential to target c-FOS for preventing obesity-induced IR. Enrichment analysis suggested that Linarin-targeted pathways are correlated with inflammation. In vitro experimental validation demonstrated that Linarin was capable of protecting against PA-induced IR in HepG2 cells evidenced by improving glucose uptake ability and reducing extracellular glucose content. Additionally, we found that Linarin ablated PA-induced increase in the expression of c-FOS and inflammatory cytokines. Furthermore, in PA-treated cells, silencing c-FOS markedly improved glucose consumption, and reduced inflammation and Arginase 2 (ARG2) expression. Similarly, as exposure to PA, silencing ARG2 also ameliorated glucose uptake and inflammation, while not affecting c-FOS expression. In vivo experiments further showed that Linarin administration remarkably improved glucose tolerance and insulin sensitivity, and reduced the fat mass and body weight in HFD-induced obese mice. In this study, Linarin has been identified as the bioactive compound of Lycii Cortex to ameliorate obesity-related IR and inflammation through the c-FOS/ARG2 signaling cascade. These findings underscore the therapeutic potential of Linarin and provide valuable insights into developing novel intervention strategies for type 2 diabetes therapy.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong Xu, Yi-Ran Wang, Wen-Pan Peng, Hui-Min Bu, Yao Zhou, Qi Wu
The current dearth of safe and efficacious pharmaceutical interventions for pulmonary fibrosis (PF) has prompted investigations into alternative treatments. This study aim to investigate the underlying mechanisms of Tanshinone IIA in the treatment of PF. PF was induced in a mouse model by intratracheal infusion of bleomycin (BLM), followed by gavage administration of varying concentrations of Tanshinone IIA. Lung tissue was obtained for pathological slides, proteomic and transcriptomic analyses. The target was predicted and analyzed using network pharmacology. Initially, an in vitro model in A549 cells was established by adding BLM, followed by treatment with varying concentrations of Tanshinone IIA. Subsequently, NAC and the ERK inhibitor, U0126, were individually introduced. Treatment with Tanshinone IIA in vivo decreased lung tissue lesions. Proteomic, transcriptomic, and network pharmacology analyses suggested that Tanshinone IIA may offer therapeutic benefits for PF by mitigating oxidative stress damage via the MAPK signaling pathway. In vitro studies demonstrated that BLM treatment in A549 cells induced exposure of the N-terminal end of the pyroptosis core protein GSDMD, and elevated oxidative stress levels in A549 cells, concomitant with the upregulation of P-ERK protein expression. Subsequent administration of Tanshinone IIA, NAC, and U0126 reduced the number of A549 cells undergoing pyroptosis, decreased oxidative stress levels, and decreased P-ERK protein expression. These findings suggested that Tanshinone IIA potentially delays the progression of PF. The mechanism of action involves the inhibition of oxidative stress and reduced epithelial cell pyroptosis via the MAPK-related pathway. The findings may provide a new reference for treatment of PF.
