Background: Metabolic syndrome (MS) refers to a cluster of metabolic disorders characterized by systemic chronic inflammation. Er Miao San (EMS) is a classic traditional Chinese medicine compound containing Phellodendron amurense and Atractylodis rhizome at a ratio of 1:1, proven to be effective against inflammatory diseases in clinical practice. Nevertheless, the precise functions of EMS in treating MS and its underlying mechanism have yet to be elucidated.
Purpose: This study focuses on the intervention effects of EMS on high humidity exposure and high sugar-fat diet (HHSF)-induced MS in pigs.
Study design: Blood biochemical indices and metabolome analysis were employed to confirm the successful establishment of the MS model, and the preliminary evaluation of the intervention effect of EMS was conducted. Subsequently, a parallel microbiota analysis of the tongue and cecum was combined with metabolomic analysis, histopathologic examination, and other molecular biological detection to further assess the administration mechanism of EMS.
Results: The results demonstrated that EMS significantly reduced the excessive weight gain rate, fat accumulation, hyperlipidemia, hyperglycemia, and systemic inflammation while improving serum metabolic disorder in MS pigs. Moreover, microbiota analysis indicates that EMS restored the diversity and composition of oral-gut microbiota by increasing the proportions of Lactobacillus (gut), Roseburia (gut), Faecalibacterium (gut), CF231 (gut), Streptococcus (gut), Prevotella (gut), while decreasing those of Chryseobacterium (oral), Corynebacterium (oral), Clostridium (oral), Oscillospira (gut), and Turicibacter (oral, gut). Subsequently, EMS up-regulated the concentrations of acetic acid, butyric acid, propionic acid, while down-regulated isobutyric acid and isovaleric acid. This resulted in a suppression of HDAC3 expression and an increase of SCL16A1 expression in the colon. Notably, the changes in acetic acid and butyric acid showed a strong correlation with gut microbiota. Additionally, EMS reduced the serum level of lipopolysaccharide (LPS) and enhanced epithelial barrier integrity by inhibiting the LPS-TLR4/MyD88/NF-κB pathways.
Conclusions: EMS was found to ameliorate MS by alleviating the dysbiosis of the oral-gut microbiota and serum metabolome, thereby improving gut barrier and reducing systemic inflammation. These findings suggest that EMS holds promise as a therapeutic agent for MS.
{"title":"Intervention effects of Er Miao san on metabolic syndrome in Bama miniature pigs.","authors":"Rong Chen, Jianchi Lun, Tianze Wang, Yimu Ma, Jieyi Huang, Shiqi He, Yingwen Zhang, Qian Qu, Mengjie Liu, Haiyang Sun, Jinbo Sun, Wei Mao, Juanjuan Wang, Weijie Lv, Shining Guo","doi":"10.1016/j.phymed.2024.156355","DOIUrl":"10.1016/j.phymed.2024.156355","url":null,"abstract":"<p><strong>Background: </strong>Metabolic syndrome (MS) refers to a cluster of metabolic disorders characterized by systemic chronic inflammation. Er Miao San (EMS) is a classic traditional Chinese medicine compound containing Phellodendron amurense and Atractylodis rhizome at a ratio of 1:1, proven to be effective against inflammatory diseases in clinical practice. Nevertheless, the precise functions of EMS in treating MS and its underlying mechanism have yet to be elucidated.</p><p><strong>Purpose: </strong>This study focuses on the intervention effects of EMS on high humidity exposure and high sugar-fat diet (HHSF)-induced MS in pigs.</p><p><strong>Study design: </strong>Blood biochemical indices and metabolome analysis were employed to confirm the successful establishment of the MS model, and the preliminary evaluation of the intervention effect of EMS was conducted. Subsequently, a parallel microbiota analysis of the tongue and cecum was combined with metabolomic analysis, histopathologic examination, and other molecular biological detection to further assess the administration mechanism of EMS.</p><p><strong>Results: </strong>The results demonstrated that EMS significantly reduced the excessive weight gain rate, fat accumulation, hyperlipidemia, hyperglycemia, and systemic inflammation while improving serum metabolic disorder in MS pigs. Moreover, microbiota analysis indicates that EMS restored the diversity and composition of oral-gut microbiota by increasing the proportions of Lactobacillus (gut), Roseburia (gut), Faecalibacterium (gut), CF231 (gut), Streptococcus (gut), Prevotella (gut), while decreasing those of Chryseobacterium (oral), Corynebacterium (oral), Clostridium (oral), Oscillospira (gut), and Turicibacter (oral, gut). Subsequently, EMS up-regulated the concentrations of acetic acid, butyric acid, propionic acid, while down-regulated isobutyric acid and isovaleric acid. This resulted in a suppression of HDAC3 expression and an increase of SCL16A1 expression in the colon. Notably, the changes in acetic acid and butyric acid showed a strong correlation with gut microbiota. Additionally, EMS reduced the serum level of lipopolysaccharide (LPS) and enhanced epithelial barrier integrity by inhibiting the LPS-TLR4/MyD88/NF-κB pathways.</p><p><strong>Conclusions: </strong>EMS was found to ameliorate MS by alleviating the dysbiosis of the oral-gut microbiota and serum metabolome, thereby improving gut barrier and reducing systemic inflammation. These findings suggest that EMS holds promise as a therapeutic agent for MS.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"137 ","pages":"156355"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142953700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-12-27DOI: 10.1016/j.phymed.2024.156353
Sang Hee Kim, Woo Yong Park, Gahee Song, Ja Yeon Park, Se Jin Jung, Kwang Seok Ahn, Jae-Young Um
Background: Beige adipocytes have physiological functions similar to brown adipocytes, which are available to increase energy expenditure through uncoupling protein 1 (UCP1) within mitochondria. Recently, many studies showed white adipocytes can undergo remodeling into beige adipocytes, called "browning", by increasing fusion and fission events referred to as mitochondrial dynamics.
