Abhilash Barpanda, Chaitanya Tuckley, Arka Ray, Arghya Banerjee, Siddhartha P Duttagupta, Chetan Kantharia, Sanjeeva Srivastava
Purpose: Colorectal cancer (CRC) has been reported as the second leading cause of cancer death worldwide. The 5-year annual survival is around 50%, mainly due to late diagnosis, striking necessity for early detection. This study aims to identify autoantibody in patients' sera for early screening of cancer.
Experimental design: The study used a high-density human proteome array with approximately 17,000 recombinant proteins. Screening of sera from healthy individuals, CRC from Indian origin, and CRC from middle-east Asia origin were performed. Bio-statistical analysis was performed to identify significant autoantibodies altered. Pathway analysis was performed to explore the underlying mechanism of the disease.
Results: The comprehensive proteomic analysis revealed dysregulation of 15 panels of proteins including CORO7, KCNAB1, WRAP53, NDUFS6, KRT30, and COLGALT2. Further biological pathway analysis for the top dysregulated autoantigenic proteins revealed perturbation in important biological pathways such as ECM degradation and cytoskeletal remodeling etc. CONCLUSIONS AND CLINICAL RELEVANCE: The generation of an autoimmune response against cancer-linked pathways could be linked to the screening of the disease. The process of immune surveillance can be detected at an early stage of cancer. Moreover, AAbs can be easily extracted from blood serum through the least invasive test for disease screening.
{"title":"A protein microarray-based serum proteomic investigation reveals distinct autoantibody signature in colorectal cancer.","authors":"Abhilash Barpanda, Chaitanya Tuckley, Arka Ray, Arghya Banerjee, Siddhartha P Duttagupta, Chetan Kantharia, Sanjeeva Srivastava","doi":"10.1002/prca.202200062","DOIUrl":"https://doi.org/10.1002/prca.202200062","url":null,"abstract":"<p><strong>Purpose: </strong>Colorectal cancer (CRC) has been reported as the second leading cause of cancer death worldwide. The 5-year annual survival is around 50%, mainly due to late diagnosis, striking necessity for early detection. This study aims to identify autoantibody in patients' sera for early screening of cancer.</p><p><strong>Experimental design: </strong>The study used a high-density human proteome array with approximately 17,000 recombinant proteins. Screening of sera from healthy individuals, CRC from Indian origin, and CRC from middle-east Asia origin were performed. Bio-statistical analysis was performed to identify significant autoantibodies altered. Pathway analysis was performed to explore the underlying mechanism of the disease.</p><p><strong>Results: </strong>The comprehensive proteomic analysis revealed dysregulation of 15 panels of proteins including CORO7, KCNAB1, WRAP53, NDUFS6, KRT30, and COLGALT2. Further biological pathway analysis for the top dysregulated autoantigenic proteins revealed perturbation in important biological pathways such as ECM degradation and cytoskeletal remodeling etc. CONCLUSIONS AND CLINICAL RELEVANCE: The generation of an autoimmune response against cancer-linked pathways could be linked to the screening of the disease. The process of immune surveillance can be detected at an early stage of cancer. Moreover, AAbs can be easily extracted from blood serum through the least invasive test for disease screening.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9320458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayse Tugce Sahin, Ali Yurtseven, Sina Dadmand, Gulin Ozcan, Busra A Akarlar, Nazli Ezgi Ozkan Kucuk, Aydanur Senturk, Onder Ergonul, Fusun Can, Nurcan Tuncbag, Nurhan Ozlu
Purpose: Coronavirus disease 2019 (COVID-19) continues to threaten public health globally. Severe acute respiratory coronavirus type 2 (SARS-CoV-2) infection-dependent alterations in the host cell signaling network may unveil potential target proteins and pathways for therapeutic strategies. In this study, we aim to define early severity biomarkers and monitor altered pathways in the course of SARS-CoV-2 infection.
Experimental design: We systematically analyzed plasma proteomes of COVID-19 patients from Turkey by using mass spectrometry. Different severity grades (moderate, severe, and critical) and periods of disease (early, inflammatory, and recovery) are monitored. Significant alterations in protein expressions are used to reconstruct the COVID-19 associated network that was further extended to connect viral and host proteins.
