Natalia Białoń, Michał Trzęsicki, Mikołaj Górka, Krzysztof Suszyński, Dariusz Górka
Cerebral glucose metabolism is an issue of researchers’ interest for a long time. Disturbed transport and metabolism of glucose in the brain lead to development of numerous neurological pathologies. Recently, a significant correlation between perturbed cerebral glucose metabolism and development of neurodegenerative diseases has been shown. Glucose, a monosaccharide, is the main source of energy for brain cells. Brain is the organ which is the most sensitive to changes in blood glucose level. Perturbed glucose transport leads to disorders of the central glucose metabolism. Neurodegenerative diseases are defined in the literature as progressive and irreversible degeneration of nerve tissue, causing cell death as a result of degenerative processes. The aim of this article is to discuss the physiology and the role of selected glucose transporters in the development of neurodegenerative diseases: expression of selected GLUT1 and GLUT3 transporters in Alzheimer's and Huntington's diseases. Understanding of the cerebral glucose metabolism may be a crucial factor in fight with central nervous system diseases.
{"title":"Cerebral metabolism of glucose and selected glucose transporters in neurodegenerative diseases","authors":"Natalia Białoń, Michał Trzęsicki, Mikołaj Górka, Krzysztof Suszyński, Dariusz Górka","doi":"10.18388/pb.2021_463","DOIUrl":"https://doi.org/10.18388/pb.2021_463","url":null,"abstract":"<p><p>Cerebral glucose metabolism is an issue of researchers’ interest for a long time. Disturbed transport and metabolism of glucose in the brain lead to development of numerous neurological pathologies. Recently, a significant correlation between perturbed cerebral glucose metabolism and development of neurodegenerative diseases has been shown. Glucose, a monosaccharide, is the main source of energy for brain cells. Brain is the organ which is the most sensitive to changes in blood glucose level. Perturbed glucose transport leads to disorders of the central glucose metabolism. Neurodegenerative diseases are defined in the literature as progressive and irreversible degeneration of nerve tissue, causing cell death as a result of degenerative processes. The aim of this article is to discuss the physiology and the role of selected glucose transporters in the development of neurodegenerative diseases: expression of selected GLUT1 and GLUT3 transporters in Alzheimer's and Huntington's diseases. Understanding of the cerebral glucose metabolism may be a crucial factor in fight with central nervous system diseases.</p>","PeriodicalId":20335,"journal":{"name":"Postepy biochemii","volume":"68 4","pages":"375-380"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10598592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michał Trzęsicki, Natalia Białoń, Damian Kuźma, Dariusz Górka
Apoptosis is an orderly, active process with the activation of certain genes that allows the cell to follow the path of programmed death. During embryogenesis, programmed cell death templates are essential for the proper formation of organs and the functioning of the nervous system in the regression of primary or abnormal structures. Increased cell mortality in the mature nervous system can lead to various neurodegenerative diseases. For these reasons, the Bcl-2 protein family is being studied intensively in connection with the function of the nervous system. Programmed cell death (PCD) makes it possible to eliminate superfluous cells and thus contribute to the maintenance of homeostasis in the body. Malregulation of apoptosis is characteristic of tumour processes, degenerative changes and autoimmune diseases. Research into gene expression of pro- and anti-apoptotic proteins using knock-out technology is currently raising great hopes for the treatment of patients affected by neurodegenerative changes.
{"title":"Bcl-2-proteins and neurotrophins as important factors for the survival of peripheral neurons in transgenic animals","authors":"Michał Trzęsicki, Natalia Białoń, Damian Kuźma, Dariusz Górka","doi":"10.18388/pb.2021_460","DOIUrl":"https://doi.org/10.18388/pb.2021_460","url":null,"abstract":"<p><p>Apoptosis is an orderly, active process with the activation of certain genes that allows the cell to follow the path of programmed death. During embryogenesis, programmed cell death templates are essential for the proper formation of organs and the functioning of the nervous system in the regression of primary or abnormal structures. Increased cell mortality in the mature nervous system can lead to various neurodegenerative diseases. For these reasons, the Bcl-2 protein family is being studied intensively in connection with the function of the nervous system. Programmed cell death (PCD) makes it possible to eliminate superfluous cells and thus contribute to the maintenance of homeostasis in the body. Malregulation of apoptosis is characteristic of tumour processes, degenerative changes and autoimmune diseases. Research into gene expression of pro- and anti-apoptotic proteins using knock-out technology is currently raising great hopes for the treatment of patients affected by neurodegenerative changes.</p>","PeriodicalId":20335,"journal":{"name":"Postepy biochemii","volume":"68 4","pages":"381-386"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10598593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in biochemistry have helped to understand the structure and function of enzymes, which in turn has led to an increase in their stability, activity and substrate specificity. Today, biocatalysis provides more sustainable, efficient and less polluting methods for the production of fine chemicals and advanced pharmaceutical intermediates. This paper presents the structure and the mechanism of action of cytochrome P450 monooxygenases and their use in the effective synthesis of biologically active compounds, which is more ecological, less time-consuming and cheaper compared to chemical synthesis. The pharmaceutical industry should take advantage of the advances in biochemistry to obtain biocatalysts for the production of fine chemicals on an industrial scale, improving the quality of end products while saving costs.