Purpose: In this study, we aimed to investigate the browning effects of 4-hydroxybenzoic acid (4-HA), one of the major compounds of black raspberries.
Methods: We examined the mechanism underlying the browning properties of 4-HA focusing on UCP1-dependent non-shivering thermogenesis in 3T3-L1 white adipocytes, high-fat diet (HFD)-induced obese male C57BL/6J mice, and cold-exposed male C57BL/6J mice.
Results: 4-HA treatment elevates browning markers such as UCP1, T-Box transcription factor 1, and PR domain containing 16, mitochondrial function factors like oxidative phosphorylation complex as well as mitochondrial dynamic-related factors like phosphorylated dynamin-related protein 1 (p-DRP1), DRP1, and mitofusin 1 in 3T3-L1 white adipocytes, which were also confirmed in inguinal white adipose tissue (iWAT) of HFD-induced obese mice. Mdivi-1 blocked the increased DRP1-mediated mitochondrial fission by 4-HA, and even the browning effect of 4-HA was abolished. Furthermore, 4-HA increased AMP-activated protein kinase (AMPK) in both the 3T3-L1 white adipocytes and iWAT of HFD-induced obese mice. Inhibition of AMPK with Compound C also blocked the 4-HA-induced mitochondrial fission and browning effect.
Conclusions: 4-HA induces the browning of white adipocytes into beige adipocytes by regulating the DRP1-mediated mitochondrial dynamics through AMPK. These findings suggest that 4-HA could serve as a therapeutic candidate for obesity and related metabolic disorders.
{"title":"4-hydroxybenzoic acid induces browning of white adipose tissue through the AMPK-DRP1 pathway in HFD-induced obese mice.","authors":"Sang Hee Kim, Woo Yong Park, Gahee Song, Ja Yeon Park, Se Jin Jung, Kwang Seok Ahn, Jae-Young Um","doi":"10.1016/j.phymed.2024.156353","DOIUrl":"10.1016/j.phymed.2024.156353","url":null,"abstract":"<p><strong>Background: </strong>Beige adipocytes have physiological functions similar to brown adipocytes, which are available to increase energy expenditure through uncoupling protein 1 (UCP1) within mitochondria. Recently, many studies showed white adipocytes can undergo remodeling into beige adipocytes, called \"browning\", by increasing fusion and fission events referred to as mitochondrial dynamics.</p><p><strong>Purpose: </strong>In this study, we aimed to investigate the browning effects of 4-hydroxybenzoic acid (4-HA), one of the major compounds of black raspberries.</p><p><strong>Methods: </strong>We examined the mechanism underlying the browning properties of 4-HA focusing on UCP1-dependent non-shivering thermogenesis in 3T3-L1 white adipocytes, high-fat diet (HFD)-induced obese male C57BL/6J mice, and cold-exposed male C57BL/6J mice.</p><p><strong>Results: </strong>4-HA treatment elevates browning markers such as UCP1, T-Box transcription factor 1, and PR domain containing 16, mitochondrial function factors like oxidative phosphorylation complex as well as mitochondrial dynamic-related factors like phosphorylated dynamin-related protein 1 (p-DRP1), DRP1, and mitofusin 1 in 3T3-L1 white adipocytes, which were also confirmed in inguinal white adipose tissue (iWAT) of HFD-induced obese mice. Mdivi-1 blocked the increased DRP1-mediated mitochondrial fission by 4-HA, and even the browning effect of 4-HA was abolished. Furthermore, 4-HA increased AMP-activated protein kinase (AMPK) in both the 3T3-L1 white adipocytes and iWAT of HFD-induced obese mice. Inhibition of AMPK with Compound C also blocked the 4-HA-induced mitochondrial fission and browning effect.</p><p><strong>Conclusions: </strong>4-HA induces the browning of white adipocytes into beige adipocytes by regulating the DRP1-mediated mitochondrial dynamics through AMPK. These findings suggest that 4-HA could serve as a therapeutic candidate for obesity and related metabolic disorders.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"137 ","pages":"156353"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Adherence of Helicobacter pylori to the surface of the gastric mucosa is the initial and crucial step for its survival and colonization in the harsh conditions of the stomach. We had previously demonstrated that daphnetin has anti-adhesion effect.
Purpose: This study aims to explore the mechanisms of daphnetin to reduce H. pylori adhesion to gastric epithelial cells (GES-1).
Methods: Fluorescence microscopy and urease assay were used to observe and validate the anti-adhesion effect of daphnetin. Terminal deoxynucleotidyl transferase dUTP nick end labeling, comet assay and agarose gel-based assay were conducted to evaluate the level of DNA damage. Quantitative real-time polymerase chain reaction, western blotting, electrophoretic mobility shifts assay and enzyme-linked immunosorbent assay were performed to investigate the mechanisms of the anti-adhesion effect of daphnetin.
Results: Our results showed that daphnetin decreased H. pylori adhesion to GES-1 in time- and dose-dependent manners. The mechanisms by which daphnetin inhibits H. pylori adhesion involved the inducing of DNA double-strand breaks, the up-regulating of recA transcription leading to RecA binding at 1018-1597 site in the babA promoter, the decreasing of babA/babB transcription ratio, the decreasing of BabA expression and its interaction with Lewis b antigen.
Conclusion: Our results suggested that daphnetin significantly inhibits H. pylori adhesion to GES-1 through the RecA-BabA pathway. To our knowledge, this is the first report on the mechanisms of daphnetin affecting H. pylori adhesion to GES-1.