Results: Across all COVID-19 patients, 111 differentially expressed proteins were found, of which 28 proteins were unique to our study mainly enriching in immunoglobulin production. By monitoring different severity grades and periods of disease, CLEC3B, MST1, and ITIH2 were identified as potential early predictors of COVID-19 severity. Most importantly, we extended the COVID-19 associated network with viral proteins and showed the connectedness of viral proteins with human proteins. The most connected viral protein ORF8, which has a role in immune evasion, targets many host proteins tightly connected to the deregulated human plasma proteins.
Conclusions and clinical relevance: Plasma proteomes from critical patients are intrinsically clustered in a distinct group than severe and moderate patients. Importantly, we did not recover any grouping based on the infection period, suggesting their distinct proteome even in the recovery phase. The new potential early severity markers can be further studied for their value in the clinics to monitor COVID-19 prognosis. Beyond the list of plasma proteins, our disease-associated network unravels altered pathways, and the possible therapeutic targets in SARS-CoV-2 infection by connecting human and viral proteins. Follow-up studies on the disease associated network that we propose here will be useful to determine molecular details of viral perturbation and to address how the infection affects human physiology.
{"title":"Plasma proteomics identify potential severity biomarkers from COVID-19 associated network.","authors":"Ayse Tugce Sahin, Ali Yurtseven, Sina Dadmand, Gulin Ozcan, Busra A Akarlar, Nazli Ezgi Ozkan Kucuk, Aydanur Senturk, Onder Ergonul, Fusun Can, Nurcan Tuncbag, Nurhan Ozlu","doi":"10.1002/prca.202200070","DOIUrl":"https://doi.org/10.1002/prca.202200070","url":null,"abstract":"<p><strong>Purpose: </strong>Coronavirus disease 2019 (COVID-19) continues to threaten public health globally. Severe acute respiratory coronavirus type 2 (SARS-CoV-2) infection-dependent alterations in the host cell signaling network may unveil potential target proteins and pathways for therapeutic strategies. In this study, we aim to define early severity biomarkers and monitor altered pathways in the course of SARS-CoV-2 infection.</p><p><strong>Experimental design: </strong>We systematically analyzed plasma proteomes of COVID-19 patients from Turkey by using mass spectrometry. Different severity grades (moderate, severe, and critical) and periods of disease (early, inflammatory, and recovery) are monitored. Significant alterations in protein expressions are used to reconstruct the COVID-19 associated network that was further extended to connect viral and host proteins.</p><p><strong>Results: </strong>Across all COVID-19 patients, 111 differentially expressed proteins were found, of which 28 proteins were unique to our study mainly enriching in immunoglobulin production. By monitoring different severity grades and periods of disease, CLEC3B, MST1, and ITIH2 were identified as potential early predictors of COVID-19 severity. Most importantly, we extended the COVID-19 associated network with viral proteins and showed the connectedness of viral proteins with human proteins. The most connected viral protein ORF8, which has a role in immune evasion, targets many host proteins tightly connected to the deregulated human plasma proteins.</p><p><strong>Conclusions and clinical relevance: </strong>Plasma proteomes from critical patients are intrinsically clustered in a distinct group than severe and moderate patients. Importantly, we did not recover any grouping based on the infection period, suggesting their distinct proteome even in the recovery phase. The new potential early severity markers can be further studied for their value in the clinics to monitor COVID-19 prognosis. Beyond the list of plasma proteins, our disease-associated network unravels altered pathways, and the possible therapeutic targets in SARS-CoV-2 infection by connecting human and viral proteins. Follow-up studies on the disease associated network that we propose here will be useful to determine molecular details of viral perturbation and to address how the infection affects human physiology.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874836/pdf/PRCA-9999-2200070.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9635383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linjia Cheng, Yilu Xu, Kangling Zhu, Bin Liang, Shuyan Zhang, Pingsheng Liu
Purpose: The distribution and expression level of a protein among animal tissues is indicative of its possible roles. It is important to establish a generally applicable method to prepare protein samples with high-quality and achieve near 100% recovery of proteins from animal tissues.
Experimental design: During preparation, to sufficiently dissolve and maintain stability of almost all proteins from tissues, as well as to avoid most contaminations affecting protein detection, 2×SDS Sample Buffer, sonication and trichloroacetic acid precipitation are applied.