{"title":"Cytochrome P450 monooxygenases - versatile biocatalysts","authors":"Agata Wszołek","doi":"10.18388/pb.2021_464","DOIUrl":"https://doi.org/10.18388/pb.2021_464","url":null,"abstract":"<p><p>Advances in biochemistry have helped to understand the structure and function of enzymes, which in turn has led to an increase in their stability, activity and substrate specificity. Today, biocatalysis provides more sustainable, efficient and less polluting methods for the production of fine chemicals and advanced pharmaceutical intermediates. This paper presents the structure and the mechanism of action of cytochrome P450 monooxygenases and their use in the effective synthesis of biologically active compounds, which is more ecological, less time-consuming and cheaper compared to chemical synthesis. The pharmaceutical industry should take advantage of the advances in biochemistry to obtain biocatalysts for the production of fine chemicals on an industrial scale, improving the quality of end products while saving costs.</p>","PeriodicalId":20335,"journal":{"name":"Postepy biochemii","volume":"68 4","pages":"399-409"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9094818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Light-dependent reactions of photosynthesis takes place in the thylakoids of chloroplasts where light energy harvested from the sun drives the synthesis of ATP and NADPH. The major pathway of photosynthetic chain is the linear electron transport (LET), in which both photosystems (PSI and PSII) are involved, and ATP and NADPH are produced. However, ratio in production of those components is insufficient to cover the Calvin cycle energy requirements, depending on the metabolism of the cell. Moreover, disturbance in metabolism homeostasis, caused by environmental stress conditions, increases ATP demand, which cannot be covered by LET. Thus, in photosynthetic apparatus must exist alternative electron transport pathways, these include: cyclic electron transport (CET) mediated by NDH complex or PGR5/PGRL1 proteins, water-water cycle and PTOX enzyme. Activity of alternative pathways can optimize ratio in production of ATP/NADPH, appropriately to requirements, which allows to achieve redox balance and ATP contents.
{"title":"The role of alternative electron pathways in the photosynthetic chain in higher plants","authors":"Aleksandra Urban, Marta Galas, Paweł Rogowski","doi":"10.18388/pb.2021_465","DOIUrl":"https://doi.org/10.18388/pb.2021_465","url":null,"abstract":"Light-dependent reactions of photosynthesis takes place in the thylakoids of chloroplasts where light energy harvested from the sun drives the synthesis of ATP and NADPH. The major pathway of photosynthetic chain is the linear electron transport (LET), in which both photosystems (PSI and PSII) are involved, and ATP and NADPH are produced. However, ratio in production of those components is insufficient to cover the Calvin cycle energy requirements, depending on the metabolism of the cell. Moreover, disturbance in metabolism homeostasis, caused by environmental stress conditions, increases ATP demand, which cannot be covered by LET. Thus, in photosynthetic apparatus must exist alternative electron transport pathways, these include: cyclic electron transport (CET) mediated by NDH complex or PGR5/PGRL1 proteins, water-water cycle and PTOX enzyme. Activity of alternative pathways can optimize ratio in production of ATP/NADPH, appropriately to requirements, which allows to achieve redox balance and ATP contents.","PeriodicalId":20335,"journal":{"name":"Postepy biochemii","volume":"68 4","pages":"366-374"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10554441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cryopreservation (banking) techniques have been known to nature for centuries. Many species of insects, amphibians, fish and even reptiles use natural cryopreservation methods to survive the harsh conditions of winter or to live in extremely cold temperatures. Cryopreservation and dreams of immortality have intrigued humanity for years. The first reports of observing the effects of freezing sperm (stored in snow) date back to 1776. In 1866, Montegazza was the first to suggest a vision completely unimaginable for the time: "a man dying on the battlefield can conceive an heir from sperm frozen and stored at home". The first, at that time still unsuccessful, reports of laboratory freezing of human sperm date back to the 1930s [1]. Finally, mankind "learned" cryopreservation in the middle of the twentieth century, when on October 15, 1949, the article "Revival of spermatozoa after vitrification and dehydration at low temperatures" appeared in print in the Nature journal, summarising the pioneering research of scientists from the National Institute for Medical Research, Mill Hill, London [2]. This concerned the freezing of fowl sperm in the presence of glycerol, ethylene glycol and propylene glycol in such a way that after thawing it was able to fertilise eggs effectively. The subsequent use of dimethyl sulfoxide (DMSO) revolutionised modern cryobiology [3-5]. Thus began the era of cryopreservation, without which today it is difficult to imagine the work of cell biology laboratories, modern animal breeding, or the development of modern medicine.
