首页 > 最新文献

Proceedings of the ION 2019 Pacific PNT Meeting最新文献

英文 中文
COSMIC/FORMOSAT: Ionospheric Weather Observed by GNSS Radio Occultation COSMIC/FORMOSAT: GNSS无线电掩星观测电离层天气
Pub Date : 2019-04-11 DOI: 10.33012/2019.16858
T. Liu
{"title":"COSMIC/FORMOSAT: Ionospheric Weather Observed by GNSS Radio Occultation","authors":"T. Liu","doi":"10.33012/2019.16858","DOIUrl":"https://doi.org/10.33012/2019.16858","url":null,"abstract":"","PeriodicalId":201935,"journal":{"name":"Proceedings of the ION 2019 Pacific PNT Meeting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130786969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Step-Based Attitude Update (SBUPT) Technique for Pedestrian Dead Reckoning (PDR) using Handheld Devices 基于步进姿态更新(shbupt)的手持设备行人航位推算(PDR)技术
Pub Date : 2019-04-11 DOI: 10.33012/2019.16825
M. Khedr, Ahmed Radi, N. El-Sheimy
{"title":"Step-Based Attitude Update (SBUPT) Technique for Pedestrian Dead Reckoning (PDR) using Handheld Devices","authors":"M. Khedr, Ahmed Radi, N. El-Sheimy","doi":"10.33012/2019.16825","DOIUrl":"https://doi.org/10.33012/2019.16825","url":null,"abstract":"","PeriodicalId":201935,"journal":{"name":"Proceedings of the ION 2019 Pacific PNT Meeting","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134456603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Accommodating Direction Ambiguities in Direction of Arrival based GNSS Spoof Detection 基于到达方向的GNSS欺骗检测中适应方向模糊
Pub Date : 2019-04-11 DOI: 10.33012/2019.16784
Hridayangam Jain, S. Lo, Yu‐Hsuan Chen, F. Rothmaier, J. Powell
Using direction of arrival (DOA) for GNSS spoof detection has several desirable properties. First, DOA-based spoof detection makes any spoofing from a single antenna very detectable regardless of how sophisticated its generation. It is difficult for a GNSS spoofer to create different DOAs as it generally requires transmitting from different locations, simultaneously. Thus, it forces a spoofer to utilize a much more complicated transmission system than a single antenna to create signals that can deceive DOA-based spoof detection. Second, it is complementary to and independent of other commonly used GNSS spoof detection methods thus providing additional layer of protection and certitude to detection. To utilize this method, we need means of getting DOA measurements of GNSS signals, preferably one that is both simple and has small form factor equipment. Controlled reception pattern antenna (CRPA) and dual polarization antenna (DPA) are two means of making such measurements [1][2]. While simple, low-profile methods such as the DPA and a two-element antenna are preferred, these methods result in ambiguity in measured direction of arrivals. DPA measurements have a 180degree ambiguity while two-element antennas have a symmetric ambiguity in DOA along the axis between the two antennas. The ambiguity can affect detection performance and limit the utility of such a system. This paper examines the ambiguity issue, focused on the DPA. It examines and develops a processing method to handle the ambiguity. First, we create two separate cases from the ambiguous measurements – a best genuine and a best spoof case. From these cases, we develop tests to examine each case and their likelihood. We use the processing results of both cases to manage the ambiguity. The processing method is tested and demonstrated using simulations and data from on-air tests in both nominal and spoofing conditions.