Results: Here we provide a relatively simple, reproducible, and broadly applicable method for studying protein distribution in most tissues, in which the issues resulting from protein degradation and modification during sample preparation and assay interference by other cellular components like neutral lipids and glycogen could be overcome. Furthermore, this method represents the protein content by equal wet tissue mass, which is a better means to present the expression level of a protein in various tissues. High-quality protein samples from almost all tissues could be prepared.
Conclusions and clinical relevance: The samples produced are amenable to tissue distribution analysis by Western blotting and for silver/Coomassie staining, proteomics, and other protein analyses, which would contribute to potential biomarkers or treatments for a disease.
{"title":"Protein sample preparation for tissue distribution study.","authors":"Linjia Cheng, Yilu Xu, Kangling Zhu, Bin Liang, Shuyan Zhang, Pingsheng Liu","doi":"10.1002/prca.202200088","DOIUrl":"https://doi.org/10.1002/prca.202200088","url":null,"abstract":"<p><strong>Purpose: </strong>The distribution and expression level of a protein among animal tissues is indicative of its possible roles. It is important to establish a generally applicable method to prepare protein samples with high-quality and achieve near 100% recovery of proteins from animal tissues.</p><p><strong>Experimental design: </strong>During preparation, to sufficiently dissolve and maintain stability of almost all proteins from tissues, as well as to avoid most contaminations affecting protein detection, 2×SDS Sample Buffer, sonication and trichloroacetic acid precipitation are applied.</p><p><strong>Results: </strong>Here we provide a relatively simple, reproducible, and broadly applicable method for studying protein distribution in most tissues, in which the issues resulting from protein degradation and modification during sample preparation and assay interference by other cellular components like neutral lipids and glycogen could be overcome. Furthermore, this method represents the protein content by equal wet tissue mass, which is a better means to present the expression level of a protein in various tissues. High-quality protein samples from almost all tissues could be prepared.</p><p><strong>Conclusions and clinical relevance: </strong>The samples produced are amenable to tissue distribution analysis by Western blotting and for silver/Coomassie staining, proteomics, and other protein analyses, which would contribute to potential biomarkers or treatments for a disease.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9259798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aleksandar Rusevski, Dijana Plaseska-Karanfilska, Katarina Davalieva
Purpose: Azoospermia, as the most severe form of male infertility, no longer indicates sterility due to modern medical advancements. The current diagnostic procedure based on testicular biopsy has several drawbacks which urges the development of novel, non-invasive diagnostic procedures based on biomarkers. In the last two decades, there have been many proteomics studies investigating potential azoospermia biomarkers. In this review, we aimed to provide a critical evaluation of these studies.
Experimental design: Published articles were gathered by systematic literature search using Pubmed, Science Direct, and Google Scholar databases until March 2022 and were further preselected to include only studies on human samples.
Results: A detailed review of these studies encompassed the proteomics platforms, sources of material, proposed candidate biomarkers, and their potential diagnostic specificity and sensitivity. In addition, emphasis was put on the top, most identified and validated biomarker candidates and their potential for discriminating azoospermia types and subtypes as well as predicting sperm retrieval success rate.
Conclusions: Proteomics research of azoospermia has laid the groundwork for the development of a more streamlined biomarker testing. The future research should be focused on well-designed studies including samples from all types/subtypes as well as further testing of the most promising biomarkers identified so far.
{"title":"Proteomics of azoospermia: Towards the discovery of reliable markers for non-invasive diagnosis.","authors":"Aleksandar Rusevski, Dijana Plaseska-Karanfilska, Katarina Davalieva","doi":"10.1002/prca.202200060","DOIUrl":"https://doi.org/10.1002/prca.202200060","url":null,"abstract":"<p><strong>Purpose: </strong>Azoospermia, as the most severe form of male infertility, no longer indicates sterility due to modern medical advancements. The current diagnostic procedure based on testicular biopsy has several drawbacks which urges the development of novel, non-invasive diagnostic procedures based on biomarkers. In the last two decades, there have been many proteomics studies investigating potential azoospermia biomarkers. In this review, we aimed to provide a critical evaluation of these studies.</p><p><strong>Experimental design: </strong>Published articles were gathered by systematic literature search using Pubmed, Science Direct, and Google Scholar databases until March 2022 and were further preselected to include only studies on human samples.</p><p><strong>Results: </strong>A detailed review of these studies encompassed the proteomics platforms, sources of material, proposed candidate biomarkers, and their potential diagnostic specificity and sensitivity. In addition, emphasis was put on the top, most identified and validated biomarker candidates and their potential for discriminating azoospermia types and subtypes as well as predicting sperm retrieval success rate.</p><p><strong>Conclusions: </strong>Proteomics research of azoospermia has laid the groundwork for the development of a more streamlined biomarker testing. The future research should be focused on well-designed studies including samples from all types/subtypes as well as further testing of the most promising biomarkers identified so far.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10849645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammed F Aljawad, Abdul Hussein M Al Faisal, Mohammed F Alqanbar, Phillip A Wilmarth, Basima Q Hassan
Background: Cervical cancer is a common cancer in women caused by high-risk human papillomavirus (Hr-HPV). Many potential biomarkers have been proposed for precancerous lesions and cancer diagnosis and some of these markers studied for prognosis. This study determined potential biomarkers for cervical cancer diagnosis in regard to HPV genotype by using isobaric labeling quantitative proteomics.