{"title":"The basis of cell cryopreservation","authors":"Dawid Wnuk","doi":"10.18388/pb.2021_461","DOIUrl":"https://doi.org/10.18388/pb.2021_461","url":null,"abstract":"<p><p>Cryopreservation (banking) techniques have been known to nature for centuries. Many species of insects, amphibians, fish and even reptiles use natural cryopreservation methods to survive the harsh conditions of winter or to live in extremely cold temperatures. Cryopreservation and dreams of immortality have intrigued humanity for years. The first reports of observing the effects of freezing sperm (stored in snow) date back to 1776. In 1866, Montegazza was the first to suggest a vision completely unimaginable for the time: \"a man dying on the battlefield can conceive an heir from sperm frozen and stored at home\". The first, at that time still unsuccessful, reports of laboratory freezing of human sperm date back to the 1930s [1]. Finally, mankind \"learned\" cryopreservation in the middle of the twentieth century, when on October 15, 1949, the article \"Revival of spermatozoa after vitrification and dehydration at low temperatures\" appeared in print in the Nature journal, summarising the pioneering research of scientists from the National Institute for Medical Research, Mill Hill, London [2]. This concerned the freezing of fowl sperm in the presence of glycerol, ethylene glycol and propylene glycol in such a way that after thawing it was able to fertilise eggs effectively. The subsequent use of dimethyl sulfoxide (DMSO) revolutionised modern cryobiology [3-5]. Thus began the era of cryopreservation, without which today it is difficult to imagine the work of cell biology laboratories, modern animal breeding, or the development of modern medicine.</p>","PeriodicalId":20335,"journal":{"name":"Postepy biochemii","volume":"68 4","pages":"353-365"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10598594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Piotr J Pietras, Katarzyna Kamińska, Sebastian Pęcherz, Julia Sobkowiak, Kamilla Grzywacz
All living cells depend on the fine-tuning of gene expression and protein biosynthesis. Ribosomes, the molecular machines at the center of translation, have been previously considered the invariable driving force of protein production. However, recent studies indicated that the ribosomes are actively involved in the regulation of translation, influencing the control of translation initiation, the elongation speed, and the mRNA translation selectivity. This is due to the presence of subpopulations of the ribosomes, which differ in rRNAs and protein composition, their modifications and protein stoichiometry. In this publication, we focused our attention on the ribosomal heterogeneity in eukaryotes, which results from the changes in the stoichiometry of the ribosomal proteins and the existence of protein paralogs.