利用到达方向(DOA)进行GNSS欺骗检测具有几个理想的特性。首先,基于doa的欺骗检测使得来自单个天线的任何欺骗都非常可检测,无论其生成有多复杂。GNSS欺骗者很难创建不同的DOAs,因为它通常需要同时从不同的位置传输。因此,它迫使欺骗者利用比单个天线复杂得多的传输系统来创建可以欺骗基于doa的欺骗检测的信号。其次,它是补充和独立于其他常用的GNSS欺骗检测方法,从而提供额外的保护层和检测的确定性。为了利用这种方法,我们需要GNSS信号的DOA测量方法,最好是既简单又具有小尺寸设备的方法。可控接收方向图天线(CRPA)和双极化天线(DPA)是进行这种测量的两种手段[1][2]。虽然DPA和双单元天线等简单、低调的方法是首选方法,但这些方法会导致测量到的到达方向不明确。DPA测量有180度的模糊度,而双元天线的DOA沿两天线之间的轴方向有对称的模糊度。这种模糊性会影响检测性能并限制这种系统的效用。本文研究了歧义问题,重点是DPA。研究并发展了一种处理歧义的方法。首先,我们从模糊的测量中创建两个独立的情况-最佳真实情况和最佳欺骗情况。从这些案例中,我们开发测试来检查每个案例及其可能性。我们使用这两种情况的处理结果来管理歧义。在标称和欺骗条件下,使用模拟和空中测试数据对处理方法进行了测试和演示。
{"title":"Accommodating Direction Ambiguities in Direction of Arrival based GNSS Spoof Detection","authors":"Hridayangam Jain, S. Lo, Yu‐Hsuan Chen, F. Rothmaier, J. Powell","doi":"10.33012/2019.16784","DOIUrl":"https://doi.org/10.33012/2019.16784","url":null,"abstract":"Using direction of arrival (DOA) for GNSS spoof detection has several desirable properties. First, DOA-based spoof detection makes any spoofing from a single antenna very detectable regardless of how sophisticated its generation. It is difficult for a GNSS spoofer to create different DOAs as it generally requires transmitting from different locations, simultaneously. Thus, it forces a spoofer to utilize a much more complicated transmission system than a single antenna to create signals that can deceive DOA-based spoof detection. Second, it is complementary to and independent of other commonly used GNSS spoof detection methods thus providing additional layer of protection and certitude to detection. To utilize this method, we need means of getting DOA measurements of GNSS signals, preferably one that is both simple and has small form factor equipment. Controlled reception pattern antenna (CRPA) and dual polarization antenna (DPA) are two means of making such measurements [1][2]. While simple, low-profile methods such as the DPA and a two-element antenna are preferred, these methods result in ambiguity in measured direction of arrivals. DPA measurements have a 180degree ambiguity while two-element antennas have a symmetric ambiguity in DOA along the axis between the two antennas. The ambiguity can affect detection performance and limit the utility of such a system. This paper examines the ambiguity issue, focused on the DPA. It examines and develops a processing method to handle the ambiguity. First, we create two separate cases from the ambiguous measurements – a best genuine and a best spoof case. From these cases, we develop tests to examine each case and their likelihood. We use the processing results of both cases to manage the ambiguity. The processing method is tested and demonstrated using simulations and data from on-air tests in both nominal and spoofing conditions.","PeriodicalId":201935,"journal":{"name":"Proceedings of the ION 2019 Pacific PNT Meeting","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133606385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
An Adaptive Method for BeiDou Dual-Frequency Joint Acquisition Based on SNR Estimation 基于信噪比估计的北斗双频联合采集自适应方法
Pub Date : 2019-04-11 DOI: 10.33012/2019.16799
Wuxun Zhang, Xin Chen, Di He, Yueming Yang
