Aleksandra Tymoszewska, Tamara Aleksandrzak-Piekarczyk
Bacteriocins are peptides or proteins produced by bacteria to kill or inhibit the growth of other bacteria inhabiting the same ecological niche. The growing interest in bacteriocins reflects their potential use in food preservation and treatment of infections caused by antibiotic-resistant pathogenic bacteria, among other applications. The number of published studies on the identification of new bacteriocin-producing strains is constantly increasing. At the same time, there is a noticeable lack of research describing the mechanisms of action of most newly identified bacteriocins, as well as the mechanisms leading to the development of resistance to these bacteriocins and cross-resistance to antibiotics. Detailed understanding of these issues will allow to develop guidelines ensuring the most effective, safe and long-term use of bacteriocins without the risk of resistance development. This work describes the main assumptions of the doctoral dissertation of Aleksandra Tymoszewska, which objectives were to characterize the mechanisms of action and of resistance to class II bacteriocins of Gram-positive bacteria. Using the model bacterium Lactococcus lactis, two groups of bacteriocins were examined: (i) garvicins Q, A, B and C, and BacSJ; and (ii) aureocin A53 (AurA53)- and enterocin L50 (EntL50)-like bacteriocins. Bacteriocins of group (i) have been shown to recognize susceptible cells and form pores in the cell membrane using a specific receptor, the mannose-specific phosphotransferase system (Man-PTS), and sensitive bacteria have been shown to acquire resistance to the these bacteriocins by modifying the structure of Man-PTS. On the other hand, the acquisition of resistance to group (ii) membrane-targeting and receptor-independent bacteriocins occurs through changes in the structure of the bacterial cell wall and membrane, which are induced by changes in the expression of proteins involved in lipid metabolism or components of the YsaCB-KinG-LlrG regulatory system. The results shed new light on previous views on the mechanisms of action of bacteriocins and open up opportunities for their further study.
{"title":"Studies on the mechanisms of action and development of resistance to class II bacteriocins of Gram-positive bacteria","authors":"Aleksandra Tymoszewska, Tamara Aleksandrzak-Piekarczyk","doi":"10.18388/pb.2021_517","DOIUrl":"https://doi.org/10.18388/pb.2021_517","url":null,"abstract":"Bacteriocins are peptides or proteins produced by bacteria to kill or inhibit the growth of other bacteria inhabiting the same ecological niche. The growing interest in bacteriocins reflects their potential use in food preservation and treatment of infections caused by antibiotic-resistant pathogenic bacteria, among other applications. The number of published studies on the identification of new bacteriocin-producing strains is constantly increasing. At the same time, there is a noticeable lack of research describing the mechanisms of action of most newly identified bacteriocins, as well as the mechanisms leading to the development of resistance to these bacteriocins and cross-resistance to antibiotics. Detailed understanding of these issues will allow to develop guidelines ensuring the most effective, safe and long-term use of bacteriocins without the risk of resistance development. This work describes the main assumptions of the doctoral dissertation of Aleksandra Tymoszewska, which objectives were to characterize the mechanisms of action and of resistance to class II bacteriocins of Gram-positive bacteria. Using the model bacterium Lactococcus lactis, two groups of bacteriocins were examined: (i) garvicins Q, A, B and C, and BacSJ; and (ii) aureocin A53 (AurA53)- and enterocin L50 (EntL50)-like bacteriocins. Bacteriocins of group (i) have been shown to recognize susceptible cells and form pores in the cell membrane using a specific receptor, the mannose-specific phosphotransferase system (Man-PTS), and sensitive bacteria have been shown to acquire resistance to the these bacteriocins by modifying the structure of Man-PTS. On the other hand, the acquisition of resistance to group (ii) membrane-targeting and receptor-independent bacteriocins occurs through changes in the structure of the bacterial cell wall and membrane, which are induced by changes in the expression of proteins involved in lipid metabolism or components of the YsaCB-KinG-LlrG regulatory system. The results shed new light on previous views on the mechanisms of action of bacteriocins and open up opportunities for their further study.","PeriodicalId":20341,"journal":{"name":"Postępy Biochemii","volume":" 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139623175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The main function of bile acids (BA) is participation in the emulsification of dietary fats. Recently it has been discovered that BAs can also act as signaling molecules regulating the processes of their own synthesis and metabolism, as well as glucose and lipid metabolism. In addition, they affect the motility of the digestive tract and food intake. BA also interacts with the gut microbiota, a major player in their metabolism. Most of the regulatory actions of BAs are mediated by their receptors, the most important of which are the farnesoid X receptor (FXR) and the G protein-coupled receptor -TGR5, found in large amounts in the intestine, liver, adipose tissue and other tissues of the body. Recently, much attention has been paid to the influence of BA on various diseases and the possibility of using them in the treatment of e.g. inflammatory bowel disease, liver diseases, type 2 diabetes and obesity.