{"title":"Ribosome heterogeneity as a new element of translation regulation","authors":"Piotr J Pietras, Katarzyna Kamińska, Sebastian Pęcherz, Julia Sobkowiak, Kamilla Grzywacz","doi":"10.18388/pb.2021_467","DOIUrl":"https://doi.org/10.18388/pb.2021_467","url":null,"abstract":"<p><p>All living cells depend on the fine-tuning of gene expression and protein biosynthesis. Ribosomes, the molecular machines at the center of translation, have been previously considered the invariable driving force of protein production. However, recent studies indicated that the ribosomes are actively involved in the regulation of translation, influencing the control of translation initiation, the elongation speed, and the mRNA translation selectivity. This is due to the presence of subpopulations of the ribosomes, which differ in rRNAs and protein composition, their modifications and protein stoichiometry. In this publication, we focused our attention on the ribosomal heterogeneity in eukaryotes, which results from the changes in the stoichiometry of the ribosomal proteins and the existence of protein paralogs.</p>","PeriodicalId":20335,"journal":{"name":"Postepy biochemii","volume":"68 4","pages":"425-433"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10598595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An increasing number of elders in a general population and longer life expectancy have a negative outcome in the growth of dissemination of neurodegenerative diseases (NDs). The NDs like Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) show sex-dependent prevalence. It is considered that sex steroids could influence on the NDs occurrence. Epidemiological studies indicate that women suffer more frequently from AD, whereas men from PD and ALS. Research suggest neuroprotective effects of estrogens and confirm that factors reducing their level may have a contribution to a higher morbidity rate to NDs. Adverse effects of androgens on NDs have been noticed, however some data suggest their beneficial actions. Therefore, the understanding of the potential role of sex steroids and their receptors in the pathogenesis and course of NDs would contribute to broadening the knowledge of molecular mechanisms leading to NDs. Moreover effective prevention and treatment could be assessed in the future.
{"title":"The role of steroid hormones in the neurodegenerative diseases","authors":"Aleksandra Sadowska, Małgorzata Grzesiak","doi":"10.18388/pb.2021_468","DOIUrl":"https://doi.org/10.18388/pb.2021_468","url":null,"abstract":"<p><p>An increasing number of elders in a general population and longer life expectancy have a negative outcome in the growth of dissemination of neurodegenerative diseases (NDs). The NDs like Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) show sex-dependent prevalence. It is considered that sex steroids could influence on the NDs occurrence. Epidemiological studies indicate that women suffer more frequently from AD, whereas men from PD and ALS. Research suggest neuroprotective effects of estrogens and confirm that factors reducing their level may have a contribution to a higher morbidity rate to NDs. Adverse effects of androgens on NDs have been noticed, however some data suggest their beneficial actions. Therefore, the understanding of the potential role of sex steroids and their receptors in the pathogenesis and course of NDs would contribute to broadening the knowledge of molecular mechanisms leading to NDs. Moreover effective prevention and treatment could be assessed in the future.</p>","PeriodicalId":20335,"journal":{"name":"Postepy biochemii","volume":"68 4","pages":"387-398"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10598596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-14Print Date: 2022-09-30DOI: 10.18388/pb.2021_458
Karolina Dobrzyń, Magdalena K Kowalik
Progesterone (P4) is a steroid hormone which participate in many processes in the female reproductive system. The hormone is produced mainly by the corpus luteum (CL), however, also the ovarian follicles, uterine tissues and placenta are able to produce P4. Progesterone is involved in the regulation of the sexual cycle, as well as in the initiation and maintenance of pregnancy. The hormone may affect cell function by genomic mechanism, through nuclear P4 receptors (PGR), and via nongenomic mechanism, through the membrane P4 receptors, such as progesterone receptor membrane component (PGRMC) 1 and 2, and membrane progestin receptors (mPR) α, β and γ. The genomic mechanism of P4 action leads to the expression of target genes and the synthesis of new proteins, while the nongenomic mechanism modifies various intracellular signaling pathways. The integration of these two mechanisms of P4 activity leads to the suitable regulation of the cell, tissue and, consequently, the response of organism to the hormone.
{"title":"Molecular mechanism of progesterone action in the female reproductive system","authors":"Karolina Dobrzyń, Magdalena K Kowalik","doi":"10.18388/pb.2021_458","DOIUrl":"https://doi.org/10.18388/pb.2021_458","url":null,"abstract":"<p><p>Progesterone (P4) is a steroid hormone which participate in many processes in the female reproductive system. The hormone is produced mainly by the corpus luteum (CL), however, also the ovarian follicles, uterine tissues and placenta are able to produce P4. Progesterone is involved in the regulation of the sexual cycle, as well as in the initiation and maintenance of pregnancy. The hormone may affect cell function by genomic mechanism, through nuclear P4 receptors (PGR), and via nongenomic mechanism, through the membrane P4 receptors, such as progesterone receptor membrane component (PGRMC) 1 and 2, and membrane progestin receptors (mPR) α, β and γ. The genomic mechanism of P4 action leads to the expression of target genes and the synthesis of new proteins, while the nongenomic mechanism modifies various intracellular signaling pathways. The integration of these two mechanisms of P4 activity leads to the suitable regulation of the cell, tissue and, consequently, the response of organism to the hormone.</p>","PeriodicalId":20335,"journal":{"name":"Postepy biochemii","volume":"68 3","pages":"336-343"},"PeriodicalIF":0.0,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40660467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-05Print Date: 2022-09-30DOI: 10.18388/pb.2021_447
Jagna Chmielowska-Bąk, Aleksandra Grzesik
Secondary metabolites produced by plants are a rich group of bioactive compounds with many health-promoting properties, which can be used in various sectors of industry including pharmaceutical and cosmetic industries. One of the problems with application of plant derived compounds are their low levels in plant tissues. Thus, new methods aiming at stimulation of the biosynthesis of plant metabolites are being investigated. In recent years several articles on the use of metals as elicitors have been published. Present review presents the examples of the application of copper (Cu), zin (Zn), cadmium (Cd) and selected nanoparticles as elicitors.