{"title":"Effect of daphnetin, the coumarin derivative isolated from Daphne genus, on Helicobacter pylori adhesion to gastric epithelial cells.","authors":"Genzhu Wang, Mengjie Wang, Jing Pang, Qiang Sun, Tianyun Fan, Zhongdong Li, Xuefu You","doi":"10.1016/j.phymed.2024.156357","DOIUrl":"10.1016/j.phymed.2024.156357","url":null,"abstract":"<p><strong>Background: </strong>Adherence of Helicobacter pylori to the surface of the gastric mucosa is the initial and crucial step for its survival and colonization in the harsh conditions of the stomach. We had previously demonstrated that daphnetin has anti-adhesion effect.</p><p><strong>Purpose: </strong>This study aims to explore the mechanisms of daphnetin to reduce H. pylori adhesion to gastric epithelial cells (GES-1).</p><p><strong>Methods: </strong>Fluorescence microscopy and urease assay were used to observe and validate the anti-adhesion effect of daphnetin. Terminal deoxynucleotidyl transferase dUTP nick end labeling, comet assay and agarose gel-based assay were conducted to evaluate the level of DNA damage. Quantitative real-time polymerase chain reaction, western blotting, electrophoretic mobility shifts assay and enzyme-linked immunosorbent assay were performed to investigate the mechanisms of the anti-adhesion effect of daphnetin.</p><p><strong>Results: </strong>Our results showed that daphnetin decreased H. pylori adhesion to GES-1 in time- and dose-dependent manners. The mechanisms by which daphnetin inhibits H. pylori adhesion involved the inducing of DNA double-strand breaks, the up-regulating of recA transcription leading to RecA binding at 1018-1597 site in the babA promoter, the decreasing of babA/babB transcription ratio, the decreasing of BabA expression and its interaction with Lewis b antigen.</p><p><strong>Conclusion: </strong>Our results suggested that daphnetin significantly inhibits H. pylori adhesion to GES-1 through the RecA-BabA pathway. To our knowledge, this is the first report on the mechanisms of daphnetin affecting H. pylori adhesion to GES-1.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"137 ","pages":"156357"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-02DOI: 10.1016/j.phymed.2025.156367
Ruixin Wu, Ning Li, Weiling Huang, Yifang Yang, Rongrong Zang, Haiyan Song, Jianrong Shi, Shiguo Zhu, Qing Liu
Background: Melittin, a major peptide component of bee venom, has demonstrated promising anti-cancer activity across various preclinical cell models, making it a potential candidate for cancer therapy. However, its molecular mechanisms, particularly in ovarian cancer, remain largely unexplored. Ovarian cancer is a life-threatening gynecological malignancy with poor clinical outcomes and limited treatment options.
Purpose: This study evaluated the efficacy of melittin in suppressing ovarian cancer and elucidated its underlying molecular mechanisms.
Methods: A subcutaneous xenograft tumor model was established using ID8 cells in C57BL/6J mice. RNA sequencing revealed that melittin's anticancer effects were associated with the downregulation of lipid metabolism, particularly fatty acid synthesis. The impact of melittin on de novo fatty acid synthesis was assessed by measuring free fatty acid (FFA), triglyceride (TG), and total cholesterol (TC) levels in ovarian cancer cells. Lipogenic gene expression and sterol regulatory element-binding protein 1 (SREBP1) were analyzed by Western blot and quantitative real-time polymerase chain reaction. The regulation of FASN transcription by SREBP1 was explored using a dual-luciferase reporter assay. Plasmid DNA transfection and the SREBP1 inhibitor Fatostatin were employed to identify the signaling pathway mediating melittin's anticancer effects.
Results: Our results confirmed that melittin significantly reduced de novo fatty acid synthesis, as evidenced by lower FFA, TG, and lipid droplet levels. Additionally, melittin inhibited the nuclear translocation of SREBP1 and specifically reduced SREBP1-mediated FASN transcription, demonstrating effects similar to those of Fatostatin. The motif (-424/-415) within the FASN promoter is a potential SREBP-1 binding site. SREBP1 overexpression through plasmid DNA transfection significantly counteracted melittin's downregulation of FASN promoter activity and counteracted its inhibitory effects on de novo fatty acid synthesis, cell proliferation, and colony formation.
Conclusion: Our findings suggested that melittin acts as a novel modulator of the SREBP1/FASN pathway, reducing lipogenesis and inhibiting ovarian cancer growth. This study was the first to demonstrate melittin's ability to target the SREBP1/FASN axis in ovarian cancer, identifying SREBP1 as a novel therapeutic target. These results highlighted melittin as a potential therapeutic agent for ovarian cancer by attenuating SREBP1-mediated lipid metabolism and suggested novel treatment strategies for targeting ovarian cancer.