{"title":"An Adaptive Method for BeiDou Dual-Frequency Joint Acquisition Based on SNR Estimation","authors":"Wuxun Zhang, Xin Chen, Di He, Yueming Yang","doi":"10.33012/2019.16799","DOIUrl":"https://doi.org/10.33012/2019.16799","url":null,"abstract":"","PeriodicalId":201935,"journal":{"name":"Proceedings of the ION 2019 Pacific PNT Meeting","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133987892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Assessment and Improvements for the FORMOSAT-5 Onboard Orbit Propagator Using GPS Ephemeris 基于GPS星历的FORMOSAT-5星载轨道传播器性能评估与改进
Pub Date : 2019-04-11 DOI: 10.33012/2019.16804
Edward Chi-Ting Liao, L. Chang, W. Chiang, M. Yeh
1. A. E. Hedin, Extension of the MSIS Thermospheric Model into the Middle and Lower Atmosphere, J. Geophys. Res., 96, 1159, 1991. 2. Defense Mapping Agency (1987). Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I Methods, Techniques, and Data Used in WGS 84 Development. DMA Tech. Rep. 8350.2-A, Building 56, U.S. Naval Observatory, Washington, DC. 3. Dormand, J.R.; Prince, P.J. A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 1980, 6, 19–26. 4. Emmert, J. T. (2009), A long-term data set of globally averaged thermospheric total mass density, J. Geophys. Res., 114, A06315, doi:10.1029/2009JA014102. 5. Jones, Brandon A. (2010). Efficient Models for the Evaluation and Estimation of the Gravity Field. Doctoral dissertation, University of Colorado, Boulder. http://ccar.colorado.edu/geryon/papers/Misc/bajones_phd.pdf 6. Kumar, M. (1988). "World Geodetic System 1984 a Modern and Accurate Global Reference Frame." Marine Geodesy 12(2): 117-126. 7. L. G. Jacchia, Revised Static Models of the Thermosphere and Exosphere with Empirical Temperature Profiles, Smithson. Astrophys. Obs. Spec. Rept. No. 332, 1971. 8. L. G. Jacchia, Static Diffusion Models of the Upper Atmosphere with Empirical Temperature Profiles, Smithson. Astrophys. Obs. Spec. Rept. No. 170, Cambridge, Massachusetts, 1964. 9. L. G. Jacchia, Thermospheric Temperature, Density, and Composition: New Models, Smithson. Astrophys. Obs. Spec. Rept. No. 375, 1977. 10.Liao, Edward Chi-Ting, Chang, Loren C., Chiang, Wen-Lung, Yeh, Ming-Yu, "Performance Assessment and Improvements for the FORMOSAT-5 Onboard Orbit Propagator Using GPS Ephemeris," Proceedings of the ION 2019 Pacific PNT Meeting, Honolulu, Hawaii, April 2019, pp. 199-205. https://doi.org/10.33012/2019.16804 11.Losch, M. and Seufer, V. (2003): How to Compute Geoid Undulations (Geoid Height Relative to a Given Reference Ellipsoid) from Spherical Harmonic Coefficients for Satellite Altimetry Applications 12.Marsh, J. G., et al., An improved model of the Earth's gravitational field: GEM-T1, NASA Tech. Memo., TM-4019, 1987. 13.Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the earth gravitational model 2008 (EGM2008). Journal of Geophysical Research, 117, B04406. https://doi.org/10.1029/2011JB008916 14.Shuster, Simon P., "A Survey and Performance Analysis of Orbit Propagators for LEO, GEO, and Highly Elliptical Orbits" (2017). All Graduate Theses and Dissertations. 6510. 15.Vallado, David A. 2007. Fundamentals of Astrodynamics and Applications. Third Edition. Microcosm, Hawthorne, CA. 16.Vallado, D.A., Finkleman, D., 2014. A critical assessment of satellite drag and atmospheric density modeling. Acta Astronautica 95 (1), 141–165. p. 1. ABSTRACT