{"title":"Tanshinone IIA Alleviates Pulmonary Fibrosis by Inhibiting Pyroptosis of Alveolar Epithelial Cells Through the MAPK Signaling Pathway.","authors":"Yong Xu, Yi-Ran Wang, Wen-Pan Peng, Hui-Min Bu, Yao Zhou, Qi Wu","doi":"10.1002/ptr.8372","DOIUrl":"https://doi.org/10.1002/ptr.8372","url":null,"abstract":"<p><p>The current dearth of safe and efficacious pharmaceutical interventions for pulmonary fibrosis (PF) has prompted investigations into alternative treatments. This study aim to investigate the underlying mechanisms of Tanshinone IIA in the treatment of PF. PF was induced in a mouse model by intratracheal infusion of bleomycin (BLM), followed by gavage administration of varying concentrations of Tanshinone IIA. Lung tissue was obtained for pathological slides, proteomic and transcriptomic analyses. The target was predicted and analyzed using network pharmacology. Initially, an in vitro model in A549 cells was established by adding BLM, followed by treatment with varying concentrations of Tanshinone IIA. Subsequently, NAC and the ERK inhibitor, U0126, were individually introduced. Treatment with Tanshinone IIA in vivo decreased lung tissue lesions. Proteomic, transcriptomic, and network pharmacology analyses suggested that Tanshinone IIA may offer therapeutic benefits for PF by mitigating oxidative stress damage via the MAPK signaling pathway. In vitro studies demonstrated that BLM treatment in A549 cells induced exposure of the N-terminal end of the pyroptosis core protein GSDMD, and elevated oxidative stress levels in A549 cells, concomitant with the upregulation of P-ERK protein expression. Subsequent administration of Tanshinone IIA, NAC, and U0126 reduced the number of A549 cells undergoing pyroptosis, decreased oxidative stress levels, and decreased P-ERK protein expression. These findings suggested that Tanshinone IIA potentially delays the progression of PF. The mechanism of action involves the inhibition of oxidative stress and reduced epithelial cell pyroptosis via the MAPK-related pathway. The findings may provide a new reference for treatment of PF.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inflammation is an essential step for the etiology of multiple diseases. Clinically, due to the limitations of current drugs for the treatment of inflammatory diseases, such as serious side effects and expensive costs, it is urgent to explore novel mechanisms and medicines. Natural products have received extensive attention recently because of their multi-component and multi-target characteristics. Epigenetic modifications are crucial pathophysiological targets for developing innovative therapies for pharmacological interventions. Investigations examining how natural products improving inflammation through epigenetic modifications are emerging. This review state that natural products relieve inflammation via regulating the gene transcription levels through chromosome structure regulated by histone acetylation levels and the addition or deletion of methyl groups on DNA duplex. They could also exert anti-inflammatory effects by modulating the proteins in typical inflammatory signaling pathways by ubiquitin-related degradation and the effect of glycolysis derived free glycosyls. Studies on epigenetic modifications have the potential to facilitate the development of natural products as therapeutic agents. Future research directed at better understanding of how natural products modulate inflammatory processes through less studied epigenetic modifications including neddylation, SUMOylation, palmitoylation and lactylation, may provide new implications. Meanwhile, higher quality preclinical studies and more powerful clinical evidence are still needed to firmly establish the clinical efficacy of the natural products. Trial Registration: ClinicalTrials.gov Identifier: NCT01764204; ClinicalTrials.gov Identifier: NCT05845931; ClinicalTrials.gov Identifier: NCT04657926; ClinicalTrials.gov Identifier: NCT02330276.
炎症是多种疾病病因的重要步骤。在临床上,由于目前治疗炎症性疾病的药物存在副作用大、价格昂贵等局限性,探索新的机制和药物迫在眉睫。天然产物因其多成分、多靶点的特点,近年来受到广泛关注。表观遗传修饰是开发药物干预创新疗法的关键病理生理靶点。有关天然产品如何通过表观遗传修饰改善炎症的研究正在兴起。这篇综述指出,天然产品通过组蛋白乙酰化水平和 DNA 双链上甲基基团的增减来调节染色体结构,从而调节基因转录水平,从而缓解炎症。它们还可以通过泛素相关降解和糖酵解产生的游离糖基的作用,调节典型炎症信号通路中的蛋白质,从而发挥抗炎作用。对表观遗传修饰的研究有可能促进天然产品作为治疗药物的开发。未来的研究旨在更好地了解天然产品如何通过研究较少的表观遗传修饰(包括奈德基化、SUMO 基化、棕榈酰化和乳酰化)来调节炎症过程,这可能会带来新的影响。与此同时,还需要更高质量的临床前研究和更有力的临床证据来确定天然产品的临床疗效。试验注册:ClinicalTrials.gov Identifier:NCT01764204;ClinicalTrials.gov Identifier:NCT05845931;ClinicalTrials.gov Identifier:NCT04657926;ClinicalTrials.gov Identifier:NCT02330276。
{"title":"Epigenetic Effects of Natural Products in Inflammatory Diseases: Recent Findings.","authors":"Qianyi Yao, Tanjun Wei, Hongmei Qiu, Yongqing Cai, Lie Yuan, Xin Liu, Xiaoli Li","doi":"10.1002/ptr.8364","DOIUrl":"https://doi.org/10.1002/ptr.8364","url":null,"abstract":"<p><p>Inflammation is an essential step for the etiology of multiple diseases. Clinically, due to the limitations of current drugs for the treatment of inflammatory diseases, such as serious side effects and expensive costs, it is urgent to explore novel mechanisms and medicines. Natural products have received extensive attention recently because of their multi-component and multi-target characteristics. Epigenetic modifications are crucial pathophysiological targets for developing innovative therapies for pharmacological interventions. Investigations examining how natural products