Methods: in the current study, there were 75 formalin fixed paraffin embedded (FFPE) uterine cervical samples that used to determine the 14 HPV genotypes and the viral load of each genotype was determined. The tandem mass tag (TMT) proteomic work was performed on four FFPE samples of cervical cancer and four FFPE of control samples. The validation of biomarkers from cervical proteome were evaluated using Immunohistochemistry (IHC) testing.
Results: The most frequent HPV genotype among all other genotypes was HPV 16. There were 2753 proteins quantified by TMT and 336 of these proteins had significant differential abundances. KPNA2, MCM2, COL1A1, and DCN were selected based on functional enrichment analysis and validated by Immunohistochemistry (IHC) testing. The staining of IHC confirmed the upregulation of KPNA2 and MCM2 expression in cervical neoplasia and the downregulation of DCN and COL1A1 in some cervical cancer group subjects.
Conclusion: The KPNA2 marker was compared to other previously reported biomarkers and is a putative biomarker to be validated in further studies, specifically the relationship with HPV load.
{"title":"Tandem mass tag-based quantitative proteomic analysis of cervical cancer.","authors":"Mohammed F Aljawad, Abdul Hussein M Al Faisal, Mohammed F Alqanbar, Phillip A Wilmarth, Basima Q Hassan","doi":"10.1002/prca.202100105","DOIUrl":"https://doi.org/10.1002/prca.202100105","url":null,"abstract":"<p><strong>Background: </strong>Cervical cancer is a common cancer in women caused by high-risk human papillomavirus (Hr-HPV). Many potential biomarkers have been proposed for precancerous lesions and cancer diagnosis and some of these markers studied for prognosis. This study determined potential biomarkers for cervical cancer diagnosis in regard to HPV genotype by using isobaric labeling quantitative proteomics.</p><p><strong>Methods: </strong>in the current study, there were 75 formalin fixed paraffin embedded (FFPE) uterine cervical samples that used to determine the 14 HPV genotypes and the viral load of each genotype was determined. The tandem mass tag (TMT) proteomic work was performed on four FFPE samples of cervical cancer and four FFPE of control samples. The validation of biomarkers from cervical proteome were evaluated using Immunohistochemistry (IHC) testing.</p><p><strong>Results: </strong>The most frequent HPV genotype among all other genotypes was HPV 16. There were 2753 proteins quantified by TMT and 336 of these proteins had significant differential abundances. KPNA2, MCM2, COL1A1, and DCN were selected based on functional enrichment analysis and validated by Immunohistochemistry (IHC) testing. The staining of IHC confirmed the upregulation of KPNA2 and MCM2 expression in cervical neoplasia and the downregulation of DCN and COL1A1 in some cervical cancer group subjects.</p><p><strong>Conclusion: </strong>The KPNA2 marker was compared to other previously reported biomarkers and is a putative biomarker to be validated in further studies, specifically the relationship with HPV load.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10625309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guang Chen, Lina Yang, Guoxiang Liu, Yunfan Zhu, Fanghao Yang, Xiaolei Dong, Fenghua Xu, Feng Zhu, Can Cao, Di Zhong, Shuang Li, Huhu Zhang, Bing Li
Although several effective treatment modalities have been developed for cancers, the morbidity and mortality associated with cancer continues to increase every year. As one of the most exciting emerging technologies, protein microarrays represent a powerful tool in the field of cancer research because of their advantages such as high throughput, small sample usage, more flexibility, high sensitivity and direct readout of results. In this review, we focus on the research progress in four types of protein microarrays (proteome microarray, antibody microarray, lectin microarray and reversed protein array) with emphasis on their application in cancer research. Finally, we discuss the current challenges faced by protein microarrays and directions for future developments. We firmly believe that this novel systems biology research tool holds immense potential in cancer research and will become an irreplaceable tool in this field.