{"title":"Melittin suppresses ovarian cancer growth by regulating SREBP1-mediated lipid metabolism.","authors":"Ruixin Wu, Ning Li, Weiling Huang, Yifang Yang, Rongrong Zang, Haiyan Song, Jianrong Shi, Shiguo Zhu, Qing Liu","doi":"10.1016/j.phymed.2025.156367","DOIUrl":"10.1016/j.phymed.2025.156367","url":null,"abstract":"<p><strong>Background: </strong>Melittin, a major peptide component of bee venom, has demonstrated promising anti-cancer activity across various preclinical cell models, making it a potential candidate for cancer therapy. However, its molecular mechanisms, particularly in ovarian cancer, remain largely unexplored. Ovarian cancer is a life-threatening gynecological malignancy with poor clinical outcomes and limited treatment options.</p><p><strong>Purpose: </strong>This study evaluated the efficacy of melittin in suppressing ovarian cancer and elucidated its underlying molecular mechanisms.</p><p><strong>Methods: </strong>A subcutaneous xenograft tumor model was established using ID8 cells in C57BL/6J mice. RNA sequencing revealed that melittin's anticancer effects were associated with the downregulation of lipid metabolism, particularly fatty acid synthesis. The impact of melittin on de novo fatty acid synthesis was assessed by measuring free fatty acid (FFA), triglyceride (TG), and total cholesterol (TC) levels in ovarian cancer cells. Lipogenic gene expression and sterol regulatory element-binding protein 1 (SREBP1) were analyzed by Western blot and quantitative real-time polymerase chain reaction. The regulation of FASN transcription by SREBP1 was explored using a dual-luciferase reporter assay. Plasmid DNA transfection and the SREBP1 inhibitor Fatostatin were employed to identify the signaling pathway mediating melittin's anticancer effects.</p><p><strong>Results: </strong>Our results confirmed that melittin significantly reduced de novo fatty acid synthesis, as evidenced by lower FFA, TG, and lipid droplet levels. Additionally, melittin inhibited the nuclear translocation of SREBP1 and specifically reduced SREBP1-mediated FASN transcription, demonstrating effects similar to those of Fatostatin. The motif (-424/-415) within the FASN promoter is a potential SREBP-1 binding site. SREBP1 overexpression through plasmid DNA transfection significantly counteracted melittin's downregulation of FASN promoter activity and counteracted its inhibitory effects on de novo fatty acid synthesis, cell proliferation, and colony formation.</p><p><strong>Conclusion: </strong>Our findings suggested that melittin acts as a novel modulator of the SREBP1/FASN pathway, reducing lipogenesis and inhibiting ovarian cancer growth. This study was the first to demonstrate melittin's ability to target the SREBP1/FASN axis in ovarian cancer, identifying SREBP1 as a novel therapeutic target. These results highlighted melittin as a potential therapeutic agent for ovarian cancer by attenuating SREBP1-mediated lipid metabolism and suggested novel treatment strategies for targeting ovarian cancer.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"137 ","pages":"156367"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-12-30DOI: 10.1016/j.phymed.2024.156356
Weifeng Yu, Shuni Chen, Xiuming Guan, Guihua He, Wang Zhang, Haiyan Zhang, Suiping Huang, Zhenhao Ye, Hudan Pan, Zishao Zhong
Background: Chronic atrophic gastritis (CAG) is a precursor to gastric cancer, a leading cause of cancer-related deaths worldwide. Despite current therapeutic strategies, preventing the transition from gastritis to cancer remains a challenge. Traditional Chinese Medicine (TCM), particularly the Yiqi-Huayu-Jiedu (YQHYJD) formula, have exhibited promising results in CAG management. However, the pharmacological underpinnings of this formula remain elusive.
Purpose: The study aimed to elucidate the pharmacological mechanisms of the YQHYJD formula in treating CAG and its role in inhibiting the progression to gastric cancer through the modulation of the "inflammation-cancer" sequence.
Methods: Mass spectrometric analysis of YQHYJD formula-containing serum was conducted to determine the active compounds involved in CAG treatment. A CAG rat model was induced using a combination of deoxycholic acid and ammonia, while a gastric precancerous lesion cell model was generated by exposing GES-1 cells to deoxycholic acid. Both models were treated with varying concentrations of the YQHYJD formula to assess its effects of the JAK2/STAT3 signaling-mediated epithelial-mesenchymal transition (EMT) pathway.
Results: Mass spectrometry analysis identified 80 active compounds in the YQHYJD formula, including quercetin. Network pharmacology analysis revealed that these active compounds may exert their therapeutic effects on CAG through various mechanisms, including the JAK/STAT signaling. Using rat and cellular models of CAG, we found that the JAK/STAT pathway is activated alongside partial epithelial-mesenchymal transition (pEMT). YQHYJD treatment effectively mitigated the activation of the JAK2/STAT3 activation and pEMT. Furthermore, the therapeutic effect of the YQHYJD formula was maintained even in the presence of Colivelin or overexpressed STAT3.
Conclusions: The YQHYJD formula treats CAG by inhibiting the JAK2/STAT3 -mediated pEMT, thereby suppressing the gastric "inflammation-cancer" transformation. This study provides mechanistic insights into the efficacy of YQHYJD in CAG treatment and suggests new therapeutic strategies for preventing gastric cancer development.
{"title":"Yiqi Huayu Jiedu formula inhibits JAK2/STAT3-mediated partial EMT in treating chronic atrophic gastritis.","authors":"Weifeng Yu, Shuni Chen, Xiuming Guan, Guihua He, Wang Zhang, Haiyan Zhang, Suiping Huang, Zhenhao Ye, Hudan Pan, Zishao Zhong","doi":"10.1016/j.phymed.2024.156356","DOIUrl":"10.1016/j.phymed.2024.156356","url":null,"abstract":"<p><strong>Background: </strong>Chronic atrophic gastritis (CAG) is a precursor to gastric cancer, a leading cause of cancer-related deaths worldwide. Despite current therapeutic strategies, preventing the transition from gastritis to cancer remains a challenge. Traditional Chinese Medicine (TCM), particularly the Yiqi-Huayu-Jiedu (YQHYJD) formula, have exhibited promising results in CAG management. However, the pharmacological underpinnings of this formula remain elusive.</p><p><strong>Purpose: </strong>The study aimed to elucidate the pharmacological mechanisms of the YQHYJD formula in treating CAG and its role in inhibiting the progression to gastric cancer through the modulation of the \"inflammation-cancer\" sequence.</p><p><strong>Methods: </strong>Mass spectrometric analysis of YQHYJD formula-containing serum was conducted to determine the active compounds involved in CAG treatment. A CAG rat model was induced using a combination of deoxycholic acid and ammonia, while a gastric precancerous lesion cell model was generated by exposing GES-1 cells to deoxycholic acid. Both models were treated with varying concentrations of the YQHYJD formula to assess its effects of the JAK2/STAT3 signaling-mediated epithelial-mesenchymal transition (EMT) pathway.</p><p><strong>Results: </strong>Mass spectrometry analysis identified 80 active compounds in the YQHYJD formula, including quercetin. Network pharmacology analysis revealed that these active compounds may exert their therapeutic effects on CAG through various mechanisms, including the JAK/STAT signaling. Using rat and cellular models of CAG, we found that the JAK/STAT pathway is activated alongside partial epithelial-mesenchymal transition (pEMT). YQHYJD treatment effectively mitigated the activation of the JAK2/STAT3 activation and pEMT. Furthermore, the therapeutic effect of the YQHYJD formula was maintained even in the presence of Colivelin or overexpressed STAT3.</p><p><strong>Conclusions: </strong>The YQHYJD formula treats CAG by inhibiting the JAK2/STAT3 -mediated pEMT, thereby suppressing the gastric \"inflammation-cancer\" transformation. This study provides mechanistic insights into the efficacy of YQHYJD in CAG treatment and suggests new therapeutic strategies for preventing gastric cancer development.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"137 ","pages":"156356"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-06DOI: 10.1016/j.phymed.2025.156369
Dingwu Li, Jianing Chen, Chenhui Ye, Bingru Lin, Tiantian Zhang, Qingxia Chen, Chaohui Yu, Xingyong Wan
Background: Celastrol was recently identified as a potential treatment for obesity and hepatic steatosis. However, whether Celastrol effectively suppresses the nonalcoholic fatty liver disease (NAFLD) stage remains unknown. This study aimed to evaluate the role of Celastrol in the progression from simple steatosis to nonalcoholic steatohepatitis (NASH) and fibrosis.