improving inflammation through epigenetic modifications are emerging. This review state that natural products relieve inflammation via regulating the gene transcription levels through chromosome structure regulated by histone acetylation levels and the addition or deletion of methyl groups on DNA duplex. They could also exert anti-inflammatory effects by modulating the proteins in typical inflammatory signaling pathways by ubiquitin-related degradation and the effect of glycolysis derived free glycosyls. Studies on epigenetic modifications have the potential to facilitate the development of natural products as therapeutic agents. Future research directed at better understanding of how natural products modulate inflammatory processes through less studied epigenetic modifications including neddylation, SUMOylation, palmitoylation and lactylation, may provide new implications. Meanwhile, higher quality preclinical studies and more powerful clinical evidence are still needed to firmly establish the clinical efficacy of the natural products. Trial Registration: ClinicalTrials.gov Identifier: NCT01764204; ClinicalTrials.gov Identifier: NCT05845931; ClinicalTrials.gov Identifier: NCT04657926; ClinicalTrials.gov Identifier: NCT02330276.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Degenerative bone and joint diseases (DBJDs), characterized by osteoporosis, osteoarthritis, and chronic inflammation of surrounding soft tissues, are systemic conditions primarily affecting the skeletal system. Ferroptosis, a programmed cell death pathway distinct from apoptosis, autophagy, and necroptosis. Accumulating evidence suggests that ferroptosis is intricately linked to the pathogenesis of DBJDs, and targeting its regulation could be beneficial in managing these conditions. Natural products, known for their anti-inflammatory and antioxidant properties, have shown unique advantages in preventing DBJDs, potentially through modulating ferroptosis. This article provides an overview of the latest research on ferroptosis, with a focus on its role in the pathogenesis of DBJDs and the therapeutic potential of natural products targeting this cell death pathway, offering novel insights for the prevention and treatment of DBJDs.
{"title":"Natural Products in the Prevention of Degenerative Bone and Joint Diseases: Mechanisms Based on the Regulation of Ferroptosis.","authors":"Kuanhui Gao, Longlong Lv, Zhichao Li, Chenmoji Wang, Jiahao Zhang, Daodi Qiu, Haipeng Xue, Zhanwang Xu, Guoqing Tan","doi":"10.1002/ptr.8366","DOIUrl":"https://doi.org/10.1002/ptr.8366","url":null,"abstract":"<p><p>Degenerative bone and joint diseases (DBJDs), characterized by osteoporosis, osteoarthritis, and chronic inflammation of surrounding soft tissues, are systemic conditions primarily affecting the skeletal system. Ferroptosis, a programmed cell death pathway distinct from apoptosis, autophagy, and necroptosis. Accumulating evidence suggests that ferroptosis is intricately linked to the pathogenesis of DBJDs, and targeting its regulation could be beneficial in managing these conditions. Natural products, known for their anti-inflammatory and antioxidant properties, have shown unique advantages in preventing DBJDs, potentially through modulating ferroptosis. This article provides an overview of the latest research on ferroptosis, with a focus on its role in the pathogenesis of DBJDs and the therapeutic potential of natural products targeting this cell death pathway, offering novel insights for the prevention and treatment of DBJDs.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The increasing use of red yeast rice (RYR) as a natural supplement to manage blood cholesterol levels is driven by its active compound, monacolin K (MK), which is chemically identical to the statin drug lovastatin (LOV). Despite its growing popularity, concerns persists regarding the safety and efficacy of RYR compared to pure statins. This study aimed to evaluate the phytochemical composition, pharmacological effects, and safety profile of various RYR samples in comparison with LOV. RYR samples with different MK content were analyzed using HPLC-DAD to quantify monacolins and other bioactive compounds. The inhibitory activity on HMG-CoA reductase was assessed through an enzymatic assay, while pharmacokinetic properties were predicted using in vitro simulated digestion and in silico models. In vitro cytotoxicity was evaluated in intestinal, hepatic, renal, and skeletal muscle cell models. Additionally, the transcriptional levels of muscle damage-related target genes were evaluated by qRT-PCR in skeletal muscle cells treated with a selection of RYR samples. Significant variability in the phytochemical composition of RYR samples was observed, particularly in the content of secondary monacolins, triterpenes, and polyphenols. The RYR phytocomplex exhibited superior inhibition of HMG-CoA reductase activity compared to isolated LOV, suggesting synergistic effects between secondary monacolins and other compounds. Molecular insights revealed that RYR samples had a lower impact on muscle cells than LOV, as reflected also by cell viability. These findings suggest that RYR could serve as a safe alternative to purified statins. However, further research is needed to fully elucidate the mechanisms behind the synergistic activity of the phytocomplex and to firmly establish the clinical efficacy of this natural product.