{"title":"Stimulating effects of metals on biosynthesis of plant bioactive compounds.","authors":"Jagna Chmielowska-Bąk, Aleksandra Grzesik","doi":"10.18388/pb.2021_447","DOIUrl":"https://doi.org/10.18388/pb.2021_447","url":null,"abstract":"<p><p>Secondary metabolites produced by plants are a rich group of bioactive compounds with many health-promoting properties, which can be used in various sectors of industry including pharmaceutical and cosmetic industries. One of the problems with application of plant derived compounds are their low levels in plant tissues. Thus, new methods aiming at stimulation of the biosynthesis of plant metabolites are being investigated. In recent years several articles on the use of metals as elicitors have been published. Present review presents the examples of the application of copper (Cu), zin (Zn), cadmium (Cd) and selected nanoparticles as elicitors.</p>","PeriodicalId":20335,"journal":{"name":"Postepy biochemii","volume":"68 3","pages":"300-309"},"PeriodicalIF":0.0,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40674383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01Print Date: 2022-09-30DOI: 10.18388/pb.2021_450
Anna Sokołowska, Maciej Rugała, Krystyna Oracz
ARGONAUTE (AGO) proteins are integral parts of regulatory pathways under the control of small RNA (sRNA) that are fundamental for the proper functioning of eukaryotic cells. AGOs, as highly specialized platforms binding specific sRNA, coordinate gene silencing through interaction with other protein factors (forming the RNA-induced silencing complex, RISC), contributing to endonucleolytic cleavage of the target mRNA and/or influencing the translation process. The increasing number of evidence confirms the participation of AGO proteins in several other cellular processes, such as i.e.: transcription regulation, sequestration, RNA-dependent methylation of DNA, repair of DNA damages, synthesis of siRNA independent of DCL (DICER-like) proteins, or co-transcriptional regulation of MIRNA genes expression and intron splicing. Particular plant species are characterized by the presence of a different number of AGO proteins, in many cases of yet unknown regulatory and/or biological function. This review article covers the current knowledge about the functions of AGOs in cell biology and plant development.
{"title":"ARGONAUTE proteins in cell biology and plant development.","authors":"Anna Sokołowska, Maciej Rugała, Krystyna Oracz","doi":"10.18388/pb.2021_450","DOIUrl":"https://doi.org/10.18388/pb.2021_450","url":null,"abstract":"<p><p>ARGONAUTE (AGO) proteins are integral parts of regulatory pathways under the control of small RNA (sRNA) that are fundamental for the proper functioning of eukaryotic cells. AGOs, as highly specialized platforms binding specific sRNA, coordinate gene silencing through interaction with other protein factors (forming the RNA-induced silencing complex, RISC), contributing to endonucleolytic cleavage of the target mRNA and/or influencing the translation process. The increasing number of evidence confirms the participation of AGO proteins in several other cellular processes, such as i.e.: transcription regulation, sequestration, RNA-dependent methylation of DNA, repair of DNA damages, synthesis of siRNA independent of DCL (DICER-like) proteins, or co-transcriptional regulation of MIRNA genes expression and intron splicing. Particular plant species are characterized by the presence of a different number of AGO proteins, in many cases of yet unknown regulatory and/or biological function. This review article covers the current knowledge about the functions of AGOs in cell biology and plant development.</p>","PeriodicalId":20335,"journal":{"name":"Postepy biochemii","volume":"68 3","pages":"310-320"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40674381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}