Methods: C57BL/6 mice were fed a Western diet combined with a weekly low-dose injection of CCl4 (WD/CCl4) for 16 weeks to establish NASH models. The effects of Celastrol on NASH were further explored through histopathological assessments, immunoblotting, and in vitro analyses.
Results: Celastrol treatment effectively attenuated hepatic steatosis and fibrosis in WD/CCl4-induced NASH models, in which Notch2 was downregulated by Celastrol in a posttranscriptional manner. In vitro experiments revealed that Notch2 suppression in Celastrol-treated hepatocytes further decreased osteopontin (OPN) levels, inhibiting hepatic stellate cells (HSCs) activation. Moreover, the protective effects of Celastrol on NASH progression were abolished in Notch2-overexpressing mice.
Conclusion: This study demonstrated the protective effects of Celastrol on NASH-related liver fibrosis by modulating Notch/OPN signaling, providing fresh insights into the potential application of Celastrol in NASH treatment.
{"title":"Celastrol ameliorates fibrosis in Western diet/tetrachloromethane-induced nonalcoholic steatohepatitis by suppressing Notch/osteopontin signaling.","authors":"Dingwu Li, Jianing Chen, Chenhui Ye, Bingru Lin, Tiantian Zhang, Qingxia Chen, Chaohui Yu, Xingyong Wan","doi":"10.1016/j.phymed.2025.156369","DOIUrl":"10.1016/j.phymed.2025.156369","url":null,"abstract":"<p><strong>Background: </strong>Celastrol was recently identified as a potential treatment for obesity and hepatic steatosis. However, whether Celastrol effectively suppresses the nonalcoholic fatty liver disease (NAFLD) stage remains unknown. This study aimed to evaluate the role of Celastrol in the progression from simple steatosis to nonalcoholic steatohepatitis (NASH) and fibrosis.</p><p><strong>Methods: </strong>C57BL/6 mice were fed a Western diet combined with a weekly low-dose injection of CCl<sub>4</sub> (WD/CCl<sub>4</sub>) for 16 weeks to establish NASH models. The effects of Celastrol on NASH were further explored through histopathological assessments, immunoblotting, and in vitro analyses.</p><p><strong>Results: </strong>Celastrol treatment effectively attenuated hepatic steatosis and fibrosis in WD/CCl<sub>4</sub>-induced NASH models, in which Notch2 was downregulated by Celastrol in a posttranscriptional manner. In vitro experiments revealed that Notch2 suppression in Celastrol-treated hepatocytes further decreased osteopontin (OPN) levels, inhibiting hepatic stellate cells (HSCs) activation. Moreover, the protective effects of Celastrol on NASH progression were abolished in Notch2-overexpressing mice.</p><p><strong>Conclusion: </strong>This study demonstrated the protective effects of Celastrol on NASH-related liver fibrosis by modulating Notch/OPN signaling, providing fresh insights into the potential application of Celastrol in NASH treatment.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"137 ","pages":"156369"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The significant distal necrosis of the random-pattern skin flaps greatly restricts their clinical applications in flap transplantation. Previous studies have demonstrated the potential of danshensu (DSS) to alleviate ischemic tissue injury. However, no research to date has confirmed whether DSS can improve the survival of ischemic flaps. This study employed DSS to examine its role and the mechanisms underlying its impact on flap survival.
Methods: RNA sequencing was conducted to identify potential targets of DSS in ischemic flaps. The viability of random-pattern skin flaps was assessed by analyzing the survival area, tissue edema, laser Doppler blood flow, and histological examination. Western blot and immunofluorescence were used to determine the protein levels related to angiogenesis, pyroptosis, macrophage polarization, autophagy, and the TNF-α-mediated NF-κB signaling pathway.
Results: Through RNA sequencing analysis, we observed differences in gene expression related to inflammation and cell death before and after flap injury. Based on the above, DSS, which possesses anti-inflammatory and antioxidant properties, came into our view and was confirmed to enhance the viability of ischemic flaps. The results showed that DSS promoted angiogenesis, induced macrophage polarization toward the M2 type, and reduced pyroptosis. We also demonstrated that enhancing autophagic flux promoted angiogenesis and reduced inflammation. In addition, DSS enhanced autophagy by suppressing the NF-κB signaling pathway through the downregulation of TNF-α. Overexpression of TNF-α activated the NF-κB signaling pathway, reduced autophagic flux, and eliminated the protective effect of DSS.