{"title":"Red Yeast Rice or Lovastatin? A Comparative Evaluation of Safety and Efficacy Through a Multifaceted Approach.","authors":"Giovanna Rigillo, Giulia Baini, Renato Bruni, Giulia Puja, Elisabetta Miraldi, Luca Pani, Fabio Tascedda, Marco Biagi","doi":"10.1002/ptr.8371","DOIUrl":"https://doi.org/10.1002/ptr.8371","url":null,"abstract":"<p><p>The increasing use of red yeast rice (RYR) as a natural supplement to manage blood cholesterol levels is driven by its active compound, monacolin K (MK), which is chemically identical to the statin drug lovastatin (LOV). Despite its growing popularity, concerns persists regarding the safety and efficacy of RYR compared to pure statins. This study aimed to evaluate the phytochemical composition, pharmacological effects, and safety profile of various RYR samples in comparison with LOV. RYR samples with different MK content were analyzed using HPLC-DAD to quantify monacolins and other bioactive compounds. The inhibitory activity on HMG-CoA reductase was assessed through an enzymatic assay, while pharmacokinetic properties were predicted using in vitro simulated digestion and in silico models. In vitro cytotoxicity was evaluated in intestinal, hepatic, renal, and skeletal muscle cell models. Additionally, the transcriptional levels of muscle damage-related target genes were evaluated by qRT-PCR in skeletal muscle cells treated with a selection of RYR samples. Significant variability in the phytochemical composition of RYR samples was observed, particularly in the content of secondary monacolins, triterpenes, and polyphenols. The RYR phytocomplex exhibited superior inhibition of HMG-CoA reductase activity compared to isolated LOV, suggesting synergistic effects between secondary monacolins and other compounds. Molecular insights revealed that RYR samples had a lower impact on muscle cells than LOV, as reflected also by cell viability. These findings suggest that RYR could serve as a safe alternative to purified statins. However, further research is needed to fully elucidate the mechanisms behind the synergistic activity of the phytocomplex and to firmly establish the clinical efficacy of this natural product.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tetrandrine (TET) is a minimally toxic drug extracted from the root of Stephania tetrandra. We previously demonstrated that TET could ameliorate pulmonary fibrosis (PF) by modulating autophagy. However, the mechanism behind TET's protective effects on PF remains unclear. In this study, we utilized 16S rRNA gene sequencing, nontargeted metabolomic analysis, and network pharmacology to identify changes in lung microbiota and metabolites that mediate alveolar epithelial cell senescence in bleomycin (BLM)-induced PF in mice. Additionally, we employed Western blot analysis, RT-PCR, and immunofluorescence staining to investigate the in vitro and in vivo effects of TET and its influential bacterial metabolites on PF. The TET intervention alleviated PF by regulating the compositions of lung microbial communities (Streptococcus, Micrococcus, Acinetobacter, Altererythrobacter, Atopostipes, Candidatus Cloacimonas, Clostridium sensu stricto 1, Sphingomonas, Listeria, Blautia, and Pseudomonas) and metabolites (3,4-dihydroxyphenylpropionic acid (3,4-DHPPA), 6-Aminonicotinamide, N-acetyl-5-methoxykynuramine, and resiniferatoxin). Through network pharmacological analysis, it was determined that 3,4-DHPPA played a crucial role in alleviating PF by further inhibiting the senescence of alveolar epithelial cells, a finding further validated in ex vivo experiments. TET mitigated BLM-induced PF in murine models through the modulation of lung microbiota composition and metabolism. Specifically, TET augmented the level of the microbiota-derived metabolite, 3,4-DHPPA, which in turn attenuated alveolar epithelial cell senescence.