1. A. E. Hedin, MSIS热层模式在中低层大气中的应用,地球物理学报。Res., 96, 1159, 1991。2. 国防测绘局(1987年)。美国国防部1984年世界大地测量系统技术报告的补充:第一部分:WGS 84开发中使用的方法、技术和数据。DMA技术代表8350.2-A, 56号楼,美国海军天文台,华盛顿特区3.Dormand jr;嵌入龙格-库塔公式族。j .第一版。达成。数学。1980,6,19-26。4. Emmert, j.t.(2009),全球平均热层总质量密度长期数据集[j] .地球物理学报。研究,114,A06315, doi:10.1029/2009JA014102。5. 琼斯,布兰登A.(2010)。重力场评估和估计的有效模型。博士论文,科罗拉多大学博尔德分校。http://ccar.colorado.edu/geryon/papers/Misc/bajones_phd.pdf 6。库马尔,M.(1988)。《1984年世界大地测量系统:现代和精确的全球参考系》海洋大地测量,12(2):117-126。7. L. G. Jacchia,基于经验温度分布的热层和外逸层静态模式的修正,中国科学院学报。12,54。奥林匹克广播服务公司。规范报告。1971年第332号。8. 李志刚,基于经验温度分布的大气静态扩散模式,中国科学院学报。12,54。奥林匹克广播服务公司。规范报告。第170号,剑桥,马萨诸塞州,1964年。9. L. G. Jacchia,热层温度、密度和组成:新模型,史密森。12,54。奥林匹克广播服务公司。规范报告。1977年第375号。10.廖志廷,张文龙,叶明宇,蒋文龙,“基于GPS星历的FORMOSAT-5星载轨道传播器性能评估与改进”,2019年太平洋PNT会议论文集,夏威夷,2019年4月,pp. 199-205。https://doi.org/10.33012/2019.16804 11。Losch, M.和Seufer, V.(2003):如何从卫星测高应用的球谐系数计算大地水准面波动(相对于给定参考椭球的大地水准面高度)12。Marsh, j.g.等,地球引力场的改进模型:GEM-T1, NASA技术备忘录。, tm-4019, 1987。13.Pavlis, n.k., Holmes, s.a., Kenyon, s.c., & Factor, j.k.(2012)。地球引力模型2008 (EGM2008)的发展与评价。地球物理学报,33(4):444 - 444。https://doi.org/10.1029/2011JB008916 14。Shuster, Simon P.,“LEO, GEO和高椭圆轨道轨道传播器的调查和性能分析”(2017)。所有毕业论文和学位论文。15.David A. Vallado, 2007。天体动力学基础及其应用“,”第三版。加州霍桑市的“微观世界”。valallado, d.a., Finkleman, D., 2014。卫星阻力和大气密度模拟的关键评估。宇航学报,1995(1),141-165。p。1。摘要
{"title":"Performance Assessment and Improvements for the FORMOSAT-5 Onboard Orbit Propagator Using GPS Ephemeris","authors":"Edward Chi-Ting Liao, L. Chang, W. Chiang, M. Yeh","doi":"10.33012/2019.16804","DOIUrl":"https://doi.org/10.33012/2019.16804","url":null,"abstract":"1. A. E. Hedin, Extension of the MSIS Thermospheric Model into the Middle and Lower Atmosphere, J. Geophys. Res., 96, 1159, 1991. 2. Defense Mapping Agency (1987). Supplement to Department of Defense World Geodetic System 1984 Technical Report: Part I Methods, Techniques, and Data Used in WGS 84 Development. DMA Tech. Rep. 8350.2-A, Building 56, U.S. Naval Observatory, Washington, DC. 3. Dormand, J.R.; Prince, P.J. A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 1980, 6, 19–26. 4. Emmert, J. T. (2009), A long-term data set of globally averaged thermospheric total mass density, J. Geophys. Res., 114, A06315, doi:10.1029/2009JA014102. 5. Jones, Brandon A. (2010). Efficient Models for the Evaluation and Estimation of the Gravity Field. Doctoral dissertation, University of Colorado, Boulder. http://ccar.colorado.edu/geryon/papers/Misc/bajones_phd.pdf 6. Kumar, M. (1988). \"World Geodetic System 1984 a Modern and Accurate Global Reference Frame.\" Marine Geodesy 12(2): 117-126. 7. L. G. Jacchia, Revised Static Models of the Thermosphere and Exosphere with Empirical Temperature Profiles, Smithson. Astrophys. Obs. Spec. Rept. No. 332, 1971. 8. L. G. Jacchia, Static Diffusion Models of the Upper Atmosphere with Empirical Temperature Profiles, Smithson. Astrophys. Obs. Spec. Rept. No. 170, Cambridge, Massachusetts, 1964. 9. L. G. Jacchia, Thermospheric Temperature, Density, and Composition: New Models, Smithson. Astrophys. Obs. Spec. Rept. No. 375, 1977. 