Conclusion: DSS promoted autophagy and reduced inflammation by downregulating TNF-α to suppress the NF-κB signaling pathway, thereby improving the vitality of ischemic flaps and providing strong support for its clinical application.
{"title":"Danshensu enhances autophagy and reduces inflammation by downregulating TNF-α to inhibit the NF-κB signaling pathway in ischemic flaps.","authors":"Yingying Huang, Yingying Lai, Liang Chen, Kejian Fu, Donghao Shi, Xianhui Ma, Ningning Yang, Xuankuai Chen, Sheng Cheng, Jingzhou Lu, Xuzi Zhang, Weiyang Gao","doi":"10.1016/j.phymed.2025.156378","DOIUrl":"10.1016/j.phymed.2025.156378","url":null,"abstract":"<p><strong>Background: </strong>The significant distal necrosis of the random-pattern skin flaps greatly restricts their clinical applications in flap transplantation. Previous studies have demonstrated the potential of danshensu (DSS) to alleviate ischemic tissue injury. However, no research to date has confirmed whether DSS can improve the survival of ischemic flaps. This study employed DSS to examine its role and the mechanisms underlying its impact on flap survival.</p><p><strong>Methods: </strong>RNA sequencing was conducted to identify potential targets of DSS in ischemic flaps. The viability of random-pattern skin flaps was assessed by analyzing the survival area, tissue edema, laser Doppler blood flow, and histological examination. Western blot and immunofluorescence were used to determine the protein levels related to angiogenesis, pyroptosis, macrophage polarization, autophagy, and the TNF-α-mediated NF-κB signaling pathway.</p><p><strong>Results: </strong>Through RNA sequencing analysis, we observed differences in gene expression related to inflammation and cell death before and after flap injury. Based on the above, DSS, which possesses anti-inflammatory and antioxidant properties, came into our view and was confirmed to enhance the viability of ischemic flaps. The results showed that DSS promoted angiogenesis, induced macrophage polarization toward the M2 type, and reduced pyroptosis. We also demonstrated that enhancing autophagic flux promoted angiogenesis and reduced inflammation. In addition, DSS enhanced autophagy by suppressing the NF-κB signaling pathway through the downregulation of TNF-α. Overexpression of TNF-α activated the NF-κB signaling pathway, reduced autophagic flux, and eliminated the protective effect of DSS.</p><p><strong>Conclusion: </strong>DSS promoted autophagy and reduced inflammation by downregulating TNF-α to suppress the NF-κB signaling pathway, thereby improving the vitality of ischemic flaps and providing strong support for its clinical application.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"137 ","pages":"156378"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Early intervention in hepatic fibrosis (HF) is critical to reducing the risk of cirrhosis-related mortality and hepatocellular cancer. However, treating fibrosis has proven to be more challenging, with no approved anti-fibrotic therapies currently available for HF. Traditional Chinese medicines (TCMs) hold significant potential for the management of HF.
Purpose: This study aims to propose a systematic approach for investigating the pharmacological basis of Baoganning (BGN) Decoction, providing empirical evidence to support future research on its targets and mechanisms of BGN.
Study design: Ultrahigh-performance liquid chromatography coupled with high- resolution mass spectrometry (UPLC-HRMS) was employed to analyze the chemical composition of BGN. Key compounds were investigated using disease databases to predict relevant targets, followed by molecular docking and molecular dynamics simulations to explore molecular-level interactions. The efficacy and critical targets of BGN were validated through in vivo and in vitro experiments.
Methods: UPLC-HRMS was used to identify the chemical composition of the BGN, and serum pharmacology determined the active chemical constituents in rat plasma. Zebrafish, HSC-T6 cells, JS-1 cell line and mice served as experimental models to evaluate the antifibrotic effects of BGN.
Results: BGN demonstrated significant antifibrotic effect in vivo and in vitro models. A total of 757 compounds were identified in BGN, with 18 prototypical components and metabolites detected. Three compounds-quillaic acid, methyl cholate, and 3β-hydroxy-5-cholenoic exhibited dose-dependent inhibitory effects on HF. Molecular docking studies revealed stable interactions between these compounds and predicted targets. Additionally, the screened components effectively reduced the expression of α-SMA and COL-I in both a cellular model and a zebrafish fibrosis model in a dose-dependent manner.
Conclusion: The comprehensive analysis of BGN's chemical composition and its metabolic processes provides valuable insights into its pharmacological effects. These findings support the potential clinical and international application of BGN in treating hepatic fibrosis and improving patient outcomes.