{"title":"Tetrandrine Alleviates Pulmonary Fibrosis by Modulating Lung Microbiota-Derived Metabolism and Ameliorating Alveolar Epithelial Cell Senescence.","authors":"Jinzhong Zhuo, Lanhe Chu, Dongyu Liu, Jinming Zhang, Weimou Chen, Haohua Huang, Qi Yu, Xiaojin Meng, Fei Zou, Shaixi Cai, Hangming Dong","doi":"10.1002/ptr.8374","DOIUrl":"https://doi.org/10.1002/ptr.8374","url":null,"abstract":"<p><p>Tetrandrine (TET) is a minimally toxic drug extracted from the root of Stephania tetrandra. We previously demonstrated that TET could ameliorate pulmonary fibrosis (PF) by modulating autophagy. However, the mechanism behind TET's protective effects on PF remains unclear. In this study, we utilized 16S rRNA gene sequencing, nontargeted metabolomic analysis, and network pharmacology to identify changes in lung microbiota and metabolites that mediate alveolar epithelial cell senescence in bleomycin (BLM)-induced PF in mice. Additionally, we employed Western blot analysis, RT-PCR, and immunofluorescence staining to investigate the in vitro and in vivo effects of TET and its influential bacterial metabolites on PF. The TET intervention alleviated PF by regulating the compositions of lung microbial communities (Streptococcus, Micrococcus, Acinetobacter, Altererythrobacter, Atopostipes, Candidatus Cloacimonas, Clostridium sensu stricto 1, Sphingomonas, Listeria, Blautia, and Pseudomonas) and metabolites (3,4-dihydroxyphenylpropionic acid (3,4-DHPPA), 6-Aminonicotinamide, N-acetyl-5-methoxykynuramine, and resiniferatoxin). Through network pharmacological analysis, it was determined that 3,4-DHPPA played a crucial role in alleviating PF by further inhibiting the senescence of alveolar epithelial cells, a finding further validated in ex vivo experiments. TET mitigated BLM-induced PF in murine models through the modulation of lung microbiota composition and metabolism. Specifically, TET augmented the level of the microbiota-derived metabolite, 3,4-DHPPA, which in turn attenuated alveolar epithelial cell senescence.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rosa Maria Vitale, Andrea Maria Morace, Antonio D'Errico, Federica Ricciardi, Antimo Fusco, Serena Boccella, Francesca Guida, Rosarita Nasso, Sebastian Rading, Meliha Karsak, Diego Caprioglio, Fabio Arturo Iannotti, Rosaria Arcone, Livio Luongo, Mariorosario Masullo, Sabatino Maione, Pietro Amodeo
Cannabidiolic (CBDA) and cannabigerolic (CBGA) acids are naturally occurring compounds from Cannabis sativa plant, previously identified by us as dual PPARα/γ agonists. Since the development of multitarget-directed ligands (MTDL) represents a valuable strategy to alleviate and slow down the progression of multifactorial diseases, we evaluated the potential ability of CBDA and CBGA to also inhibit enzymes involved in the modulation of the cholinergic tone and/or β-amyloid production. A multidisciplinary approach based on computational and biochemical studies was pursued on selected enzymes, followed by behavioral and electrophysiological experiments in an AD mouse model. The β-arrestin assay on GPR109A and qPCR on TRPM7 were also carried out. CBDA and CBGA are effective on both acetyl- and butyryl-cholinesterases (AChE/BuChE), as well as on β-secretase-1 (BACE-1) enzymes in a low micromolar range, and they also prevent aggregation of β-amyloid fibrils. Computational studies provided a rationale for the competitive (AChE) vs. noncompetitive (BuChE) inhibitory profile of the two ligands. The repeated treatment with CBDA and CBGA (10 mg/kg, i.p.) improved the cognitive deficit induced by the β-amyloid peptide. A recovery of the long-term potentiation in the hippocampus was observed, where the treatment with CBGA and CBDA also restored the physiological expression level of TRPM7, a receptor channel involved in neurodegenerative diseases. We also showed that these compounds do not stimulate GPR109A in β-arrestin assay. Collectively, these data broaden the pharmacological profile of CBDA and CBGA and suggest their potential use as novel anti-AD MTDLs.