{"title":"Research progress in protein microarrays: Focussing on cancer research.","authors":"Guang Chen, Lina Yang, Guoxiang Liu, Yunfan Zhu, Fanghao Yang, Xiaolei Dong, Fenghua Xu, Feng Zhu, Can Cao, Di Zhong, Shuang Li, Huhu Zhang, Bing Li","doi":"10.1002/prca.202200036","DOIUrl":"https://doi.org/10.1002/prca.202200036","url":null,"abstract":"<p><p>Although several effective treatment modalities have been developed for cancers, the morbidity and mortality associated with cancer continues to increase every year. As one of the most exciting emerging technologies, protein microarrays represent a powerful tool in the field of cancer research because of their advantages such as high throughput, small sample usage, more flexibility, high sensitivity and direct readout of results. In this review, we focus on the research progress in four types of protein microarrays (proteome microarray, antibody microarray, lectin microarray and reversed protein array) with emphasis on their application in cancer research. Finally, we discuss the current challenges faced by protein microarrays and directions for future developments. We firmly believe that this novel systems biology research tool holds immense potential in cancer research and will become an irreplaceable tool in this field.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9095788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tamara Babic, Vasiliki Lygirou, Jovana Rosic, Marko Miladinov, Aleksandra Djikic Rom, Eirini Baira, Rafael Stroggilos, Eftychia Pappa, Jerome Zoidakis, Zoran Krivokapic, Aleksandra Nikolic
Purpose: In the search for candidate predictive biomarkers to evaluate response to neoadjuvant chemoradiotherapy (nCRT) in rectal cancer, only a few studies report proteomic profiles of tumor tissue before and after nCRT. The aim of our study was to determine differentially expressed proteins between responders and non-responders before and after the therapy in order to identify candidate molecules for prediction and follow-up of response to nCRT.
Experimental design: The study has included tissue sections of rectal tumor and non-tumor mucosa from five responders and five non-responders taken before and after nCRT from patients with locally advanced rectal cancer. Extracted proteins were analyzed by LC-MS/MS analysis followed by a set of bioinformatics analyses.
Result: Proteomics analysis provided a mean of approximately 1050 protein identifications per sample. A comparison of proteomic profiles between responders and non-responders has identified 18 differentially expressed proteins. Pathway analysis demonstrated high metabolic activity in non-responders' tumors before nCRT, indicating the presence of intrinsic chemoradioresistance in these subjects. Two proteins associated with poor prognosis in colorectal cancer, ADAM10 and CAD, were identified as candidate predictive biomarkers as they were present in non-responders only.
Conclusions and clinical relevance: Shortlisted proteins from our study should be further validated as candidate biomarkers for response to routinely applied nCRT protocols.