{"title":"Integrated UHPLC-Q-exactive orbitrap HRMS and serum pharmacochemistry for the investigation of anti-hepatic fibrosis effect of Baoganning Decoction.","authors":"Kaili Deng, Min Li, Liangliang Xiang, Yuhua Wang, Yamei Li, Junya Wen, Yuanyuan Li, Shanshan Kuang, Jinjie Wen, Chuying Zhou, Sha Huang, Zhiping Lv","doi":"10.1016/j.phymed.2025.156363","DOIUrl":"10.1016/j.phymed.2025.156363","url":null,"abstract":"<p><strong>Background: </strong>Early intervention in hepatic fibrosis (HF) is critical to reducing the risk of cirrhosis-related mortality and hepatocellular cancer. However, treating fibrosis has proven to be more challenging, with no approved anti-fibrotic therapies currently available for HF. Traditional Chinese medicines (TCMs) hold significant potential for the management of HF.</p><p><strong>Purpose: </strong>This study aims to propose a systematic approach for investigating the pharmacological basis of Baoganning (BGN) Decoction, providing empirical evidence to support future research on its targets and mechanisms of BGN.</p><p><strong>Study design: </strong>Ultrahigh-performance liquid chromatography coupled with high- resolution mass spectrometry (UPLC-HRMS) was employed to analyze the chemical composition of BGN. Key compounds were investigated using disease databases to predict relevant targets, followed by molecular docking and molecular dynamics simulations to explore molecular-level interactions. The efficacy and critical targets of BGN were validated through in vivo and in vitro experiments.</p><p><strong>Methods: </strong>UPLC-HRMS was used to identify the chemical composition of the BGN, and serum pharmacology determined the active chemical constituents in rat plasma. Zebrafish, HSC-T6 cells, JS-1 cell line and mice served as experimental models to evaluate the antifibrotic effects of BGN.</p><p><strong>Results: </strong>BGN demonstrated significant antifibrotic effect in vivo and in vitro models. A total of 757 compounds were identified in BGN, with 18 prototypical components and metabolites detected. Three compounds-quillaic acid, methyl cholate, and 3β-hydroxy-5-cholenoic exhibited dose-dependent inhibitory effects on HF. Molecular docking studies revealed stable interactions between these compounds and predicted targets. Additionally, the screened components effectively reduced the expression of α-SMA and COL-I in both a cellular model and a zebrafish fibrosis model in a dose-dependent manner.</p><p><strong>Conclusion: </strong>The comprehensive analysis of BGN's chemical composition and its metabolic processes provides valuable insights into its pharmacological effects. These findings support the potential clinical and international application of BGN in treating hepatic fibrosis and improving patient outcomes.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"137 ","pages":"156363"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Depression is a widely recognized neuropsychiatric disorder. Recent studies have shown a potential correlation between bile acid disorders and depression, highlighting the importance of maintaining bile acid balance for effective antidepressant treatment. Schisandrol B (SolB), a primary bioactive compound from Schisandra chinensis (Turcz.) Baill. or Schisandra sphenanthera Rehd.etWils, is pivotal in regulating bile acid homeostasis via pregnane X receptor (PXR) in cholestasis. However, the potential of SolB in alleviating depression-like symptoms, its pharmacological effects, and the underlying mechanisms remain to be fully elucidated.
Methods: We confirmed the effect of SolB against depression induced by chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS) in mice. The role of SolB in bile acid homeostasis in depression was analyzed using the metabolomic. Gene analyses and 16S rRNA sequencing were employed to investigate the involvement of PXR. Experiments with Pxr-/- mice were conducted to confirm the essential role of the PXR pathway in SolB's antidepressant effects.
Results: SolB treatment significantly increased sucrose consumption in the SPT and the locomotor activity in the OFT, while decreasing immobility time in the FST and TST in mice exposed to CRS and CUMS. Additionally, SolB treatment significantly preserved the integrity of the dendritic spine, elevated synaptic protein PSD95 levels, and augmented CREB/BDNF expression. Metabolomic and gene analyses indicated that SolB treatment significantly facilitated bile acid metabolism, promoted intestinal bile acid efflux, decreased hippocampal levels of the secondary bile acids DCA and TLCA, and upregulated expression of the PXR target proteins CYP3A11, SULT2A1, MRP2, and OATP1B1 in the liver, and MRP2 and MDR1 in hippocampus, which are integral to bile acid homeostasis. 16S rRNA sequencing revealed that SolB reduced the abundance of the bile salt hydrolase (BSH)-producing bacteria Lactobacillus johnsonii and Bacteroides fragilis and subsequently decreased the production of TLCA and DCA. Moreover, SolB failed to protect against depression induced by CRS in Pxr-null mice, suggesting that the antidepressant effect of SolB was PXR-dependent.
Conclusions: These results provide direct evidence of the antidepressant effect of SolB via activation of PXR to regulate bile acid homeostasis in the brain-liver-gut axis, suggesting that SolB may serve as a novel potential target for preventing and treating depression.
{"title":"Schisandrol B alleviates depression-like behavior in mice by regulating bile acid homeostasis in the brain-liver-gut axis via the pregnane X receptor.","authors":"Peng Wang, Hui Ouyang, Guofang Bi, Fengting Liang, Shuang Hu, Chenghua Wu, Xiaowen Jiang, Wenhong Zhou, Dan Li, Shuaishuai Zhang, Xiao Yang, Mingliang Zhao, Jian-Hong Fang, Haitao Wang, Wei Jia, Zheng-Jiang Zhu, Huichang Bi","doi":"10.1016/j.phymed.2024.156340","DOIUrl":"10.1016/j.phymed.2024.156340","url":null,"abstract":"<p><strong>Background: </strong>Depression is a widely recognized neuropsychiatric disorder. Recent studies have shown a potential correlation between bile acid disorders and depression, highlighting the importance of maintaining bile acid balance for effective antidepressant treatment. Schisandrol B (SolB), a primary bioactive compound from Schisandra chinensis (Turcz.) Baill. or Schisandra sphenanthera Rehd.etWils, is pivotal in regulating bile acid homeostasis via pregnane X receptor (PXR) in cholestasis. However, the potential of SolB in alleviating depression-like symptoms, its pharmacological effects, and the underlying mechanisms remain to be fully elucidated.</p><p><strong>Methods: </strong>We confirmed the effect of SolB against depression induced by chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS) in mice. The role of SolB in bile acid homeostasis in depression was analyzed using the metabolomic. Gene analyses and 16S rRNA sequencing were employed to investigate the involvement of PXR. Experiments with Pxr<sup>-/-</sup> mice were conducted to confirm the essential role of the PXR pathway in SolB's antidepressant effects.</p><p><strong>Results: </strong>SolB treatment significantly increased sucrose consumption in the SPT and the locomotor activity in the OFT, while decreasing immobility time in the FST and TST in mice exposed to CRS and CUMS. Additionally, SolB treatment significantly preserved the integrity of the dendritic spine, elevated synaptic protein PSD95 levels, and augmented CREB/BDNF expression. Metabolomic and gene analyses indicated that SolB treatment significantly facilitated bile acid metabolism, promoted intestinal bile acid efflux, decreased hippocampal levels of the secondary bile acids DCA and TLCA, and upregulated expression of the PXR target proteins CYP3A11, SULT2A1, MRP2, and OATP1B1 in the liver, and MRP2 and MDR1 in hippocampus, which are integral to bile acid homeostasis. 16S rRNA sequencing revealed that SolB reduced the abundance of the bile salt hydrolase (BSH)-producing bacteria Lactobacillus johnsonii and Bacteroides fragilis and subsequently decreased the production of TLCA and DCA. Moreover, SolB failed to protect against depression induced by CRS in Pxr-null mice, suggesting that the antidepressant effect of SolB was PXR-dependent.</p><p><strong>Conclusions: </strong>These results provide direct evidence of the antidepressant effect of SolB via activation of PXR to regulate bile acid homeostasis in the brain-liver-gut axis, suggesting that SolB may serve as a novel potential target for preventing and treating depression.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"137 ","pages":"156340"},"PeriodicalIF":6.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The traditional Chinese medicine Phytolacca acinosa Roxb (PAR), known as Shanglu, possesses recognized therapeutic benefits against many diseases. PAR is also hepatotoxic, making it a major public health problem. However, the specific toxic substances and molecular mechanisms of PAR remain unclear. Therefore, appropriate animal models and methods are essential to confirm the toxic components and related mechanisms of PAR.