{"title":"Identification of Cannabidiolic and Cannabigerolic Acids as MTDL AChE, BuChE, and BACE-1 Inhibitors Against Alzheimer's Disease by In Silico, In Vitro, and In Vivo Studies.","authors":"Rosa Maria Vitale, Andrea Maria Morace, Antonio D'Errico, Federica Ricciardi, Antimo Fusco, Serena Boccella, Francesca Guida, Rosarita Nasso, Sebastian Rading, Meliha Karsak, Diego Caprioglio, Fabio Arturo Iannotti, Rosaria Arcone, Livio Luongo, Mariorosario Masullo, Sabatino Maione, Pietro Amodeo","doi":"10.1002/ptr.8369","DOIUrl":"https://doi.org/10.1002/ptr.8369","url":null,"abstract":"<p><p>Cannabidiolic (CBDA) and cannabigerolic (CBGA) acids are naturally occurring compounds from Cannabis sativa plant, previously identified by us as dual PPARα/γ agonists. Since the development of multitarget-directed ligands (MTDL) represents a valuable strategy to alleviate and slow down the progression of multifactorial diseases, we evaluated the potential ability of CBDA and CBGA to also inhibit enzymes involved in the modulation of the cholinergic tone and/or β-amyloid production. A multidisciplinary approach based on computational and biochemical studies was pursued on selected enzymes, followed by behavioral and electrophysiological experiments in an AD mouse model. The β-arrestin assay on GPR109A and qPCR on TRPM7 were also carried out. CBDA and CBGA are effective on both acetyl- and butyryl-cholinesterases (AChE/BuChE), as well as on β-secretase-1 (BACE-1) enzymes in a low micromolar range, and they also prevent aggregation of β-amyloid fibrils. Computational studies provided a rationale for the competitive (AChE) vs. noncompetitive (BuChE) inhibitory profile of the two ligands. The repeated treatment with CBDA and CBGA (10 mg/kg, i.p.) improved the cognitive deficit induced by the β-amyloid peptide. A recovery of the long-term potentiation in the hippocampus was observed, where the treatment with CBGA and CBDA also restored the physiological expression level of TRPM7, a receptor channel involved in neurodegenerative diseases. We also showed that these compounds do not stimulate GPR109A in β-arrestin assay. Collectively, these data broaden the pharmacological profile of CBDA and CBGA and suggest their potential use as novel anti-AD MTDLs.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heng Zhou, Yong Chen, Ningzu Jiang, Yanxian Ren, Jiayuan Zhuang, Yue Ren, Lin Shen, Chenghao Li
Lung cancer is a major cause of cancer-related mortality, and radiotherapy is often limited by tumor resistance and side effects. This study explores whether epoxymicheliolide (ECL), a compound from feverfew, can enhance radiotherapy efficacy in lung cancer. We tested ECL on A549 and PC-9 lung cancer cell lines to evaluate its effect on x-ray irradiation. We measured apoptosis, NF-κB pathway inhibition, TGF-β secretion reduction, and epithelial-mesenchymal transition suppression. In vivo, C57BL/6 mice with lung tumors received ECL and radiotherapy. ECL enhanced the antiproliferative effects of x-ray irradiation, induced apoptosis in senescent cells, inhibited the NF-κB pathway, reduced TGF-β levels, and suppressed epithelial-mesenchymal transition. ECL also inhibited tumor growth and improved survival in mice. ECL is a promising adjunct to radiotherapy for lung cancer, improving treatment outcomes by targeting multiple tumor progression mechanisms. It offers potential for enhanced management of lung cancer.