{"title":"Pilot proteomic study of locally advanced rectal cancer before and after neoadjuvant chemoradiotherapy indicates high metabolic activity in non-responders' tumor tissue.","authors":"Tamara Babic, Vasiliki Lygirou, Jovana Rosic, Marko Miladinov, Aleksandra Djikic Rom, Eirini Baira, Rafael Stroggilos, Eftychia Pappa, Jerome Zoidakis, Zoran Krivokapic, Aleksandra Nikolic","doi":"10.1002/prca.202100116","DOIUrl":"https://doi.org/10.1002/prca.202100116","url":null,"abstract":"<p><strong>Purpose: </strong>In the search for candidate predictive biomarkers to evaluate response to neoadjuvant chemoradiotherapy (nCRT) in rectal cancer, only a few studies report proteomic profiles of tumor tissue before and after nCRT. The aim of our study was to determine differentially expressed proteins between responders and non-responders before and after the therapy in order to identify candidate molecules for prediction and follow-up of response to nCRT.</p><p><strong>Experimental design: </strong>The study has included tissue sections of rectal tumor and non-tumor mucosa from five responders and five non-responders taken before and after nCRT from patients with locally advanced rectal cancer. Extracted proteins were analyzed by LC-MS/MS analysis followed by a set of bioinformatics analyses.</p><p><strong>Result: </strong>Proteomics analysis provided a mean of approximately 1050 protein identifications per sample. A comparison of proteomic profiles between responders and non-responders has identified 18 differentially expressed proteins. Pathway analysis demonstrated high metabolic activity in non-responders' tumors before nCRT, indicating the presence of intrinsic chemoradioresistance in these subjects. Two proteins associated with poor prognosis in colorectal cancer, ADAM10 and CAD, were identified as candidate predictive biomarkers as they were present in non-responders only.</p><p><strong>Conclusions and clinical relevance: </strong>Shortlisted proteins from our study should be further validated as candidate biomarkers for response to routinely applied nCRT protocols.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10574921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aliabbas A Husain, Sneha M Pinto, Yashwanth Subbannayya, Saketh Kapoor, Payal Khulkhule, Nidhi Bhartiya, T S Keshava Prasad, Hatim F Daginawala, Lokendra R Singh, Rajpal Singh Kashyap
In the present study, a targeted multiple reaction monitoring-mass spectrometry (MRM-MS) approach was developed to screen and identify protein biomarkers for brucellosis in humans and livestock. The selection of proteotypic peptides was carried out by generating in silico tryptic peptides of the Brucella proteome. Using bioinformatics analysis, 30 synthetic peptides corresponding to 10 immunodominant Brucella abortus proteins were generated. MRM-MS assays for the accurate detection of these peptides were optimized using 117 serum samples of human and livestock stratified as clinically confirmed (45), suspected (62), and control (10). Using high throughput MRM assays, transitions for four peptides were identified in several clinically confirmed and suspected human and livestock serum samples. Of these, peptide NAIYDVVTR corresponding to B. abortus proteins: BruAb2_0537 was consistently detected in the clinically confirmed serum samples of both humans and livestock with 100% specificity. To conclude, a high throughput MRM-MS-based protocol for detecting endogenous B. abortus peptides in serum samples of humans and livestock was developed. The developed protocol will help design sensitive assays to accurately diagnose brucellosis in humans and livestock. The data associated with this study are deposited in Panorama Public (https://panoramaweb.org/rNOZCy.url with ProteomeXchange ID: PXD034407).
在本研究中,开发了一种靶向多反应监测-质谱(MRM-MS)方法来筛选和鉴定人类和牲畜布鲁氏菌病的蛋白质生物标志物。蛋白质型肽的选择是通过生成布鲁氏菌蛋白质组的硅质色氨酸进行的。通过生物信息学分析,合成了与10种免疫优势布鲁氏菌蛋白对应的30条合成肽。对117份人类和牲畜血清样本进行了优化,将其分为临床确诊(45份)、疑似(62份)和对照(10份),以准确检测这些肽。利用高通量MRM分析,在几个临床证实和疑似的人和牲畜血清样本中鉴定了四种肽的转变。其中,与abortus B.蛋白BruAb2_0537对应的肽段NAIYDVVTR在临床确认的人畜血清样本中均被检测到,特异性为100%。最后,建立了一种基于mrm - ms的高通量检测人畜血清中内源性流产杆菌肽的方法。制定的方案将有助于设计敏感的检测方法,以准确诊断人类和牲畜中的布鲁氏菌病。与本研究相关的数据保存在Panorama Public (https://panoramaweb.org/rNOZCy.url, ProteomeXchange ID: PXD034407)中。