Methods: L-02 cells and zebrafish larvae at 4 days post-fertilization (4 dpf) were used as models and treated with various concentrations of phytolaccagenin (Phy), esculentoside A (EsA), and esculentoside H (EsH). The hepatotoxicity of three samples was assessed based on liver phenotype, pathological assessments, and biochemical index in zebrafish and proliferative activity, apoptosis level, and biochemical index in L02 cells. The transcriptomic technique was used to explore the related signaling pathways and potential mechanisms in vitro and in zebrafish , and the findings were validated by RT-PCR.
Results: The results of acute toxicity tests indicated that Phy exhibited substantially more severe hepatotoxicity than EsA, while EsH did not lead to any obvious toxic effects. Especially, under sublethal exposure (
Conclusion: This study identified Phy as a key hepatotoxic component of PAR. Furthermore, using transcriptomic techniques, we preliminarily investigated the hepatotoxic mechanisms of Phy in vitro and in vivo. The results of the present study showed that Phy affects several signaling pathways, including those involved in lipid metabolism, oxidative stress, and apoptosis, finally leading to hepatotoxicity. These findings provide invaluable insights into the safe use of PAR in clinical settings.
{"title":"Hepatotoxicity of Phytolacca acinosa Roxb mediated by phytolaccagenin via ferroptosis/PPAR/P53/arachidonic acid metabolism.","authors":"Muyao Cui, Yao Zhang, Yang Tang, Qiqi Fan, Xiaolu Chen, Jiaqi Li, Chuanqi Qiao, Xue Chen, Ruichao Lin, Xue Yu, Chongjun Zhao","doi":"10.1016/j.phymed.2025.156433","DOIUrl":"https://doi.org/10.1016/j.phymed.2025.156433","url":null,"abstract":"<p><strong>Background: </strong>The traditional Chinese medicine Phytolacca acinosa Roxb (PAR), known as Shanglu, possesses recognized therapeutic benefits against many diseases. PAR is also hepatotoxic, making it a major public health problem. However, the specific toxic substances and molecular mechanisms of PAR remain unclear. Therefore, appropriate animal models and methods are essential to confirm the toxic components and related mechanisms of PAR.</p><p><strong>Methods: </strong>L-02 cells and zebrafish larvae at 4 days post-fertilization (4 dpf) were used as models and treated with various concentrations of phytolaccagenin (Phy), esculentoside A (EsA), and esculentoside H (EsH). The hepatotoxicity of three samples was assessed based on liver phenotype, pathological assessments, and biochemical index in zebrafish and proliferative activity, apoptosis level, and biochemical index in L02 cells. The transcriptomic technique was used to explore the related signaling pathways and potential mechanisms in vitro and in zebrafish , and the findings were validated by RT-PCR.</p><p><strong>Results: </strong>The results of acute toxicity tests indicated that Phy exhibited substantially more severe hepatotoxicity than EsA, while EsH did not lead to any obvious toxic effects. Especially, under sublethal exposure (<LC10), both Phy and EsA induced similar liver damage in zebrafish and L-02 cells, increasing mortality, disrupting morphology, enhancing apoptosis, altering liver enzyme levels, and leading to significant structural changes in cells and zebrafish. Multiomics analysis of 605 genes in L-02 cells and 780 genes in zebrafish showed that exposure to Phy significantly altered gene expression in various biological processes. Further enrichment analysis demonstrated that Phy predominantly affects the P53apoptosiscell cycle arrest, ferroptosis, PPAR signaling, and arachidonic acid metabolism, leading to notable cellular damage.</p><p><strong>Conclusion: </strong>This study identified Phy as a key hepatotoxic component of PAR. Furthermore, using transcriptomic techniques, we preliminarily investigated the hepatotoxic mechanisms of Phy in vitro and in vivo. The results of the present study showed that Phy affects several signaling pathways, including those involved in lipid metabolism, oxidative stress, and apoptosis, finally leading to hepatotoxicity. These findings provide invaluable insights into the safe use of PAR in clinical settings.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"138 ","pages":"156433"},"PeriodicalIF":6.7,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143075062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}