10.Liao, Edward Chi-Ting, Chang, Loren C., Chiang, Wen-Lung, Yeh, Ming-Yu, \"Performance Assessment and Improvements for the FORMOSAT-5 Onboard Orbit Propagator Using GPS Ephemeris,\" Proceedings of the ION 2019 Pacific PNT Meeting, Honolulu, Hawaii, April 2019, pp. 199-205. https://doi.org/10.33012/2019.16804 11.Losch, M. and Seufer, V. (2003): How to Compute Geoid Undulations (Geoid Height Relative to a Given Reference Ellipsoid) from Spherical Harmonic Coefficients for Satellite Altimetry Applications 12.Marsh, J. G., et al., An improved model of the Earth's gravitational field: GEM-T1, NASA Tech. Memo., TM-4019, 1987. 13.Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the earth gravitational model 2008 (EGM2008). Journal of Geophysical Research, 117, B04406. https://doi.org/10.1029/2011JB008916 14.Shuster, Simon P., \"A Survey and Performance Analysis of Orbit Propagators for LEO, GEO, and Highly Elliptical Orbits\" (2017). All Graduate Theses and Dissertations. 6510. 15.Vallado, David A. 2007. Fundamentals of Astrodynamics and Applications. Third Edition. Microcosm, Hawthorne, CA. 16.Vallado, D.A., Finkleman, D., 2014. A critical assessment of satellite drag and atmospheric density modeling. Acta Astronautica 95 (1), 141–165. p. 1. ABSTRACT","PeriodicalId":201935,"journal":{"name":"Proceedings of the ION 2019 Pacific PNT Meeting","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116656717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear Blend: Data Fusion in the Image Domain for Image-based Aircraft Positioning during Landing Approach 线性融合:着陆过程中基于图像的飞机定位图像域数据融合
Pub Date : 2019-04-11 DOI: 10.33012/2019.16836
M. Angermann, S. Wolkow, Andreas Dekiert, U. Bestmann, P. Hecker
{"title":"Linear Blend: Data Fusion in the Image Domain for Image-based Aircraft Positioning during Landing Approach","authors":"M. Angermann, S. Wolkow, Andreas Dekiert, U. Bestmann, P. Hecker","doi":"10.33012/2019.16836","DOIUrl":"https://doi.org/10.33012/2019.16836","url":null,"abstract":"","PeriodicalId":201935,"journal":{"name":"Proceedings of the ION 2019 Pacific PNT Meeting","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129188549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Paper Trends in ION Conferences from 2007 - 2018 2007 - 2018年离子会议论文趋势
Pub Date : 2019-04-11 DOI: 10.33012/2019.16790
A. Perkins, Todd Walter
When designing a GNSS conference, one of the first steps is having individuals determine a set of tracks and sessions that are most likely to cover the topic areas of interest by those writing and submitting papers. While these decisions are made by experts in the field, it can be difficult to anticipate what topics will capture the attention of researchers and industry around the world. Furthermore, when submitting a paper, it can be hard to decide what sessions to submit a paper to when the work might lie at the intersection of several fields. As a first step to creating tools to helping the ION conference organizers decide on sessions for a conference and identifying papers that should be grouped together, this paper explores the ability to see trends in past data using commercially available natural language processing tools. Specifically, the abstract and title data for accepted papers from ION GNSS+ 2007-2018 are analyzed for different trends and patterns that can help inform future conference organization.