{"title":"Development of multiple reaction monitoring (MRM) assays to identify Brucella abortus proteins in the serum of humans and livestock.","authors":"Aliabbas A Husain, Sneha M Pinto, Yashwanth Subbannayya, Saketh Kapoor, Payal Khulkhule, Nidhi Bhartiya, T S Keshava Prasad, Hatim F Daginawala, Lokendra R Singh, Rajpal Singh Kashyap","doi":"10.1002/prca.202200009","DOIUrl":"https://doi.org/10.1002/prca.202200009","url":null,"abstract":"<p><p>In the present study, a targeted multiple reaction monitoring-mass spectrometry (MRM-MS) approach was developed to screen and identify protein biomarkers for brucellosis in humans and livestock. The selection of proteotypic peptides was carried out by generating in silico tryptic peptides of the Brucella proteome. Using bioinformatics analysis, 30 synthetic peptides corresponding to 10 immunodominant Brucella abortus proteins were generated. MRM-MS assays for the accurate detection of these peptides were optimized using 117 serum samples of human and livestock stratified as clinically confirmed (45), suspected (62), and control (10). Using high throughput MRM assays, transitions for four peptides were identified in several clinically confirmed and suspected human and livestock serum samples. Of these, peptide NAIYDVVTR corresponding to B. abortus proteins: BruAb2_0537 was consistently detected in the clinically confirmed serum samples of both humans and livestock with 100% specificity. To conclude, a high throughput MRM-MS-based protocol for detecting endogenous B. abortus peptides in serum samples of humans and livestock was developed. The developed protocol will help design sensitive assays to accurately diagnose brucellosis in humans and livestock. The data associated with this study are deposited in Panorama Public (https://panoramaweb.org/rNOZCy.url with ProteomeXchange ID: PXD034407).</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10568939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elżbieta Cecerska-Heryć, Bartosz Ronkowski, Rafał Heryć, Natalia Serwin, Bartłomiej Grygorcewicz, Marta Roszak, Katarzyna Galant, Barbara Dołęgowska
Purpose: There is an increasing prevalence of inflammatory bowel disease (IBD) and to date, no effective treatment has been developed and the exact etiology of this disease remains unknown. Nevertheless, a growing number of proteomic and lipidomic studies have identified certain proteins and lipids which can be used successfully in patients to improve diagnoses and monitoring of treatment.
Experimental design: We have focused on the applications of proteins and lipids for IBD diagnostics, including differentiation of Crohn's disease (CD) and ulcerative colitis (UC), treatment monitoring, monitoring of clinical state, likelihood of relapse, and their potential for novel targeted treatments.
Results: Analysis of protein and lipid profiles can: improve the availability and use of diagnostic markers; improve understanding of the pathomechanisms of IBD, for example, several studies have implicated platelet dysfunction (PF4), autoimmune responses (granzyme B, perforin), and abnormal metabolism (arachidonic acid pathways); aid in monitoring patient health; and improve therapeutics (experimental phosphatidylcholine therapy has been shown to result in an improvement in intestinal condition).
Conclusions: Despite the enormous progress of proteomics and lipidomics in recent years and the development of new technologies, further research is needed to select some of the most sensitive and specific markers applicable in diagnosing and treating IBD.
{"title":"Proteomic and lipidomic biomarkers in the diagnosis and progression of inflammatory bowel disease - a review.","authors":"Elżbieta Cecerska-Heryć, Bartosz Ronkowski, Rafał Heryć, Natalia Serwin, Bartłomiej Grygorcewicz, Marta Roszak, Katarzyna Galant, Barbara Dołęgowska","doi":"10.1002/prca.202200003","DOIUrl":"https://doi.org/10.1002/prca.202200003","url":null,"abstract":"<p><strong>Purpose: </strong>There is an increasing prevalence of inflammatory bowel disease (IBD) and to date, no effective treatment has been developed and the exact etiology of this disease remains unknown. Nevertheless, a growing number of proteomic and lipidomic studies have identified certain proteins and lipids which can be used successfully in patients to improve diagnoses and monitoring of treatment.</p><p><strong>Experimental design: </strong>We have focused on the applications of proteins and lipids for IBD diagnostics, including differentiation of Crohn's disease (CD) and ulcerative colitis (UC), treatment monitoring, monitoring of clinical state, likelihood of relapse, and their potential for novel targeted treatments.</p><p><strong>Results: </strong>Analysis of protein and lipid profiles can: improve the availability and use of diagnostic markers; improve understanding of the pathomechanisms of IBD, for example, several studies have implicated platelet dysfunction (PF4), autoimmune responses (granzyme B, perforin), and abnormal metabolism (arachidonic acid pathways); aid in monitoring patient health; and improve therapeutics (experimental phosphatidylcholine therapy has been shown to result in an improvement in intestinal condition).</p><p><strong>Conclusions: </strong>Despite the enormous progress of proteomics and lipidomics in recent years and the development of new technologies, further research is needed to select some of the most sensitive and specific markers applicable in diagnosing and treating IBD.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10568974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}