胆汁酸(BA)的主要功能是参与食物脂肪的乳化。最近人们发现,胆汁酸还可以作为信号分子调节自身的合成和代谢过程,以及葡萄糖和脂质的代谢。此外,它们还会影响消化道的蠕动和食物的摄入。BA 还与肠道微生物群相互作用,是它们新陈代谢的主要参与者。BA 的大部分调节作用都是由其受体介导的,其中最重要的是类雌激素 X 受体(FXR)和 G 蛋白偶联受体--TGR5,它们大量存在于肠道、肝脏、脂肪组织和人体的其他组织中。最近,人们开始关注 BA 对各种疾病的影响,以及将其用于治疗炎症性肠病、肝病、2 型糖尿病和肥胖症等疾病的可能性。
{"title":"Znaczenie kwasów żółciowych w terapii wybranych chorób","authors":"Aleksandra Boguszewska, Anna Kiersztan","doi":"10.18388/pb.2021_506","DOIUrl":"https://doi.org/10.18388/pb.2021_506","url":null,"abstract":"The main function of bile acids (BA) is participation in the emulsification of dietary fats. Recently it has been discovered that BAs can also act as signaling molecules regulating the processes of their own synthesis and metabolism, as well as glucose and lipid metabolism. In addition, they affect the motility of the digestive tract and food intake. BA also interacts with the gut microbiota, a major player in their metabolism. Most of the regulatory actions of BAs are mediated by their receptors, the most important of which are the farnesoid X receptor (FXR) and the G protein-coupled receptor -TGR5, found in large amounts in the intestine, liver, adipose tissue and other tissues of the body. Recently, much attention has been paid to the influence of BA on various diseases and the possibility of using them in the treatment of e.g. inflammatory bowel disease, liver diseases, type 2 diabetes and obesity.","PeriodicalId":20341,"journal":{"name":"Postępy Biochemii","volume":"39 39","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139382442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Pawlak, Joanna Wałecka, P. Bąkowski, A. Tyczewska, Kamilla Grzywacz
Damage to the musculoskeletal system significantly impairs mobility and quality of life, limiting everyday activities. For a successful orthopedic treatment, anatomical, physiological and biomechanical factors must be taken into account as they all influence tissue healing. It is therefore of crucial importance to support traditional treatment with biological therapies, as they facilitate the regeneration of the tissue microarchitecture. Such orthobiologics work at the cellular level (orthobiologics rich in mesenchymal cells or growth factors) or at the tissue level (matrices for repairing e.g. cartilage). In this review, we describe the most frequently used orthobiologics rich in mesenchymal cells (bone marrow, autologous adipose tissue, tenocytes, umbilical cord, urine and bursa) and growth factors, presenting the molecular basis of their functioning and their clinical effectiveness.