在设计GNSS会议时,第一步是让个人确定一组最有可能涵盖撰写和提交论文的人感兴趣的主题领域的轨道和会议。虽然这些决定是由该领域的专家做出的,但很难预测哪些主题将引起全世界研究人员和工业界的注意。此外,当提交一篇论文时,当工作可能涉及几个领域的交叉时,很难决定将论文提交到哪个会议。作为创建工具以帮助ION会议组织者决定会议的会议和确定应该分组的论文的第一步,本文探索了使用商业上可用的自然语言处理工具查看过去数据趋势的能力。具体而言,本文分析了2007-2018年ION GNSS+论文的摘要和标题数据,以了解不同的趋势和模式,为未来的会议组织提供信息。
{"title":"Paper Trends in ION Conferences from 2007 - 2018","authors":"A. Perkins, Todd Walter","doi":"10.33012/2019.16790","DOIUrl":"https://doi.org/10.33012/2019.16790","url":null,"abstract":"When designing a GNSS conference, one of the first steps is having individuals determine a set of tracks and sessions that are most likely to cover the topic areas of interest by those writing and submitting papers. While these decisions are made by experts in the field, it can be difficult to anticipate what topics will capture the attention of researchers and industry around the world. Furthermore, when submitting a paper, it can be hard to decide what sessions to submit a paper to when the work might lie at the intersection of several fields. As a first step to creating tools to helping the ION conference organizers decide on sessions for a conference and identifying papers that should be grouped together, this paper explores the ability to see trends in past data using commercially available natural language processing tools. Specifically, the abstract and title data for accepted papers from ION GNSS+ 2007-2018 are analyzed for different trends and patterns that can help inform future conference organization.","PeriodicalId":201935,"journal":{"name":"Proceedings of the ION 2019 Pacific PNT Meeting","volume":"123 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122137198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ARAIM with More than two Constellations 有两个以上星座的ARAIM
Pub Date : 2019-04-11 DOI: 10.33012/2019.16849
Y. Zhai, X. Zhan, Jin Chang, B. Pervan
Future Advanced Receiver Autonomous Integrity Monitoring (ARAIM) is expected to bring significant global navigation performance improvement to civil aviation. Currently, the ARAIM research activities are led by a joint working group of the United States (U.S.) and the European Union (E.U.), which focuses on dual-constellation scenario using the Global Positioning System (GPS) and Galileo. However, even though the BeiDou System (BDS) and GLONASS had achieved remarkable developments in recent years, there had been no comprehensive exploration on their potential benefits to ARAIM. In response, this paper investigates the achievable ARAIM service capability and robustness using more than two full Global Navigation Satellite Systems (GNSS) constellations. Moreover, the key issues with the current baseline ARAIM user algorithm under the new operational scenarios are identified. It is shown that due to the exponentially increased number of monitored satellite subsets, the computational load can be significantly increased when additional constellations are employed. To mitigate this impact, an efficient Fault Detection and Exclusion (FDE) algorithm is rigorously developed by grouping multiple fault hypotheses. To accommodate the non-equal performance levels among the constellations, a series of sensitivity analyses are carried out using variable Integrity Support Message (ISM) values, and the results are presented in terms of availability.