肺癌是导致癌症相关死亡的主要原因,而放射治疗往往受到肿瘤耐药性和副作用的限制。本研究探讨了发热草中的一种化合物环氧米芝莲内酯(ECL)能否提高肺癌放疗的疗效。我们在 A549 和 PC-9 肺癌细胞系上测试了 ECL,以评估其对 X 射线照射的影响。我们对细胞凋亡、NF-κB通路抑制、TGF-β分泌减少和上皮-间质转化抑制进行了测定。在体内,患有肺肿瘤的C57BL/6小鼠接受了ECL和放射治疗。ECL增强了X射线照射的抗增殖作用,诱导衰老细胞凋亡,抑制NF-κB通路,降低TGF-β水平,抑制上皮-间质转化。ECL 还能抑制肿瘤生长,提高小鼠存活率。ECL 是一种很有前景的肺癌放疗辅助药物,可通过针对多种肿瘤进展机制改善治疗效果。它为加强肺癌的治疗提供了潜力。
{"title":"Epoxymicheliolide Reduces Radiation-Induced Senescence and Extracellular Matrix Formation by Disrupting NF-κB and TGF-β/SMAD Pathways in Lung Cancer.","authors":"Heng Zhou, Yong Chen, Ningzu Jiang, Yanxian Ren, Jiayuan Zhuang, Yue Ren, Lin Shen, Chenghao Li","doi":"10.1002/ptr.8352","DOIUrl":"10.1002/ptr.8352","url":null,"abstract":"<p><p>Lung cancer is a major cause of cancer-related mortality, and radiotherapy is often limited by tumor resistance and side effects. This study explores whether epoxymicheliolide (ECL), a compound from feverfew, can enhance radiotherapy efficacy in lung cancer. We tested ECL on A549 and PC-9 lung cancer cell lines to evaluate its effect on x-ray irradiation. We measured apoptosis, NF-κB pathway inhibition, TGF-β secretion reduction, and epithelial-mesenchymal transition suppression. In vivo, C57BL/6 mice with lung tumors received ECL and radiotherapy. ECL enhanced the antiproliferative effects of x-ray irradiation, induced apoptosis in senescent cells, inhibited the NF-κB pathway, reduced TGF-β levels, and suppressed epithelial-mesenchymal transition. ECL also inhibited tumor growth and improved survival in mice. ECL is a promising adjunct to radiotherapy for lung cancer, improving treatment outcomes by targeting multiple tumor progression mechanisms. It offers potential for enhanced management of lung cancer.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p><p>The objective of this study is to assess the impact of pomegranate supplements on insulin resistance (IR) and insulin sensitivity through a systematic review and meta-analysis of randomized controlled trials (RCTs). Additionally, we aim to analyze the differences in efficacy among various pomegranate extracts and the sensitivity of different diseases to pomegranate supplementation. We conducted searches in PubMed, Embase, Web of Science, and Cochrane Library up to October 30, 2023, for relevant studies published in English. The treatment group required the intake of pomegranate extract for a minimum of 4 weeks, with no restrictions on the extract type. The control group received a placebo or a treatment excluding pomegranate extract. The primary outcome was homeostatic model assessment for insulin resistance (HOMA-IR) and fasting insulin (FI), and the secondary outcome was quantitative insulin sensitivity check index (QUICKI). RoB 2 was used to assess the risk of bias in the original studies. We pre-specified subgroup analyses based on types of intervention, intervention duration, health condition, and intervention dose. Sensitivity analysis was conducted to validate result stability, utilizing Begg's test and Egger's test for publication bias. Data synthesis and analysis were performed using Stata 15.1 software. This study included a total of 15 RCTs with 673 participants conducted in 7 countries. Risk of bias results indicated an overall low risk of bias of the articles. Participants included healthy individuals, overweight and obese individuals, non-alcoholic fatty liver disease (NAFLD) patients, type 2 diabetes (T2DM) patients, polycystic ovary syndrome (PCOS) patients, metabolic syndrome (MS) patients, and individuals with hyperlipidemia. Pomegranate extract variations included pomegranate juice (PJ), pomegranate seed oil (PSO) capsule, pomegranate/pomegranate peel (PP) extract capsule, and pomegranate peel-added bread. The control groups primarily received placebo treatments with varying dosage and frequency. No adverse reactions were reported in any of the studies. The summary results showed that compared to the control groups, pomegranate extract had no significant impact on improving HOMA-IR levels in participants (WMD = -0.03, 95%CI: -0.37 to 0.31, and