{"title":"Biologiczne wspomaganie leczenia ortopedycznego","authors":"M. Pawlak, Joanna Wałecka, P. Bąkowski, A. Tyczewska, Kamilla Grzywacz","doi":"10.18388/pb.2021_505","DOIUrl":"https://doi.org/10.18388/pb.2021_505","url":null,"abstract":"Damage to the musculoskeletal system significantly impairs mobility and quality of life, limiting everyday activities. For a successful orthopedic treatment, anatomical, physiological and biomechanical factors must be taken into account as they all influence tissue healing. It is therefore of crucial importance to support traditional treatment with biological therapies, as they facilitate the regeneration of the tissue microarchitecture. Such orthobiologics work at the cellular level (orthobiologics rich in mesenchymal cells or growth factors) or at the tissue level (matrices for repairing e.g. cartilage). In this review, we describe the most frequently used orthobiologics rich in mesenchymal cells (bone marrow, autologous adipose tissue, tenocytes, umbilical cord, urine and bursa) and growth factors, presenting the molecular basis of their functioning and their clinical effectiveness.","PeriodicalId":20341,"journal":{"name":"Postępy Biochemii","volume":"65 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139151834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Ciesielska, Ichrak Ben Amor, Katarzyna Kwiatkowska
CD14 is one of the key proteins involved in the activation of the inflammatory response of immune cells. CD14 binds bacterial lipopolysaccharide (LPS) and transfers its molecules to the complex of Toll-like receptor 4 (TLR4) and MD-2 protein, which in turn triggers pro-inflammatory signaling pathways necessary to combat infection. CD14 determines the final shape of the pro-inflammatory reaction of cells to LPS, serving as a transporter of this endotoxin and also as a regulator of TLR4 activity. In addition, CD14 transports other molecules of microbial or endogenous origin to their target receptors/proteins, participating in the activation of pro-inflammatory signaling pathways triggered by the presence of pathogens, as well as tissue damage. Currently, more attention is paid to the role of the CD14 protein in the development of non-infectious diseases such as autoimmune diseases, metabolic diseases and cardiovascular diseases.
{"title":"Białko CD14 jako modulator odpowiedzi zapalnej","authors":"A. Ciesielska, Ichrak Ben Amor, Katarzyna Kwiatkowska","doi":"10.18388/pb.2021_501","DOIUrl":"https://doi.org/10.18388/pb.2021_501","url":null,"abstract":"CD14 is one of the key proteins involved in the activation of the inflammatory response of immune cells. CD14 binds bacterial lipopolysaccharide (LPS) and transfers its molecules to the complex of Toll-like receptor 4 (TLR4) and MD-2 protein, which in turn triggers pro-inflammatory signaling pathways necessary to combat infection. CD14 determines the final shape of the pro-inflammatory reaction of cells to LPS, serving as a transporter of this endotoxin and also as a regulator of TLR4 activity. In addition, CD14 transports other molecules of microbial or endogenous origin to their target receptors/proteins, participating in the activation of pro-inflammatory signaling pathways triggered by the presence of pathogens, as well as tissue damage. Currently, more attention is paid to the role of the CD14 protein in the development of non-infectious diseases such as autoimmune diseases, metabolic diseases and cardiovascular diseases.","PeriodicalId":20341,"journal":{"name":"Postępy Biochemii","volume":"255 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139152664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stage IV glioblastoma is the most frequently diagnosed and the worst prognosis tumor of the central nervous system (CNS). Patients suffering from this type of cancer usually survive several months with the use of surgical treatment, radiotherapy and chemotherapy. The development of glioblastoma is determined by a number of mutations, the most common of which are the p16, p19, p53, pRB, PTEN, PDGFR, CDK4 and EGFR protein genes as well as the loss of heterozygosity on chromosomes 10, 17 and 19. The occurrence of mutations within the IDH1 and IDH2 genes and increased methylation of MGMT promoter improves patient survival, but few patients live more than 3 years after diagnosis. The most important cell signaling pathways in glioblastoma are PI3K/Akt/mTOR and Wnt/β-catenin, which play a key role in tumor cell function. However, these cells are highly resistant to anticancer drugs, including inhibitors of cell signaling pathways. Currently, the potential methods of effectively combating malignant gliomas are alternating electric field therapy and the implementation of new immunotherapeutic strategies.