未来先进接收机自主完整性监测(ARAIM)有望为民用航空带来显著的全球导航性能改善。目前,ARAIM的研究活动由美国和欧盟的联合工作组领导,重点研究使用全球定位系统(GPS)和伽利略的双星座方案。然而,尽管近年来北斗系统和格洛纳斯系统取得了显著的发展,但对其对ARAIM的潜在好处尚未进行全面的探索。为此,本文研究了使用两个以上完整的全球导航卫星系统(GNSS)星座可实现的ARAIM服务能力和鲁棒性。此外,还指出了新作战情景下当前基线ARAIM用户算法存在的关键问题。结果表明,由于监测卫星子集的数量呈指数增长,当采用额外的星座时,计算负荷会显著增加。为了减轻这种影响,通过对多个故障假设进行分组,严格开发了一种高效的故障检测和排除(FDE)算法。为了适应星座之间不平等的性能水平,使用不同的完整性支持信息(ISM)值进行了一系列敏感性分析,并根据可用性给出了结果。
{"title":"ARAIM with More than two Constellations","authors":"Y. Zhai, X. Zhan, Jin Chang, B. Pervan","doi":"10.33012/2019.16849","DOIUrl":"https://doi.org/10.33012/2019.16849","url":null,"abstract":"Future Advanced Receiver Autonomous Integrity Monitoring (ARAIM) is expected to bring significant global navigation performance improvement to civil aviation. Currently, the ARAIM research activities are led by a joint working group of the United States (U.S.) and the European Union (E.U.), which focuses on dual-constellation scenario using the Global Positioning System (GPS) and Galileo. However, even though the BeiDou System (BDS) and GLONASS had achieved remarkable developments in recent years, there had been no comprehensive exploration on their potential benefits to ARAIM. In response, this paper investigates the achievable ARAIM service capability and robustness using more than two full Global Navigation Satellite Systems (GNSS) constellations. Moreover, the key issues with the current baseline ARAIM user algorithm under the new operational scenarios are identified. It is shown that due to the exponentially increased number of monitored satellite subsets, the computational load can be significantly increased when additional constellations are employed. To mitigate this impact, an efficient Fault Detection and Exclusion (FDE) algorithm is rigorously developed by grouping multiple fault hypotheses. To accommodate the non-equal performance levels among the constellations, a series of sensitivity analyses are carried out using variable Integrity Support Message (ISM) values, and the results are presented in terms of availability.","PeriodicalId":201935,"journal":{"name":"Proceedings of the ION 2019 Pacific PNT Meeting","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117265133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Intelligent Antennas for Mitigating GNSS Jamming & Spoofing Hazards on the ERTMS Train Control 智能天线在ERTMS列车控制中减少GNSS干扰和欺骗危害
Pub Date : 2019-04-11 DOI: 10.33012/2019.16818
C. Stallo, P. Salvatori, A. Coluccia, M. Capozzi, G. Gamba, E. Cianca, T. Rossi, S. D. Domenico, A. Neri, F. Rispoli, M. Ciaffi
{"title":"Intelligent Antennas for Mitigating GNSS Jamming & Spoofing Hazards on the ERTMS Train Control","authors":"C. Stallo, P. Salvatori, A. Coluccia, M. Capozzi, G. Gamba, E. Cianca, T. Rossi, S. D. Domenico, A. Neri, F. Rispoli, M. Ciaffi","doi":"10.33012/2019.16818","DOIUrl":"https://doi.org/10.33012/2019.16818","url":null,"abstract":"","PeriodicalId":201935,"journal":{"name":"Proceedings of the ION 2019 Pacific PNT Meeting","volume":"134 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123072794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bobcat-1: The Ohio University CubeSat for Inter-Constellation Time Offset Determination 山猫-1:俄亥俄大学用于星座间时间偏移测定的立方体卫星
Pub Date : 2019-04-11 DOI: 10.33012/2019.16808
S. Ugazio, Kevin Croissant, Brian C. Peters, F. Graas
{"title":"Bobcat-1: The Ohio University CubeSat for Inter-Constellation Time Offset Determination","authors":"S. Ugazio, Kevin Croissant, Brian C. Peters, F. Graas","doi":"10.33012/2019.16808","DOIUrl":"https://doi.org/10.33012/2019.16808","url":null,"abstract":"","PeriodicalId":201935,"journal":{"name":"Proceedings of the ION 2019 Pacific PNT Meeting","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128776229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Proceedings of the ION 2019 Pacific PNT Meeting
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1