p = 0.851) and FI (WMD = -0.03, 95%CI: -0.42 to 0.36, and p = 0.862). Additionally, there was no significant advantage of pomegranate extract on QUICKI changes in T2DM and PCOS patients (WMD = 0.00, 95%CI: 0.00 to 0.01, and p = 0.002). Subgroup analysis results indicated that pomegranate extract could improve HOMA-IR levels in PCOS patients (WMD = -0.42, 95%CI: -0.54 to -0.29, and p < 0.001) and FI levels in T2DM, PCOS, and NAFLD patients. Our results indicate that pomegranate extract only improves HOMA-IR and FI levels in PCOS patients and FI levels in T2DM and NAFLD patients. No significant difference has been found for HOMA-IR, FI, or QUICKI in other metabolic diseases. The curre
{"title":"Lack of Efficacy of Pomegranate Supplementation on Insulin Resistance and Sensitivity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.","authors":"Shao Yin, Fengya Zhu, Qian Zhou, Miao Chen, Xia Wang, Qiu Chen","doi":"10.1002/ptr.8362","DOIUrl":"https://doi.org/10.1002/ptr.8362","url":null,"abstract":"<p><p>The objective of this study is to assess the impact of pomegranate supplements on insulin resistance (IR) and insulin sensitivity through a systematic review and meta-analysis of randomized controlled trials (RCTs). Additionally, we aim to analyze the differences in efficacy among various pomegranate extracts and the sensitivity of different diseases to pomegranate supplementation. We conducted searches in PubMed, Embase, Web of Science, and Cochrane Library up to October 30, 2023, for relevant studies published in English. The treatment group required the intake of pomegranate extract for a minimum of 4 weeks, with no restrictions on the extract type. The control group received a placebo or a treatment excluding pomegranate extract. The primary outcome was homeostatic model assessment for insulin resistance (HOMA-IR) and fasting insulin (FI), and the secondary outcome was quantitative insulin sensitivity check index (QUICKI). RoB 2 was used to assess the risk of bias in the original studies. We pre-specified subgroup analyses based on types of intervention, intervention duration, health condition, and intervention dose. Sensitivity analysis was conducted to validate result stability, utilizing Begg's test and Egger's test for publication bias. Data synthesis and analysis were performed using Stata 15.1 software. This study included a total of 15 RCTs with 673 participants conducted in 7 countries. Risk of bias results indicated an overall low risk of bias of the articles. Participants included healthy individuals, overweight and obese individuals, non-alcoholic fatty liver disease (NAFLD) patients, type 2 diabetes (T2DM) patients, polycystic ovary syndrome (PCOS) patients, metabolic syndrome (MS) patients, and individuals with hyperlipidemia. Pomegranate extract variations included pomegranate juice (PJ), pomegranate seed oil (PSO) capsule, pomegranate/pomegranate peel (PP) extract capsule, and pomegranate peel-added bread. The control groups primarily received placebo treatments with varying dosage and frequency. No adverse reactions were reported in any of the studies. The summary results showed that compared to the control groups, pomegranate extract had no significant impact on improving HOMA-IR levels in participants (WMD = -0.03, 95%CI: -0.37 to 0.31, and p = 0.851) and FI (WMD = -0.03, 95%CI: -0.42 to 0.36, and p = 0.862). Additionally, there was no significant advantage of pomegranate extract on QUICKI changes in T2DM and PCOS patients (WMD = 0.00, 95%CI: 0.00 to 0.01, and p = 0.002). Subgroup analysis results indicated that pomegranate extract could improve HOMA-IR levels in PCOS patients (WMD = -0.42, 95%CI: -0.54 to -0.29, and p < 0.001) and FI levels in T2DM, PCOS, and NAFLD patients. Our results indicate that pomegranate extract only improves HOMA-IR and FI levels in PCOS patients and FI levels in T2DM and NAFLD patients. No significant difference has been found for HOMA-IR, FI, or QUICKI in other metabolic diseases. The curre","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}