{"title":"Genetyczne i molekularne podłoża rozwoju glejaka","authors":"Przemysław Panek, Aleksandra Jezela-Stanek","doi":"10.18388/pb.2021_495","DOIUrl":"https://doi.org/10.18388/pb.2021_495","url":null,"abstract":"Stage IV glioblastoma is the most frequently diagnosed and the worst prognosis tumor of the central nervous system (CNS). Patients suffering from this type of cancer usually survive several months with the use of surgical treatment, radiotherapy and chemotherapy. The development of glioblastoma is determined by a number of mutations, the most common of which are the p16, p19, p53, pRB, PTEN, PDGFR, CDK4 and EGFR protein genes as well as the loss of heterozygosity on chromosomes 10, 17 and 19. The occurrence of mutations within the IDH1 and IDH2 genes and increased methylation of MGMT promoter improves patient survival, but few patients live more than 3 years after diagnosis. The most important cell signaling pathways in glioblastoma are PI3K/Akt/mTOR and Wnt/β-catenin, which play a key role in tumor cell function. However, these cells are highly resistant to anticancer drugs, including inhibitors of cell signaling pathways. Currently, the potential methods of effectively combating malignant gliomas are alternating electric field therapy and the implementation of new immunotherapeutic strategies.","PeriodicalId":20341,"journal":{"name":"Postępy Biochemii","volume":"49 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139172885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanna Frankenstein, Jakub Robak, U. Lewandowska, K. Owczarek
Cancer, type 2 diabetes, cardiovascular and neurological diseases are disorders commonly classified as diseases that have a significant impact on the length and quality of human life. Sirtuins play an important role in their pathogenesis and complications. Numerous studies indicate that modulation of the expression of these proteins can slow down the processes of aging and cell death, prevent inflammation, and regulate metabolic processes, and consequently modify the progression of the disease. One of the best-known sirtuins is sirtuin 1, whose strongest natural activator is resveratrol. The development of alternative therapies involving natural compounds such as resveratrol is highly desirable due to the significantly lower number of side effects compared to conventional therapies. Therefore, this review summarizes the possible benefits of resveratrol as a sirtuin 1 activator in the prevention and treatment of human diseases based on the results of the studies conducted so far.
{"title":"Sirtuin 1 as a potential molecular target of resveratrol in selected diseases","authors":"Hanna Frankenstein, Jakub Robak, U. Lewandowska, K. Owczarek","doi":"10.18388/pb.2021_499","DOIUrl":"https://doi.org/10.18388/pb.2021_499","url":null,"abstract":"Cancer, type 2 diabetes, cardiovascular and neurological diseases are disorders commonly classified as diseases that have a significant impact on the length and quality of human life. Sirtuins play an important role in their pathogenesis and complications. Numerous studies indicate that modulation of the expression of these proteins can slow down the processes of aging and cell death, prevent inflammation, and regulate metabolic processes, and consequently modify the progression of the disease. One of the best-known sirtuins is sirtuin 1, whose strongest natural activator is resveratrol. The development of alternative therapies involving natural compounds such as resveratrol is highly desirable due to the significantly lower number of side effects compared to conventional therapies. Therefore, this review summarizes the possible benefits of resveratrol as a sirtuin 1 activator in the prevention and treatment of human diseases based on the results of the studies conducted so far.","PeriodicalId":20341,"journal":{"name":"Postępy Biochemii","volume":"73 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139176159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marta Przybylak, Karolina Wleklik, Alan Stafiej, Sławomir Borek
Vacuolar processing enzymes (VPEs) are plant proteases belonging to the C13 protease family. The specific activity of VPEs was characterized by comparing them to animal caspases. VPEs perform many important functions at various stages of plant ontogenesis, playing a role not only in the proper development of the plant organism but also in plant reactions to biotic and abiotic stress factors. A particularly important role of VPEs is noted in the processing of vacuolar proteins, enabling the production of their mature and active forms. VPEs are involved in programmed cell death, but despite residual evidence, we also suggest that VPEs are involved in autophagy. Based on literature data on autophagy in yeast, we formulate a hypothesis that VPEs during autophagy in plant cells are involved in the degradation of autophagic bodies - one of the final stages of autophagy.
{"title":"Struktura molekularna i funkcje wakuolarnych enzymów procesujących w ontogenezie roślin","authors":"Marta Przybylak, Karolina Wleklik, Alan Stafiej, Sławomir Borek","doi":"10.18388/pb.2021_497","DOIUrl":"https://doi.org/10.18388/pb.2021_497","url":null,"abstract":"Vacuolar processing enzymes (VPEs) are plant proteases belonging to the C13 protease family. The specific activity of VPEs was characterized by comparing them to animal caspases. VPEs perform many important functions at various stages of plant ontogenesis, playing a role not only in the proper development of the plant organism but also in plant reactions to biotic and abiotic stress factors. A particularly important role of VPEs is noted in the processing of vacuolar proteins, enabling the production of their mature and active forms. VPEs are involved in programmed cell death, but despite residual evidence, we also suggest that VPEs are involved in autophagy. Based on literature data on autophagy in yeast, we formulate a hypothesis that VPEs during autophagy in plant cells are involved in the degradation of autophagic bodies - one of the final stages of autophagy.","PeriodicalId":20341,"journal":{"name":"Postępy Biochemii","volume":"38 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139176138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}